## PHYSICS 1012

Equation Sheet for Test \#2
"Never memorize something you can look up." - Albert Einstein

## Constants and Conversion Factors

$$
\begin{aligned}
1 \mathrm{~m}=10^{6} \mu \mathrm{~m}=10^{9} \mathrm{~nm} & =10^{10} \AA=10^{12} \mathrm{pm}=10^{15} \mathrm{fm} \\
1 \mathrm{GeV}=10^{3} \mathrm{MeV} & =10^{6} \mathrm{keV}=10^{9} \mathrm{eV}=1.6022 \times 10^{-10} \mathrm{~J} \\
e & =1.6022 \times 10^{-19} \mathrm{C} \\
\varepsilon_{0} & =8.85418781762 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2} \\
1 / 4 \pi \varepsilon_{0} & =8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \\
\mu_{0} & =4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A} \\
c & =2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s} \sim 3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
k_{B} & =1.380649 \times 10^{-23} \mathrm{~J} /{ }^{\circ} \mathrm{K} \\
N_{A} & =6.02214076 \times 10^{23} \text { per mole } \\
R & =8.3144 \mathrm{~J} /{ }^{\circ} \mathrm{K} \cdot \mathrm{~mol} \\
\sigma & =5.67 \times 10^{-8} \mathrm{~J} / \mathrm{s} \cdot \mathrm{~m}^{2} \cdot{ }^{\circ} \mathrm{K}^{4} \\
m_{e} \text { (the electron mass) } & =9.11 \times 10^{-31} \mathrm{~kg} \\
M_{p} \text { (the proton mass) } & =1836 m_{e}
\end{aligned}
$$

## Work:

$$
W=\Delta U=-\int \vec{F} \cdot d \vec{s} \quad \Delta U=Q \Delta V
$$

## Magnetic Field:

Around a long, thin, straight current-carrying wire:

$$
|\vec{B}|=\frac{\mu_{0} i}{2 \pi d}
$$

Along the axis of a thin, current-carrying ring of radius $R$ :

$$
|\vec{B}|=\frac{\mu_{0} i R^{2}}{2\left(R^{2}+d^{2}\right)^{3 / 2}}
$$

Inside an ideal solenoid:

$$
|\vec{B}|=\mu_{0} n i
$$

Ampère's Law:

$$
\oint \vec{B} \cdot d \vec{s}=\mu_{0} i_{\mathrm{enclosed}}
$$

## Magnetic Flux and Faraday's Law of Induction:

$$
\begin{aligned}
\Phi_{B} & =\int \vec{B} \cdot d \vec{A} \\
\mathcal{E} & =-\frac{d \Phi_{B}}{d t}
\end{aligned}
$$

Induced Electric Field:

$$
\oint \vec{E} \cdot d \vec{s}=-\frac{d \Phi_{B}}{d t}
$$

## Inductors:

$$
\Delta V_{L}=L \frac{d i}{d t} \quad U=\frac{1}{2} L i^{2}
$$

AC Circuits and Complex Impedance:

$$
\begin{aligned}
\Delta V=V_{0} \cos \omega t & \Longrightarrow \quad \Delta V=V_{0} e^{j \omega t} \\
\Delta V & =i Z \\
Z_{R} & =R \\
Z_{C} & =\frac{1}{j \omega C} \\
Z_{L} & =j \omega L \\
A_{V} & =\left|\frac{\Delta V_{\text {out }}}{\Delta V_{\text {in }}}\right|
\end{aligned}
$$

## Optics

## Reflection and Refraction

Reflection: $\theta_{r}=\theta_{i}$
Index of Refraction: $n=c / v \quad c=f \lambda \quad v=f \lambda_{n} \quad \lambda_{n}=\lambda / n$
Dispersion: $n$ is a function of $\lambda$
Snell's Law:

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}
$$

Critical angle:

$$
\theta_{c}=\sin ^{-1}\left(\frac{n_{2}}{n_{1}}\right) \text { for } n_{1}>n_{2}
$$

## Double Slit Interference

Constructive:

$$
\Delta l=d \sin \theta=m \lambda \quad \text { with } \quad m=0, \pm 1, \pm 2, \pm 3, \ldots
$$

Destructive:

$$
\Delta l=d \sin \theta=\left(m+\frac{1}{2}\right) \lambda \quad \text { with } \quad m=0, \pm 1, \pm 2, \pm 3, \ldots
$$

Distance from central maximum to $m^{\text {th }}$ bright fringe:

$$
y_{m}=\frac{m \lambda D}{d}
$$

## Diffraction

Single Slit Destructive Interference:

$$
a \sin \theta=m \lambda \text { with } m= \pm 1, \pm 2, \pm 3, \ldots
$$

Rayleigh Criterion for Circular Aperatures: $\theta=1.22 \frac{\lambda}{D}$
Bragg Equation: $m \lambda=2 d \sin \theta$ with $m=1,2,3, \ldots$

Table 1: Index of Refraction

| Substance | $n$ |
| :---: | :---: |
| Air | 1.000293 |
| Water | 1.333 |
| Ice $\left(\right.$ at $\left.0^{\circ} \mathrm{C}\right)$ | 1.309 |
| Glass, crown | 1.52 |
| Glass, flint | 1.66 |
| Diamond | 2.419 |

## Volumes and Areas:

Area of a circle of radius $R$ and area of the side of a cylinder of length $\ell$ and radius $R$;

$$
A=\pi R^{2} \quad A=2 \pi R \ell
$$

Volume and surface area of a sphere of radius $R$;

$$
V=\frac{4}{3} \pi R^{3} \quad A=4 \pi R^{2}
$$

## Vectors, Trigonometry, Derivatives, Complex Numbers

We will use Cartesian coordinates throughout.
Vectors

$$
\begin{aligned}
\vec{A} & =|\vec{A}| \hat{A}=A_{x} \hat{i}+A_{y} \hat{j}+A_{z} \hat{k} \\
|\vec{A}| & =\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}} \\
\hat{A} & =\frac{\vec{A}}{|\vec{A}|}=\frac{\vec{A}}{\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}} \\
\vec{C} & =C_{x} \hat{i}+C_{y} \hat{j}+C_{z} \hat{k} \\
& =\vec{A}+\vec{B} \\
& =\left(A_{x}+B_{x}\right) \hat{i}+\left(A_{y}+B_{y}\right) \hat{j}+\left(A_{z}+B_{z}\right) \hat{k} \\
\vec{A} \cdot \vec{B} & =|\vec{A}||\vec{B}| \cos \theta \\
& =\left(A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}\right) \\
\vec{A} \times \vec{B} & =|\vec{A}||\vec{B}| \sin \theta \hat{n} \\
& \text { where } \hat{n} \text { is the unit direction vector normal to the } \vec{A} \vec{B} \text { plane } \\
& =\left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{i}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{j}+\left(A_{x} B_{y}-A_{y} B_{x}\right) \hat{k}
\end{aligned}
$$

## Derivatives

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} A \cos b x & =-A b \sin b x \\
\frac{\mathrm{~d}}{\mathrm{~d} x} A \sin b x & =A b \cos b x \\
\frac{\mathrm{~d} A x^{ \pm b}}{\mathrm{~d} x} & = \pm A b x^{ \pm b-1} \\
\frac{\mathrm{~d} A e^{ \pm b x}}{\mathrm{~d} x} & = \pm A b e^{ \pm b x}
\end{aligned}
$$

## Trigonometry

$$
\begin{aligned}
\sin ^{2} \theta+\cos ^{2} \theta & =1 \\
\sin 2 \theta & =2 \sin \theta \cos \theta \\
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
\sin (\theta \pm \phi) & =\sin \theta \cos \phi \pm \cos \theta \sin \phi \\
\cos (\theta \pm \phi) & =\cos \theta \cos \phi \mp \sin \theta \sin \phi
\end{aligned}
$$

## Complex Numbers

$$
\begin{aligned}
j & =\sqrt{-1} \\
Z_{ \pm} & =a \pm b j \\
& =\left|Z_{ \pm}\right|(\cos \theta \pm j \sin \theta) \\
& =\left|Z_{ \pm}\right| e^{ \pm j \theta} \\
|Z| & =\sqrt{Z^{*} Z}=\sqrt{a^{2}+b^{2}} \\
\theta & = \pm \tan ^{-1}\left(\frac{b}{a}\right)
\end{aligned}
$$

Given $P=a+b j$ and $Q=c+d j$ then for $L=P \pm Q=|L| e^{j \theta_{L}}, M=P Q=$ $|M| e^{j \theta M}$, and $N=P / Q=|N| e^{j \theta N}$ :

$$
\begin{aligned}
L & =(a \pm c)+(b \pm d) j \\
|L| & =\sqrt{(a \pm c)^{2}+(b \pm d)^{2}} \\
\theta_{L} & =\tan ^{-1}\left(\frac{b \pm d}{a \pm c}\right) \\
|M| & =|P||Q| \\
\theta_{M} & =\theta_{P}+\theta_{Q} \\
|N| & =|P| /|Q| \\
\theta_{M} & =\theta_{P}-\theta_{Q}
\end{aligned}
$$

