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Shapes of Molecules

• In this section we will use Lewis structures as an 

introduction to the shapes of molecules.

• The key concepts are:

– Electron pairs repel each other.

– Electron pairs assume orientations to minimize 

repulsion

• This is the Valence Shell Electron Pair Repulsion

Theory (VSEPR)
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VSEPR

• Example: Methane CH4

The 4 bond pairs must orient themselves to 

minimize their repulsion.

H     C     H

H

H
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VSEPR Methane

The minimum interaction occurs 

when the electron pairs point towards 

the vertices of a tetrahedron.

The carbon is in the centre and the 

hydrogen are at the vertices. The 

molecule is tetrahedral.
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VSEPR Ammonia

• Example: Ammonia NH3

The 4 electron pairs must still orient 

themselves to minimize their repulsion.

N H

H

H
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VSEPR Ammonia

The minimum interaction still occurs 

when the electron pairs point towards 

the vertices of a tetrahedron.

The nitrogen is in the centre and the 

hydrogens are at three of the vertices.  

The lone pair points to the fourth. 

The molecule is trigonal pyramidal.
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VSEPR Water

• Example: Water H2O

The 4 electron pairs must orient themselves to 

minimize their repulsion.

O

H

H
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VSEPR Water

The minimum interaction still occurs 

when the electron pairs point towards 

the vertices of a tetrahedron.

The oxygen is in the centre, the 

hydrogens are at two of the vertices. 

The lone pairs point to the other two. 

The molecule is bent.
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Bond Angles

• This analysis suggests that all three molecules 

should have bond angles of 109.5o.

– The methane bond angle is 109.5o but for ammonia 

it is 107o and in water it is 104.5o

– The lone pair electrons are not constrained as much 

as the bonding pairs.  They spread out thus the 

repulsive forces are:

Lone pair-lone pair>Lone pair-bond pair>bond pair-bond pair
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Molecular Geometry

• VSEPR theory can be used to describe the 

shapes of most molecules.

• Warnings

– When you describe the shape, don’t include the 

lone pairs. (water is bent, not tetrahedral)

– Molecules have three dimensions (methane is a 

tetrahedron not a square)

• Be familiar with table 10.1 pg 399-400 
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Going Beyond Lewis Structures

• Lewis structures are very useful in 

explaining the bonding in simple molecules 

and in predicting molecular shapes.

• They do not explain why electrons in bond 

pairs bring nuclei together.

• They can not be used to estimate bond 

lengths or bond strengths.
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Going Beyond Lewis Structures

• There are two currently used bonding theories, 
valence bond theory and molecular orbital theory.

• Valence bond theory envisions bonding as 
resulting from the overlap of atomic orbitals.

• Molecular orbital theory moves past atomic 
orbitals and derives orbitals that belong to the 
molecule as a whole.

• We will concentrate on valence bond theory as 
that is sufficient to rationalize the structures we 
see.

CHEM 1000 3.0 Chemical bonding II 18

Valence Bond Method

• This method considers what happens to the 
valence orbitals (the outer shell).

• If the atoms start a long way apart, there is no 
interaction.

• As the atoms move closer together the orbitals
may overlap.

• If there is an electron in the orbital then there is a 
high probability of finding an electron between the 
nuclei.

• This is the region where there is a covalent bond.
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Valence Bond Method

• We cannot ignore the previously developed 

rules, so there are only two electrons per 

bond

– Overlap can only occur for 2 half filled orbitals

or one empty and one filled orbital.
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Valence Bond Method

H2S

Not shown

This suggests the bond angle should be 90o.  

It is 92o.
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Valence Bond method for methane

• Chemically methane is stable

• We know from VSEPR that methane is  

tetrahedral 

• BUT
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Valence Bond method for methane

• The valence bond theory (so far) would 

suggest that the 1s electrons from H will be 

donated to the p orbitals to “pair-up” the 

unpaired electrons.

• In this case we would have CH2

• That’s not what is seen. We need CH4. 
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Valence Bond method for methane

• Somehow the carbon needs to have 4 

unpaired electrons

• This gives 4 unpaired electrons
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Valence Bond method for methane

• This costs energy, as it makes an excited 

state C atom.

• Also if we try to use these orbitals in 

bonding, the orientation is wrong. 

– If hydrogens attached to the “p” orbitals, they 

would be orthogonal.  

– Where would the overlap with the “s” be?  

– We know the molecule is tetrahedral.
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Valence Bond  Rethinking

• We can no longer assume that the orbitals in a 
bonded atom are the same as those of an isolated 
atom.

• Remember that the atomic orbitals come from 
solving an equation assuming a single nucleus.  In 
a molecule the electron has to respond to more 
nuclei.

• We should solve the “new” problem, but we 
usually say we can combine the atomic orbitals in 
some way.
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Valence Bond method for methane

• Since the orbitals are wave functions, we can take 

the 2s and 2p wave functions and combine them to 

give 4 equivalent wave functions.  These can be 

made to have the same shape and energy.

• This is called hybridization and the resulting 

orbitals are called hydrid orbitals.

• The combination of  one “s” and three “p” orbitals

gives four “sp3” hybrid orbitals.
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Generation of sp3

hybrid orbitals

Same shape but 

different orientation to 

minimize interaction
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Methane
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Energy and Hybrid Orbitals

• What about the energy?

• The energy of the orbitals is conserved because 
the sp3 orbitals have an energy between the s and p 
orbitals.

C
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Energy and Hybrid Orbitals

• However there will be an energy cost in making the 
sp hybrids with one electron in each. 

– The orbitals are generated assuming only one electron

• So why would the molecule do something that will 
cost energy?

• Once the molecule is formed you release the bond 
energy.  If this is greater than the “cost” then it is 
worthwhile.
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Ammonia

• Now we have a pair of electrons in one of 

the sp3 hybrid orbitals, so it can’t bond with 

hydrogen.

N
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Ammonia
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NH3 versus  PH3

• NH3 has sp3 bonding and a bond angle of ~109.

• PH3 does not hybridize.

• WHY NOT?

• The energy gain in forming the bonds is not enough to get 
back the energy to make the hybrids.

• This is because the energy separation between 3s and 3p is 
higher than 2s and 2p on a relative basis.

• Going down a main group in the periodic table, elements 
tend to make less use of valence s electrons and form 
weaker bonds with smaller angles.
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• The sp3 hybrid orbitals don’t explain the 

bonding for Boron (group 13) or for 

Beryllium (group 2)
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• The problem appears to be that there are 
insufficient electrons to even half fill the  4 
sp3 orbitals.

• In these case we need to consider  different 
hybridization schemes. 

• We define hybrids such that the number of 
hybrids is the same as the number of 
valence electrons.
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sp2 and sp hybrid orbitals

Boron

Beryllium

The number of orbitals is 

conserved.
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sp2 hybrid orbitals (BCl3)
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sp hybrid orbitals (BeCl2)
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Multiple bonds

• How do we deal with the Lewis structures 

that have multiple bonds?

• Consider ethylene C2H4

C C

H

H H

H
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Multiple bonds: ethylene (C2H4)

• The geometry suggests sp2 hybrid orbitals

are involved. 

There is still an electron in the remaining 2p orbital.
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Multiple bonds: ethylene (C2H4)
The sp2 hybrid 

orbitals are in  

purple.  

The “p”

orbital is blue
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Multiple bonds: ethylene (C2H4)

The orbitals that overlap along the axis of the 

nuclei are called sigma bonds  - σ bonds.

Those where the overlap is side-to-side are pi 

bonds - π bonds.
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Multiple bonds: ethylene

The σ bonds determine the shape of the molecule, 

the π bonds restrict the rotation about the C-C 

axis.

The orbital overlap is more extensive for the σ bonds 

so the π bond is weaker than the σ bond.

Bond strengths

C-C 347 kJ mol-1 C=C 611 kJ mol-1

difference = 264 kJ mol-1
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Multiple bonds: acetylene (ethyne)

• The geometry suggests sp hybrid orbitals

are involved.

There is still an electron in each of the 

remaining 2p orbitals.

C CH H
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Multiple bonds: acetylene (ethyne)
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Multiple Bonds: Benzene

This structure is planar and suggests sp2.

CHEM 1000 3.0 Chemical bonding II 47

Multiple Bonds: Benzene
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Multiple Bonds: Benzene

• The overlap of the “p” orbitals can be 

thought of as giving the three double bonds, 

but in reality the π orbital system is 

delocalized around the whole ring. This 

eliminates the need to discuss resonance.
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Other kinds of “bonds”

• In the section on gases we said there were 

forces between the molecules.  Now we 

know more about bonding and electronic 

structure we can revisit the question.

• What kinds of forces exist between 

molecules?
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Van der Waal Forces

• Van der Waal forces are those attractive 
forces between molecules that are responsible 
for:

– Real gas behaviour (Van der Waal “a”)

– Condensation 

• There are a number of such forces resulting in 
different types of interactions between 
molecules.

CHEM 1000 3.0 Chemical bonding II 51

Van der Waal Forces

London or Dispersion Force

• The quantum concept of electronic structure 
talks about the probability of an electron 
being in a certain region at a certain time.

• Even for an atom or a  perfectly symmetrical 
molecule there is a finite chance that the 
electronic charges are not uniformly 
distributed. 

• This produces an instantaneous dipole.
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Van der Waal Forces

London or Dispersion Force 

• The instantaneous dipole can then influence 
neighbouring molecules and induce a dipole 
in them. (an induced dipole)

• This gives two dipoles that can attract.  This 
is usually called a dispersion force or a 
London force.

Molecule 

on average
Instantaneous 

dipole
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Van der Waal Forces

London or Dispersion Force 

a. Normal

b. Instantaneous dipole

c. Instantaneous dipole (left) induced dipole (right)
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Van der Waal Forces

London or Dispersion Force 
• This force is going to be strongest in a molecule 

with a large number of electrons or for an 

elongated molecule.

• The ability or tendency of a molecule to have 

charge separation occur is called polarizability. 

• The effect of London forces can often be seen in 

the boiling points of similar compounds.
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Effect of London Forces

• Bpt(He) = 4K

• Bpt(Rn) = 211K   Rn is larger

____________________________________

n-pentane is more elongated

CH3-CH2-CH2-CH2-CH3

Bpt 36.1oC

Bpt 9.5oC

CCH3 CH3

CH3

CH3
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Van der Waal Forces

Dipole-Dipole interactions

• Bonds where the elements have different 

electronegativity have a permanent charge 

separation.

E.g. HCl

• H→Cl

• If this shows up in the molecule we say the 

molecule has a permanent dipole.
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Van der Waal Forces

Dipole-Dipole interactions

• How do we tell if a molecule has a dipole?

We can put the 

molecules in 

an electric 

field and see 

the effects of 

them “lining 

up”.
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Van der Waal Forces

Dipole-Dipole interactions

• Not all molecules with polar bonds have a 

dipole.

• This is because the dipoles can cancel each 

other out.
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Van der Waal Forces

Dipole-Dipole interactions
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Van der Waal Forces

Dipole-Dipole interactions

• For molecules with permanent dipoles, 

Dipole-Dipole interactions can occur.
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Van der Waal Forces

Dipole-Dipole interactions

• Dipole-dipole interactions 

are in addition to the 

London forces.

• The overall interaction 

between polar molecules 

is higher than for non-

polar molecules.
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Hydrogen Bonding

• This is an extreme case.

• Hydrogen atoms bonded to very highly 

electronegative atoms can form weak bonds with the 

atom in an adjacent molecule.  

• This only occurs for hydrogen bonded to F, O, and N.

• The bond energy is 15 - 40 kJ mol-1, high compared to 

London forces but low compared to covalent bonds 

(>150 kJ mol-1)
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Effect of Hydrogen Bonding
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Hydrogen Bonding in Water
a) 4 hydrogen bonds per molecule

b) solid  c) gas
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Hydrogen Bonding (ctd)

Intermolecular - formation of a dimer of acetic acid
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Hydrogen Bonding (ctd)

Intramolecular

- forces within a 

molecule of 

salicylic acid


