Real Gases

- The gas laws we obtained from experiments performed under normal conditions of temperature and pressure
 - Therefore we can usually use the ideal gas law
- Under more extreme conditions we get deviations from the ideal gas law

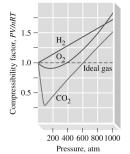
CHEM 1000 3.0

Real Gases 1

Compressibility factor

• One way to measure the deviation from ideal behaviour is to define a compressibility factor Z as:

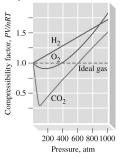
$$Z = \frac{PV}{nRT}$$


•For an ideal gas Z=1

CHEM 1000 3.0

Real Gases 2

Compressibility factor


- Different gases deviate from ideal behaviour in different ways
- Deviation can be positive (Z>1) or negative (Z<1)
- Deviation always positive at sufficiently high pressure

CHEM 1000 3.0

Compressibility factor

• The compressibility factor is an empirical (experimental)predict or of real gas behaviour but doesn't tell us anything about WHY?

CHEM 1000 3.0

Real Gases

Van der Waal Equation

- This is an attempt to correct the assumptions of the kinetic theory of gases for real gas behaviour, and to modify the ideal gas equation to account for it.
- We will judge its success by its ability to explain the shapes of the compressibility factor curves.

CHEM 1000 3.0

Real Gases 5

Van der Waal Equation

- Assumption 2 of the kinetic theory:
 - Molecules occupy very little volume (most of the container is free space)
 - What if we allow them to have a volume (say b L mol⁻¹)
 - The molecules then have less volume in which to move so

$$V_{real} = V_{measured} - nb$$

CHEM 1000 3.0

Van der Waal Equation

$$V_{real} = V_{measured} - nb$$

Substitute this into the ideal gas law

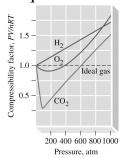
PV = nRT becomes P(V-nb) = nRT

To get in the compressibility factor form

$$PV = nRT + Pnb$$

$$Z = \frac{PV}{nRT} = 1 + \frac{bP}{RT}$$

A plot of Z against P would be a straight line of intercept 1


CHEM 1000 3.0

Real Gases

Van der Waal Equation

$$Z = \frac{PV}{nRT} = 1 + \frac{bP}{RT}$$

This equation fits H₂ and the high pressure end well but not all gases at all pressures

CHEM 1000 3.0

Real Gases 8

Van der Waal Equation

- Assumption 4 of the kinetic theory:
 - There are no forces between the molecules
 - What if we allow for van der Waal forces to exist between molecules.
 - These have two effects
 - 1. The number of collisions with the walls goes down
 - 2. The force that each collision makes with the wall goes down

CHEM 1000 3.0

Van der Waal Equation

- Thus the observed pressure will be less than expected for an ideal gas.
- This decrease will depend on (n/V)², one n/V for the number of collisions and one for the force of each collision

$$P_{\text{measured}} = P_{\text{ideal}} - a \left(\frac{n}{V}\right)^2 \quad \text{so} \quad P_{\text{ideal}} = P_{\text{measured}} + a \left(\frac{n}{V}\right)^2$$

CHEM 1000 3.0

Real Gases 10

Van der Waal Equation

Combining this pressure term into the previous equation:

 $P(V-nb) = nRT \label{eq:power}$ we obtain van der Waal's equation

$$\left(P + a\left(\frac{n}{n}\right)^2\right)(V - nb) = nRT$$

CHEM 1000 3.0

Real Gases 11

Van der Waal Equation

- Expressing as compressibility:

$$\left(P + a\left(\frac{n}{V}\right)^{2}\right)(V - nb) = nRT$$

$$= nRT \qquad (n)^{2}$$

$$V - nb \qquad V - nb$$

$$Z = \frac{PV}{nRT} = \frac{V}{V - nb} - \left(\frac{an}{RTV}\right)$$

CHEM 1000 3.0

Van der Waal Equation

$$Z = \frac{PV}{nRT} = \frac{V}{V - nb} - \left(\frac{an}{RTV}\right)$$

- If "a" and "b" are zero, Z=1
- Neglecting "a" for a minute, if b is non-zero the first term and Z is greater than 1
- Neglecting "b", if a is non-zero Z is less than 1
- The first term is responsible for positive deviations, the second for negative deviations from ideal behaviour.

CHEM 1000 3.0

Real Gases 13

Van der Waal Equation

- Summary
 - Positive deviations are due to the molecules having finite size and is quantified by the "b" factor
 - Negative deviations are due to the molecules having intermolecular forces and is quantified by the "a" factor

CHEM 1000 3.0

Real Gases 14

Van der Waal Constants

Molecule	Forces	Size
	a	ь
	L ² atm mol ⁻²	L mol ⁻¹
He	0.034	0.0237
H_2	0.244	0.0266
Cl ₂	6.49	0.0564
	Variation of a factor of 200	Variation of a factor of <3

CHEM 1000 3.0