

Definitions of Quantum Numbers and Constraints

• Principal quantum number *n*

 $n = 1, 2, 3, \dots$

(relates to energy and most probable distance of an electron from the nucleus)

• Orbital angular momentum quantum number *l*

- $l = 0, 1, 2, \dots (n-1)$
- (relates to shape of the orbital)
- Magnetic quantum number *m_l m_l* = - *l*, -*l* + 1, -*l* + 2, ...0... *l* - 2, *l* - 1, *l*

(relates to orientation of the orbital)

CHEM 1000 3.0

Atomic theory and the Periodic table I 21

How Does This Model Fit With the Bohr Atom?

- To get the radius corrected number of hits on the dart board for a 3D orbital we need to multiply the hit density by the distance from the centre (i.e. the radius).
- To get the radius corrected electron density in hydrogen we need to multiply the electron density at a particular radius by the surface area of a spherical shell at that radius.

CHEM 1000 3.0

Atomic theory and the Periodic table I 27

Multielectron Atoms

- Schrödinger's equation for a multi-electron atom has the additional terms for the repulsion between electrons. This prevents an exact solution.
- One way around the problem is to consider one electron at a time, in an environment established by the nucleus and the other electrons.
- This then looks like a "big" hydrogen atom where the outer electron sees a "nucleus" that includes the nuclear charge, shielded (screened) by the other electrons.

CHEM 1000 3.0

Atomic theory and the Periodic table I 37

Metals and Nonmetals																	
1 1A																	18 8A
1 H 1.00794	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.00260
3 Li 6.941	4 Be 9.01218											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15.9994	9 F 18.9984	10 Ne 20.1797
11 Na 22.9898	12 Mg 24.3050	3 3B	4 4B	5 5B	6 6B	7 7B	8	9 	10	11 1B	12 2B	13 Al 26.9815	14 Si 28.0855	15 P 30.9738	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.9559	22 Ti 47.88	23 V 50.9415	24 Cr 51.9961	25 Mn 54.9381	26 Fe 55.847	27 Co 58.9332	28 Ni 58.693	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.9216	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.9059	40 Zr 91.224	41 Nb 92.9064	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.906	46 Pd 106.42	47 Ag 107.868	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.757	52 Te 127.60	53 I 126.904	54 Xe 131.29
55 Cs 132.905	56 Ba 137.327	57 *La 138.906	72 Hf 178.49	73 Ta 180.948	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.967	80 Hg 200.59	81 Tl 204.383	82 Pb 207.2	83 Bi 208.980	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.025	89 †Ac 227.028	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	111 (272)	112 (272)		114 (287)		116 (289)		118 (293)
*Lar	*Lanthanide series				59 Pr 140.908	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.965	64 Gd 157.25	65 Tb 158.925	66 Dy 162.50	67 Ho 164.930	68 Er 167.26	69 Tm 168.934	70 Yb 173.04	71 Lu 174.967
⁺ Act	⁺ Actinide series				91 Pa 231.036	92 U 238.029	93 Np 237.048	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)
CHEM 1000 3.0 Atomic theory and Periodic table I									l the [56								

Electron Affinities											
	1							18			
	н							He			
	-72.8	2	13	14	15	16	17	>0			
	Li	Be	В	С	Ν	0	F	Ne			
	-59.6	>0	-26.7	-121.8	+7	-141.0	-328.0	>0			
	Na	Mg	Al	Si	Р	S	Cl	Ar			
	-52.9	>0	-42.5	-133.6	-72	-200.4	-349.0	>0			
	К	Ca	Ga	Ge	As	Se	Br	Kr			
	-48.4	-2.37	-28.9	-119.0	-78	-195.0	-324.6	>0			
	Rb	Sr	In	Sn	Sb	Te	I	Xe			
	-46.9	-5.03	-28.9	-107.3	-103.2	-190.2	-295.2	>0			
	Cs	Ba	Tl	Pb	Bi	Ро	At	Rn			
	-45.5	-13.95	-19.2	-35.1	-91.2	-186	-270	>0			
			Соруг	ight © 2007 Pea	rson Prentice H	all, Inc.					
	CHEM 1000 3.0 Atomic theo Periodic										

