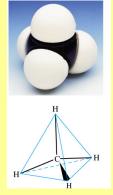
Shapes of Molecules

- In this section we will use Lewis structures as an introduction to the shapes of molecules.
- The key concepts are:
 - Electron pairs repel each other.
 - Electron pairs assume orientations to minimize repulsion
- This is the Valence Shell Electron Pair Repulsion Theory (VSEPR)

CHEM 1000 3.0

Chemical bonding II 1

VSEPR


• Example: Methane CH₄

H : C : H

The 4 bond pairs must orient themselves to minimize their repulsion.

CHEM 1000 3.0

VSEPR Methane

The minimum interaction occurs when the electron pairs point towards the vertices of a tetrahedron.

The carbon is in the centre and the hydrogen are at the vertices. The molecule is tetrahedral.

CHEM 1000 3.0

Chemical bonding II 3

VSEPR Ammonia

• Example: Ammonia NH₃

H: N: H

H

The 4 electron pairs must still orient themselves to minimize their repulsion.

CHEM 1000 3.0

VSEPR Ammonia

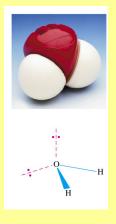
The minimum interaction still occurs when the electron pairs point towards the vertices of a tetrahedron.

The nitrogen is in the centre and the hydrogens are at three of the vertices. The lone pair points to the fourth. The molecule is trigonal pyramidal.

CHEM 1000 3.0

Chemical bonding II 5

VSEPR Water


• Example: Water H₂O

. :О:Н

The 4 electron pairs must orient themselves to minimize their repulsion.

CHEM 1000 3.0

The minimum interaction still occurs when the electron pairs point towards the vertices of a tetrahedron.

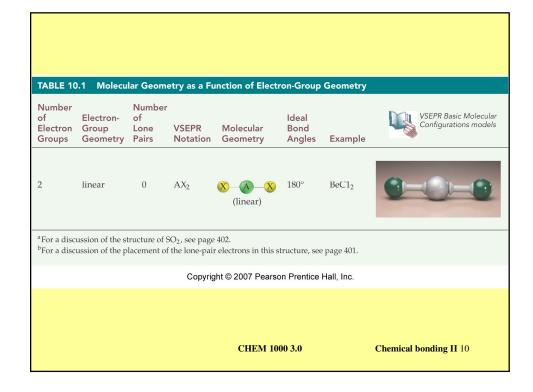
The oxygen is in the centre, the hydrogens are at two of the vertices. The lone pairs point to the other two. The molecule is bent.

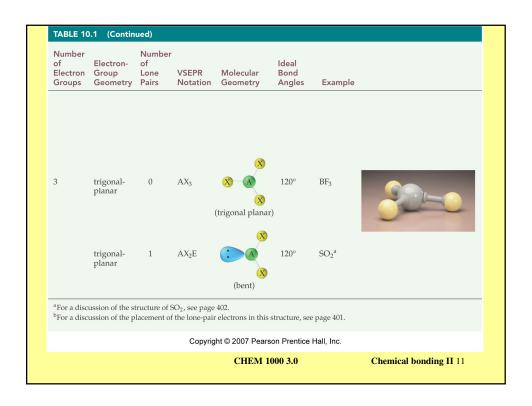
CHEM 1000 3.0

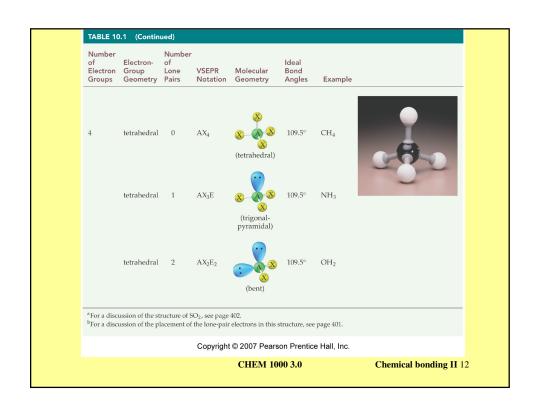
Chemical bonding II 7

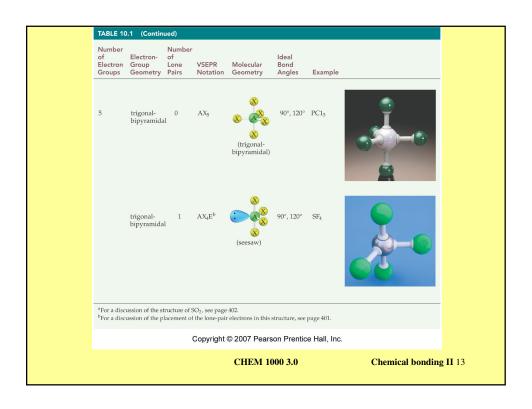
Bond Angles

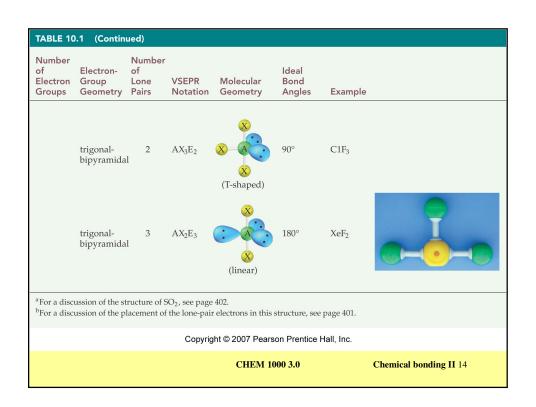
- This analysis suggests that all three molecules should have bond angles of 109.5°.
 - The methane bond angle is 109.5° but for ammonia it is 107° and in water it is 104.5°
 - The lone pair electrons are not constrained as much as the bonding pairs. They spread out thus the repulsive forces are:

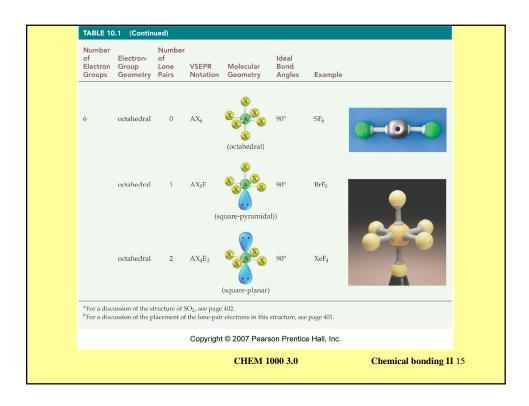

Lone pair-lone pair>Lone pair-bond pair>bond pair


CHEM 1000 3.0


Molecular Geometry


- VSEPR theory can be used to describe the shapes of most molecules.
- Warnings
 - When you describe the shape, don't include the lone pairs. (water is bent, not tetrahedral)
 - Molecules have three dimensions (methane is a tetrahedron not a square)
- Be familiar with table 10.1 pg 399-400


CHEM 1000 3.0



Going Beyond Lewis Structures

- Lewis structures are very useful in explaining the bonding in simple molecules and in predicting molecular shapes.
- They do not explain why electrons in bond pairs bring nuclei together.
- They can not be used to estimate bond lengths or bond strengths.

CHEM 1000 3.0

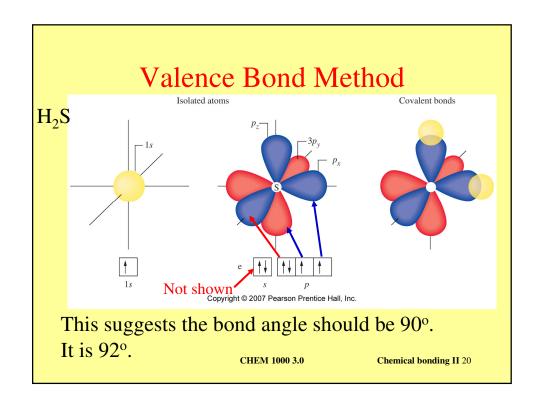
Going Beyond Lewis Structures

- There are two currently used bonding theories, valence bond theory and molecular orbital theory.
- Valence bond theory envisions bonding as resulting from the overlap of atomic orbitals.
- Molecular orbital theory moves past atomic orbitals and derives orbitals that belong to the molecule as a whole.
- We will concentrate on valence bond theory as that is sufficient to rationalize the structures we see.

CHEM 1000 3.0

Chemical bonding II 17

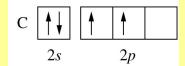
Valence Bond Method


- This method considers what happens to the valence orbitals (the outer shell).
- If the atoms start a long way apart, there is no interaction.
- As the atoms move closer together the orbitals may overlap.
- If there is an electron in the orbital then there is a high probability of finding an electron between the nuclei.
- This is the region where there is a covalent bond.

CHEM 1000 3.0

Valence Bond Method

- We cannot ignore the previously developed rules, so there are only two electrons per bond
 - Overlap can only occur for 2 half filled orbitals or one empty and one filled orbital.

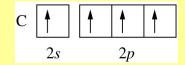

CHEM 1000 3.0

Valence Bond method for methane

- Chemically methane is stable
- We know from VSEPR that methane is tetrahedral
- BUT

CHEM 1000 3.0

Chemical bonding II 21


Valence Bond method for methane

- The valence bond theory (so far) would suggest that the 1s electrons from H will be donated to the p orbitals to "pair-up" the unpaired electrons.
- In this case we would have CH₂
- That's not what is seen. We need CH₄.

CHEM 1000 3.0

Valence Bond method for methane

- Somehow the carbon needs to have 4 unpaired electrons
- This gives 4 unpaired electrons

CHEM 1000 3.0

Chemical bonding II 23

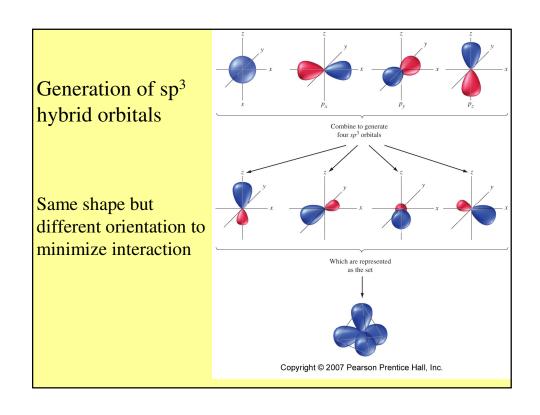
Valence Bond method for methane

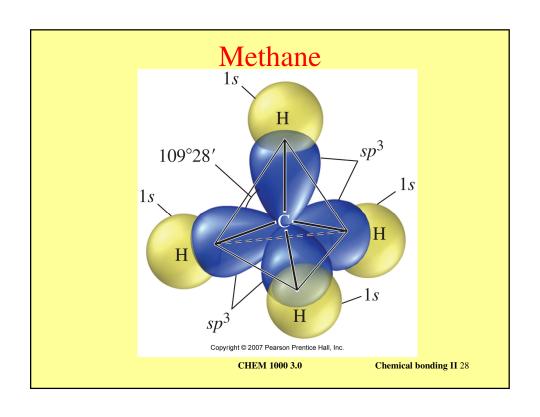
- This costs energy, as it makes an excited state C atom.
- Also if we try to use these orbitals in bonding, the orientation is wrong.
 - If hydrogens attached to the "p" orbitals, they would be orthogonal.
 - Where would the overlap with the "s" be?
 - We know the molecule is tetrahedral.

CHEM 1000 3.0

Valence Bond Rethinking

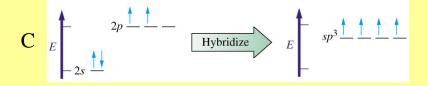
- We can no longer assume that the orbitals in a bonded atom are the same as those of an isolated atom.
- Remember that the atomic orbitals come from solving an equation assuming a single nucleus. In a molecule the electron has to respond to more nuclei.
- We should solve the "new" problem, but we usually say we can combine the atomic orbitals in some way.


CHEM 1000 3.0


Chemical bonding II 25

Valence Bond method for methane

- Since the orbitals are wave functions, we can take the 2s and 2p wave functions and combine them to give 4 equivalent wave functions. These can be made to have the same shape and energy.
- This is called hybridization and the resulting orbitals are called hydrid orbitals.
- The combination of one "s" and three "p" orbitals gives four "sp³" hybrid orbitals.


CHEM 1000 3.0

Energy and Hybrid Orbitals

- What about the energy?
- The energy of the orbitals is conserved because the sp³ orbitals have an energy between the s and p orbitals.

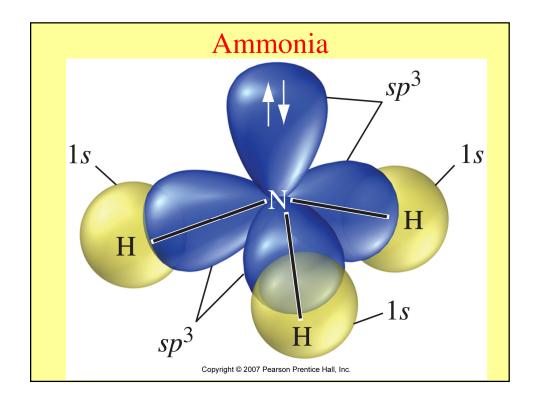
CHEM 1000 3.0

Chemical bonding II 29

Energy and Hybrid Orbitals

- However there will be an energy cost in making the sp hybrids with one electron in each.
 - The orbitals are generated assuming only one electron
- So why would the molecule do something that will cost energy?
- Once the molecule is formed you release the bond energy. If this is greater than the "cost" then it is worthwhile.

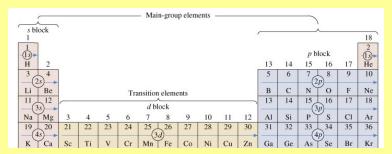
CHEM 1000 3.0


Ammonia

N

• Now we have a pair of electrons in one of the sp³ hybrid orbitals, so it can't bond with hydrogen.

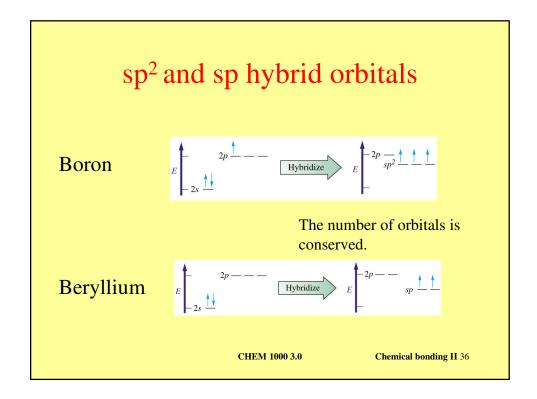
CHEM 1000 3.0

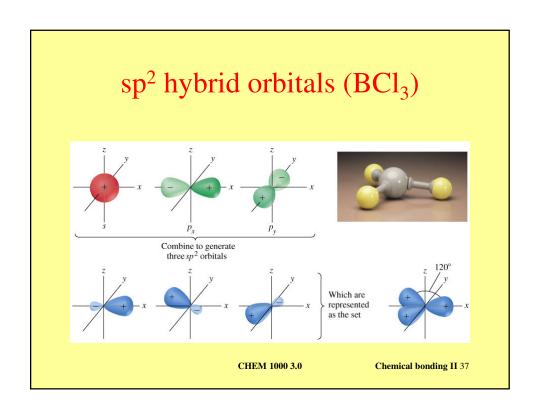

NH₃ versus PH₃

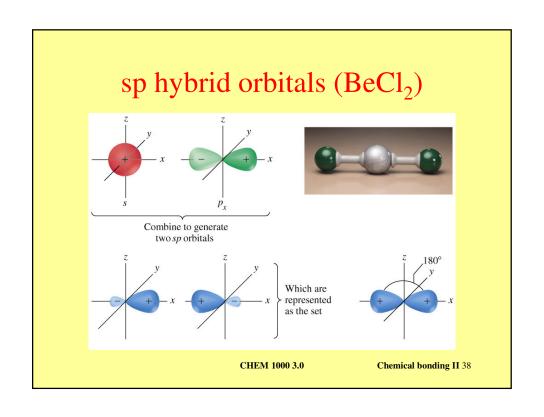
- NH_3 has sp³ bonding and a bond angle of ~109.
- PH₃ does not hybridize.
- WHY NOT?
- The energy gain in forming the bonds is not enough to get back the energy to make the hybrids.
- This is because the energy separation between 3s and 3p is higher than 2s and 2p on a relative basis.
- Going down a main group in the periodic table, elements tend to make less use of valence s electrons and form weaker bonds with smaller angles.

CHEM 1000 3.0

Chemical bonding II 33


• The sp³ hybrid orbitals don't explain the bonding for Boron (group 13) or for Beryllium (group 2)




•17

- The problem appears to be that there are insufficient electrons to even half fill the 4 sp³ orbitals.
- In these case we need to consider different hybridization schemes.
- We define hybrids such that the number of hybrids is the same as the number of valence electrons.

CHEM 1000 3.0

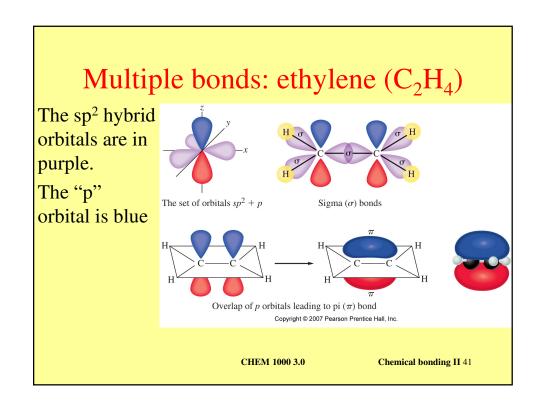
Multiple bonds

- How do we deal with the Lewis structures that have multiple bonds?
- Consider ethylene C₂H₄

$$\begin{array}{c} H \\ C = C \\ H \end{array}$$

CHEM 1000 3.0

Chemical bonding II 39


Multiple bonds: ethylene (C₂H₄)

• The geometry suggests sp² hybrid orbitals are involved.

There is still an electron in the remaining 2p orbital.

CHEM 1000 3.0

Multiple bonds: ethylene (C_2H_4)

The orbitals that overlap along the axis of the nuclei are called sigma bonds - σ bonds.

Those where the overlap is side-to-side are pi bonds - π bonds.

CHEM 1000 3.0

Multiple bonds: ethylene

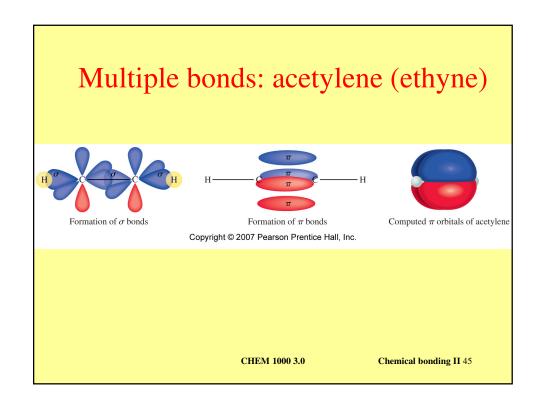
The σ bonds determine the shape of the molecule, the π bonds restrict the rotation about the C-C axis.

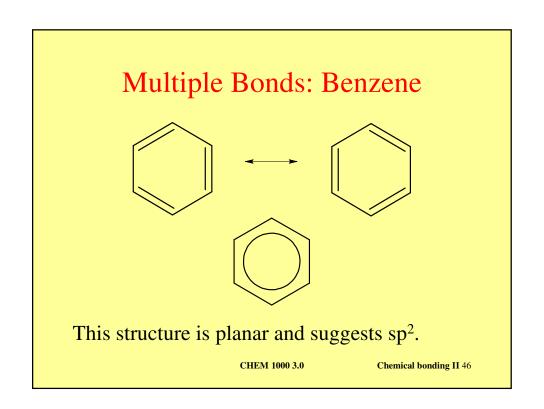
The orbital overlap is more extensive for the σ bonds so the π bond is weaker than the σ bond.

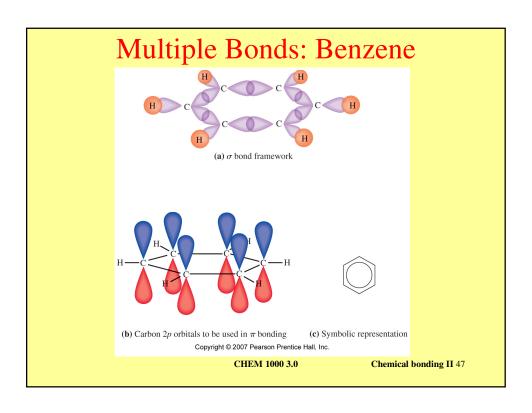
Bond strengths

CHEM 1000 3.0

Chemical bonding II 43


Multiple bonds: acetylene (ethyne)


• The geometry suggests sp hybrid orbitals are involved.


$$E = 2p + \frac{1}{2} - \frac{1}{sp} = 2p + \frac{1}{sp} = \frac{1}{sp$$

There is still an electron in each of the remaining 2p orbitals.

CHEM 1000 3.0

Multiple Bonds: Benzene

• The overlap of the "p" orbitals can be thought of as giving the three double bonds, but in reality the π orbital system is delocalized around the whole ring. This eliminates the need to discuss resonance.

CHEM 1000 3.0

Other kinds of "bonds"

- In the section on gases we said there were forces between the molecules. Now we know more about bonding and electronic structure we can revisit the question.
- What kinds of forces exist between molecules?

CHEM 1000 3.0

Chemical bonding II 49

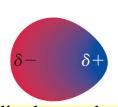
Van der Waal Forces

- Van der Waal forces are those attractive forces between molecules that are responsible for:
 - Real gas behaviour (Van der Waal "a")
 - Condensation
- There are a number of such forces resulting in different types of interactions between molecules.

CHEM 1000 3.0

Van der Waal Forces London or Dispersion Force

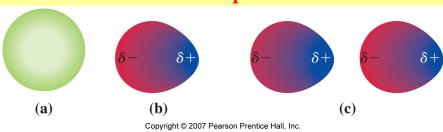
- The quantum concept of electronic structure talks about the probability of an electron being in a certain region at a certain time.
- Even for an atom or a perfectly symmetrical molecule there is a finite chance that the electronic charges are not uniformly distributed.
- This produces an instantaneous dipole.


CHEM 1000 3.0

Chemical bonding II 51

Van der Waal Forces London or Dispersion Force

Molecule on average



Instantaneous dipole

- The instantaneous dipole can then influence neighbouring molecules and induce a dipole in them. (an induced dipole)
- This gives two dipoles that can attract. This is usually called a dispersion force or a London force.

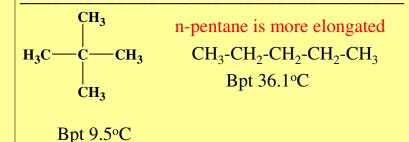
CHEM 1000 3.0

Van der Waal Forces London or Dispersion Force

- a. Normal
- b. Instantaneous dipole
- c. Instantaneous dipole (left) induced dipole (right)

CHEM 1000 3.0

Chemical bonding II 53


Van der Waal Forces London or Dispersion Force

- This force is going to be strongest in a molecule with a large number of electrons or for an elongated molecule.
- The ability or tendency of a molecule to have charge separation occur is called polarizability.
- The effect of London forces can often be seen in the boiling points of similar compounds.

CHEM 1000 3.0

Effect of London Forces

- Bpt(He) = 4K
- Bpt(Rn) = 211K Rn is larger

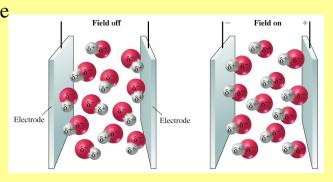
CHEM 1000 3.0

Chemical bonding II 55

Van der Waal Forces Dipole-Dipole interactions

• Bonds where the elements have different electronegativity have a permanent charge separation.

E.g. HCl


- H→Cl
- If this shows up in the molecule we say the molecule has a permanent dipole.

CHEM 1000 3.0

Van der Waal Forces Dipole-Dipole interactions

• How do we tell if a molecule has a dipole?

We can put the molecules in an electric field and see the effects of them "lining up".

CHEM 1000 3.0


Chemical bonding II 57

Van der Waal Forces Dipole-Dipole interactions

- Not all molecules with polar bonds have a dipole.
- This is because the dipoles can cancel each other out.

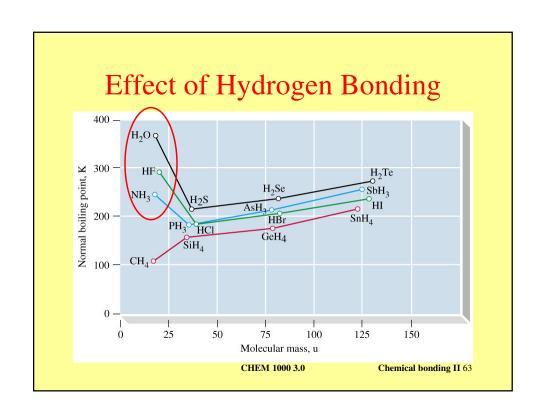
CHEM 1000 3.0

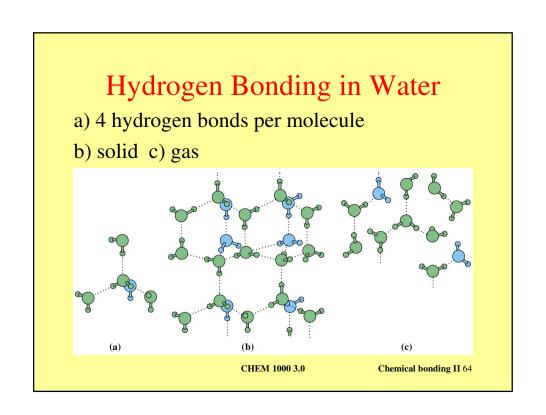
Van der Waal Forces Dipole-Dipole interactions

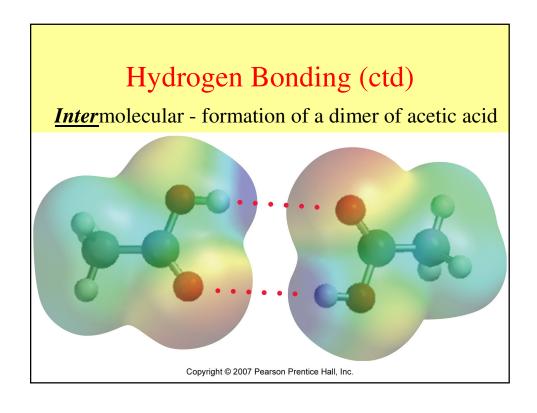
Chemical bonding II 59

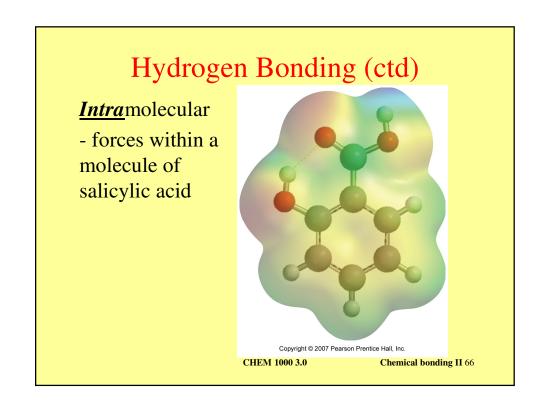
Van der Waal Forces Dipole-Dipole interactions

• For molecules with permanent dipoles, Dipole-Dipole interactions can occur.


CHEM 1000 3.0


Van der Waal Forces Dipole-Dipole interactions • Dipole-dipole interactions are in addition to the London forces. • The overall interaction between polar molecules is higher than for nonpolar molecules. **CHEM 1000 3.0*** Chemical bonding II 61*** **CHEM 1000 3.0*** **Chemical bonding II 61*** **Chemical bonding II 61*** **Chemical bonding II 61** **Chemic


Hydrogen Bonding


- This is an extreme case.
- Hydrogen atoms bonded to very highly electronegative atoms can form weak bonds with the atom in an adjacent molecule.
- This only occurs for hydrogen bonded to F, O, and N.
- The bond energy is 15 40 kJ mol⁻¹, high compared to London forces but low compared to covalent bonds (>150 kJ mol⁻¹)

CHEM 1000 3.0

