

Van der Waal Equation

 $V_{real} = V_{measured} -nb$ Substitute this into the ideal gas law $PV = nRT \quad becomes P(V-nb) = nRT$ To get in the compressibility factor form PV = nRT + Pnb $Z = \frac{PV}{nRT} = 1 + \frac{bP}{RT}$

A plot of Z against P would be a straight line of intercept 1

CHEM 1000 3.0

Real Gases 7

Van der Waal Constants		
Molecule	Forces	Size
	a	b
	L ² atm mol ⁻²	L mol ⁻¹
He	0.034	0.0237
H ₂	0.244	0.0266
Cl ₂	6.49	0.0564
	Variation of a	Variation of a
	factor of 200	factor of <3
	CHEM 1000 3.0	Real Gases 15