Gases	
Gases	
Petrucci, Harwood and Herring: Chapter 6	
CHEM 1000 3.0 Gases 1	
We will be looking at Macroscopic and	
Microscopic properties: - Macroscopic	
 Properties of bulk gases Observable Pressure, volume, mass, temperature 	
Microscopic Properties at the molecular level	
Not readily observable Mass of molecules, molecular speed, energy, collision frequency	
CHEM 1000 3.0 Gases 2	-
Macroscopic Properties	
Our aim is to look at the relationship	
between the macroscopic properties of a gas and end up with the gas laws	

CHEM 1000 3.0

Pressure

- To contain a gas you must have a container capable of exerting a force on it (e.g. the walls of a balloon).
- This implies that the gas is exerting a balancing force
- Normally we talk about the pressure (force/area) rather than force

CHEM 1000 3.0

Gases 4

Measuring Pressure

- The simplest way to measure gas pressure is to have it balance a liquid pressure.
- Therefore we need to quantify the liquid pressure

CHEM 1000 3.0

Gases 5

- Consider a cylinder of liquid with area A and height h
- The force exerted at the bottom of the cylinder is its weight

$$F = m.g$$

• The pressure exerted is

$$P = F/A = m.g/A$$

- The density of the liquid is d=m/V and m = d.V but V=A.h
- So

P = m.g/A = g.V.d/A = g.A.h.d/A = g.h.d

CHEM 1000 3.0

Barometer

To measure Atmospheric Pressure

On the left the tube is open

On the right the tube is closed and a liquid column is supported by the atmospheric pressure:

Air pressure equals the liquid pressure

CHEM 1000 3.0

(

Barometer (continued)

So for a barometer

P=g.h.d P=atmospheric pressure

h = height of liquid column

d = density of the liquid

CHEM 1000 3.0

Gases 8

Atmospheric Pressure

- By definition the average pressure at sea level will support a column of 760 mm of mercury. (760 torr)
- What is this in SI units?

P=g.h.d

 $g = 9.81 \text{ m.s}^{-2}, h = 0.76 \text{ m},$

 $d_{Hg} = 13.6 \text{ g.cm}^{-3} = 13.6 \text{ kg.L}^{-1} = 13.6 \text{x} 10^3 \text{ kg.m}^{-3}$

 $P = 9.81 \times 0.76 \times 13.6 \times 10^3 = 1.013 \times 10^5 Pa (N.m^{-2})$

CHEM 1000 3.0 Gase

If we made a barometer out of water, what would be the height of the water column if the pressure is 745 torr?

The problem calls for the relationship between P and h

$$P = g.h.d$$

$$P = \frac{745}{760} \times 1.013 \times 10^5$$
 Pa

$$d = 1.00 \text{ g cm}^{-3} = 1.00 \times 10^3 \text{ kg m}^{-3}$$

$$g = 9.81 \,\mathrm{m \, s^{-2}}$$

$$P = g.h.d$$

$$\frac{745}{760} \times 1.013 \times 10^5 = 9.81 \times h \times 1.00 \times 10^3 \quad \therefore h = 10.1 \text{ m}$$

CHEM 1000 3.0

Gases 10

Measuring Gas Pressures

Gas pressures can be measured with a manometer. This is similar to a barometer but measures pressure differences using a liquid.

CHEM 1000 3.0

Gases 11

When one side of the manometer is open to the atmosphere

 $\Delta P = g.h.d$

CHEM 1000 3.0

Gas Laws

- The aim is to determine the relationship between the gas observables (pressure, volume, mass, temperature).
- These were determined experimentally

CHEM 1000 3.0

Gases 13

Boyle's Law

• Boyle (~1622) kept the mass of gas and the temperature constant and studied the relationship between pressure and volume

Gases 14

Boyle's Law

- Boyle found that pressure and volume were inversely proportional. (double the pressure and the volume goes to one half).
- This is usually expressed as

P.V = constant

or

 $P_1V_1 = P_2V_2$

CHEM 1000 3.0

Charles's Law

• Charles (1787) and Gay-Lussac (1822) kept the mass of gas and the pressure constant and studied the relationship between temperature and volume

They found
$$\frac{V_{(100^{\circ}C)}}{V_{(0^{\circ}C)}} = 1.375$$

CHEM 1000 3.0

Gases 16

Charles's Law

- Further experiments showed that volume and temperature were linearly related and that the temperature intercept (when volume is zero) was at –273.15°C.
- This temperature is now defined as absolute zero and the Kelvin temperature scale given by

$$T(K) = t(^{\circ}C) + 273.15$$

CHEM 1000 3.0

Gases 17

Charles's Law

• Graphically:

CHEM 1000 3.0

Charles's Law/Combined Gas Law

Charles's Law can be expressed as $\frac{V}{T}$ = constant

Combining Boyle's Law and Charles's Law

P.V = constant and $\frac{V}{T}$ = constant

gives

$$\frac{P.V}{T} = constant \text{ or } \frac{P_1.V_1}{T_1} = \frac{P_2.V_2}{T_2}$$

CHEM 1000 3.0

Gases 19

Avogadro's Law

- From Gay-Lussac's experiment on reacting gases Avogadro concluded
 - "Equal volumes of different gases, at the same temperature and pressure, contain equal numbers of molecules"
- Extending this to a consideration of adding volumes of gases- one concludes that gas volume is proportional to number of molecules and subsequently to number of moles.

 $V \propto n$ or V/n = constant

CHEM 1000 3.0

Gases 20

Gas Law

Given that:

P.V = constant (Boyle's Law)

 $\frac{V}{T}$ = constant (Charles's Law)

 $\frac{V}{n}$ = constant (Avogadro's Law)

leads to

CHEM 1000 3.0

Ideal Gas Law

• The ideal gas law can be written in terms of moles or molecules

PV = nRT

n=number of moles R= Gas constant

PV = NkT

N=number of molecules k= Boltzmann's constant

CHEM 1000 3.0

Ideal Gas Law

- Values of the constants
 - $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \text{ (Pa m}^{3} \text{ K}^{-1} \text{ mol}^{-1}, kPa L K^{-1} mol^{-1})$ $R = 0.0821 L atm K^{-1} mol^{-1}$
 - $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$ (really J K⁻¹ molecule⁻¹ but molecule is just a number)

CHEM 1000 3.0

Gases 23

Other useful forms of the ideal gas law

$$PV = \frac{m}{M}RT$$
 $m = mass of gas$

M = molar mass (molecular weight)

$$d_{gas} = \frac{m}{V} = \frac{PM}{RT}$$

CHEM 1000 3.0

Dalton's Law

- In a gas mixture each component fills the container and exerts the pressure it would if the other gases were not present.
- Alternatively, each component acts as if it were alone in the container

CHEM 1000 3.0

Gases 25

Dalton's Law

- Thus for any component i $P_iV = n_iRT$ We call P_i the partial pressure of component i
- The total pressure is given by the sum of the partial pressures

$$P = P_1 + P_2 + P_3 + \dots$$

• Also note that the mole fraction in the gas phase

$$\chi_i = \frac{n_i}{n} = \frac{P_i}{P}$$

CHEM 1000 3.0

Gases 26

Dalton's Law

CHEM 1000 3.0

