Real Gases

- The gas laws we obtained from experiments performed under normal conditions of temperature and pressure
 - Therefore we can usually use the ideal gas law
- Under more extreme conditions we get deviations from the ideal gas law

CHEM 1000 3.0

Real Gases 1

Compressibility factor

• The compressibility factor is an empirical (experimental)predict or of real gas behaviour but doesn't tell us anything about WHY?

Van der Waal Equation

- This is an attempt to correct the assumptions of the kinetic theory of gases for real gas behaviour, and to modify the ideal gas equation to account for it.
- We will judge its success by its ability to explain the shapes of the compressibility factor curves.

CHEM 1000 3.0

Van der Waal Equation

- Assumption 2 of the kinetic theory:
 - Molecules occupy very little volume (most of the container is free space)
 - What if we allow them to have a volume (say b L mol⁻¹)
 - The molecules then have less volume in which to move so

 $V_{real} = V_{measured} - nb$

CHEM 1000 3.0

Real Gases 6

Real Gases 5

•3

Van der Waal Equation

$$Z = \frac{PV}{nRT} = \frac{V}{V - nb} - \left(\frac{an}{RTV}\right)$$

- If "a" and "b" are zero, Z=1
- Neglecting "a" for a minute, if b is non-zero the first term and Z is greater than 1
- Neglecting "b", if a is non-zero Z is less than 1
- The first term is responsible for positive deviations, the second for negative deviations from ideal behaviour.

CHEM 1000 3.0

Van der Waal Equation

- Summary
 - Positive deviations are due to the molecules having finite size and is quantified by the "b" factor
 - Negative deviations are due to the molecules having intermolecular forces and is quantified by the "a" factor

CHEM 1000 3.0

Real Gases 14

Real Gases 13

	Van d	er Waal Co	onstants	
	Molecule	Forces	Size	
		а	b	
		L ² atm mol ⁻²	L mol ⁻¹	
	Не	0.034	0.0237	
	H_2	0.244	0.0266	
	Cl_2	6.49	0.0564	
		Variation of a factor of 200	Variation of a factor of <3	
CHEM 1000 3.0 Real Gases 15				

