CHEM 1001 Problem Set #2b - Chemical Equilibria: Acids and Bases
16.2 | The conjugate base has one less proton than the conjugate acid. (The conjugate acid-base pairs are highlighted in bold text.) |
a) HIO3(aq) + H2O(l) ![]() | |
b) C6H5COOH(aq) + H2O(l) ![]() | |
c) HPO42-(aq) + H2O(l) ![]() | |
d) C2H5NH3+(aq) + H2O(l) ![]() |
16.9 | Kw = [H3O+][OH-] = 1.00 X 10-14 |
a) [H3O+] = 0.00165 M, [OH-] = Kw/[H3O+] = 6.06X10-12 M | |
b) [OH-] = 0.0087 M, [H3O+] = Kw/[OH-] = 1.1X10-12 M | |
c) [OH-] = 2(0.00213 M) = 0.00426 M, [H3O+] = Kw/[OH-] = 2.35X10-12 M | |
d) [H3O+] = 5.8X10-4 M, [OH-] = Kw/[H3O+] = 1.7X10-11 M |
16.10 | a) pH = -log(0.0045) = 2.35 |
b) pH = -log(6.14X10-4) = 3.212 | |
c) pOH = -log(0.00683) = 2.166, pH = 14-pOH = 11.834 | |
d) pOH = -log{2(4.8X10-3)} = 2.02, pH = 14-pOH = 11.98 |
16.24 | [HC3H5O2]i = 0.275 mol/0.625 L = 0.440 M | ||||
HC3H5O2 + | H2O ![]() |
C3H5O2- + | H3O+ | ||
initial | 0.440 M | - | - | ||
equil. | 0.440 - 0.00239 = 0.438 M |
0.00239 M | 0.00239 M | ||
Ka = [HC3H5O2][H3O+]/[C3H5O2-] = 1.30X10-5 |
16.25 | CH2FCOOH + | H2O ![]() |
CH2FCOO- + | H3O+ | |
initial | 0.318 M | - | - | ||
equil. | 0.318 - x | x | x | ||
[H3O+] = x = 10-1.56 = 2.75X10-2 M Ka = x2/(0.318 - x) = (2.75X10-2)2/(0.318 - 2.75X10-2) = 2.6X10-3 |
16.27 | HC7H5O2 + | H2O ![]() |
C7H5O2- + | H3O+ | |
initial | Ma | - | - | ||
equil. | Ma - x | x | x | ||
[H3O+] = x = 10-2.85 = 1.41X10-3 M Ka = x2/(Ma - x) Ma = (x2/Ka) + x = {(1.41X10-3)2/(6.3X10-5)} + 1.41X10-3 = 3.31X10-2 M Also, Ma = moles of benzoic acid/volume of solution or Ma = {(mass of benzoic acid)/(MW of benzoic acid)}/volume of solution therefore mass of benzoic acid = (Ma)(MW of benzoic acid)(volume of solution) = (3.31X10-2 M)(122.123 g mol-1)(350.0X10-3 L) = 1.4 g |
16.56 | See Table 16.3 on page 710 of textbook for Ka and Kb values |
a) Ka(C5H5NH+) = Kw/Kb(C5H5N) = 6.7x10-6 | |
b) Kb(CHO2-) = Kw/Ka(HCHO2) = 5.6x10-11 | |
c) Kb(C6H5O-) = Kw/Ka(HOC6H5) = 1.0x10-4 |
16.57 | a) neutral (no hydrolysis) |
b) alkaline (F- hydrolyzes) : F- + H2O ![]() | |
c) neutral (no hydrolysis) | |
d) alkaline (OCl- hydrolyzes) : OCl- + H2O ![]() |
16.61 | C6H7O2- + | H2O ![]() |
HC6H7O2 + | OH- | |
initial | 0.37 M | - | - | ||
equil. | 0.37 - x | x | x | ||
The equilibrium constant associated with this equilibrium is Kb Kb = Kw/Ka = 1.00X10-14/(10-4.77) = 5.9X10-10 Also, Kb = x2/(0.37 - x) 5.9X10-10 = x2/(0.37 - x) assume x << 0.37 5.9X10-10 = x2/0.37, x = 1.5X10-5 M = [OH-] (assumption is valid) pOH = -log(1.5X10-5) = 4.83, pH = 14 - pOH = 9.17 |
16.112 | moles of OH- = (15.40X10-3 L)(0.394 M) = 6.07X10-3 mol moles of H3O+ = (24.80X10-3 L)(0.248 M) = 6.15X10-3 mol moles of H3O+ > moles of OH- excess moles of H3O+ = (6.15 - 6.07)X10-3 mol = 0.08 X10-3 mol [H3O+] = 0.08 X10-3 mol/{15.40 + 24.80)X10-3 L = 2X10-3 M pH = 2.7 |
17.2 | NH3 + H+ ![]() | |
a) | since [NH3] and [NH4+] are similar, this is a buffer and it is valid to use the Henderson-Hasselbalch equation pOH = pKb + log{[NH4+]/[NH3]} = 4.74 + log{0.102/0.164} = 4.53 [OH-] = 10-4.53 = 2.9X10-5 M | |
b) | [NH4+] = 0.102 M | |
c) | [Cl-] = 0.102 M | |
d) | [H3O+] = Kw/[OH-] = 3.4X10-10 M |
17.6 | a) | [OH-] = 2 X 0.0062 M = 0.012 M | ||||
b) | pOH = pKb + log{[NH4+]/[NH3]} = -log(1.8x10-5) + log{(2 X 0.315)/(0.486)} = 4.857 [OH-] = 10-4.857 = 1.4X10-5 M | |||||
c) | NH4+ + | OH- ![]() |
NH3 + | H2O | ||
initial | 0.264 M | 0.196 M | - | |||
equil. | 0.264 - 0.196 = 0.068 M |
- | 0.196 M | |||
pOH = pKb + log{[NH4+]/[NH3]} = -log(1.8x10-5) + log{0.068/0.196} = 4.285 [OH-] = 10-4.285 = 5.2X10-5 M |
17.7 | pH = pKa + log{[CHO2-]/[HCHO2]} 4.06 = -log(1.8X10-4) + log[CHO2-] - log(0.366) log[CHO2-] = -0.1212 [CHO2-] = 0.76 M |
17.8 | pOH = pKb + log{[NH4+]/[NH3]} = 14 - pH -log(1.8x10-5) + log(0.732) - log[NH3] = 14 - 9.12 log[NH3] = -0.2708 [NH3] = 0.54 M |
17.9 | a) | pH = pKa + log{[C7H5O2-]/[HC7H5O2]} = -log(6.3x10-5) + log{0.033/0.012} = 4.64 |
b) | pOH = pKb + log{[NH4+]/[NH3]} = -log(1.8x10-5) + log{0.153/0.408} = 4.32 pH = 14 - pOH = 9.68 |
17.11 | a) | 0.100 M NaCl is not a buffer: Both members of a conjugate acid-base pair are not present. |
b) | 0.100 M NaCl - 0.100 M NH4Cl is not a buffer: Although the weak acid NH4+ is present, its conjugate base, NH3 is not. | |
c) | 0.100 M CH3NH2 - 0.150 M CH3NH3+Cl- is a buffer: Both members of a conjugate acid-base pair are present. | |
d) | 0.100 M HCl - 0.050 M NaNO2 is not a buffer: All of the NO2- will be consumed by the HCl giving a mixture of 0.050 M HNO2 (a weak acid) and 0.050 M HCl (a strong acid). | |
e) | 0.100 M HCl - 0.200 M NaC2H3O2 is a buffer: All of the HCl will react with the C2H3O2- to form HC2H3O2 providing a solution of 0.100 M C2H3O2- (a weak base) and 0.100 M HC2H3O2 (its conjugate acid). |
17.16 | moles of benzoic acid = 2.00 g/122.123 g mol-1 = 1.638X10-2 mol moles of benzoate = 2.00 g/144.105 g mol-1 = 1.388X10-2 mol | |
a) | pH = pKa + log {moles of benzoate/moles of benzoic acid} = -log(6.3X10-5) + log{1.388X10-2/1.638X10-2} = 4.13 | |
b) | to lower the pH to 4.00 (i.e. make the solution more acidic), benzoic acid must be added 4.00 = -log(6.3X10-5) + log{1.388X10-2/moles of benzoic acid} log(moles of benzoic acid) = -1.657 moles of benzoic acid = 10-1.657 = 2.203X10-2 mol Now, moles of benzoic acid = initial moles + added moles 2.203X10-2 mol = 1.638X10-2 mol + added moles therefore, added moles = 5.65X10-3 mol mass of benzoic acid to add = (5.65X10-3 mol)(122.123 g mol-1) = 0.69 g |
17.98 | a) | HCHO2 + OH- ![]() CHO2- + H3O+ ![]() |
b) | C6H5NH3+ + OH- ![]() C6H5NH2 + H3O+ ![]() | |
c) | H2PO4- + OH- ![]() HPO42- + H3O+ ![]() |