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ABSTRACT 9 

In warm clouds and fog there are transitions between water vapor and cloud droplets. 10 

Within an air parcel these saturation adjustments can often be assumed to occur rapidly 11 

relative to other processes and we can use a simple mass and heat conserving transition to 12 

determine the change in temperature, and mixing ratios for water vapor and liquid water in 13 

the parcel. This note describes and tests a simple one-moment BMP (Bulk Microphysical 14 

Parameterization) procedure that we use in fog and stratus cloud modelling situations in order 15 

to avoid detailed microphysics schemes. We compare it with several other methods. Our 16 

procedure uses the specific heat of an air parcel with water vapor and droplets included and, 17 

though small, includes specific heat and latent heat variation with temperature. 18 

The saturation adjustment that we discuss is only a minor variation on methods that have 19 

been used, in various ways, for 60 years. The aim here is to present different saturation 20 

adjustment methods in a simple manner and to illustrate the results and impacts of our 21 

variation, which includes iteration and contributions of water vapor and liquid water mixing 22 

ratios to the specific heat of an air parcel. The impacts are relatively small but can make order 23 

10% differences in temperature change and liquid water conversions.  They could be easily 24 

implemented in any warm cloud models that uses saturation adjustment. 25 

1. Introduction  26 

The overall saturation adjustment situation is described by Straka (2009, Chapter 4) for 27 

cloud models. Many of the sources cited there (e.g. Rutledge and Hobbs, 1983) plus earlier 28 

models (especially Yau and Austin, 1979) present this as a time dependent adjustment. 29 
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Kogan and Martin (1994) explore results using McDonald's (1963) direct Bulk Microphysical 30 

Parameterization (BMP) approach in numerical cloud models and Langlois (1973) presented 31 

a more accurate, one-step approximate scheme for condensation of water vapor, used later by 32 

Cohard and Pinty (2000).  33 

In our boundary layer fog and stratus cloud modelling, the dynamic/thermodynamic 34 

changes are assumed to be relatively slow (of order hours), while diffusional growth for small 35 

droplets (diameter < 5 μm), and saturation adjustments are estimated to occur in seconds and 36 

minutes if there are sufficient cloud condensation nuclei, CCN, or small droplets already 37 

present. Kogan and Martin's results (their Figure 7) suggest that their BMP scheme is 38 

reasonably satisfactory if there are more than about 50 CCN cm-3.  In the marine fog 39 

conditions that we are concerned with, Isaac et al (2020) generally find about 100 fog 40 

droplets per cubic centimeter. 41 

Current weather and climate prediction models are moving to three-moment BMPs (see 42 

Liu et al, 2023), and include ice fractions as well as liquid water. Liu et al (2023) list and 43 

provide references for the BMPs used in various modules of the Weather Research and 44 

Forecasting model, WRF. These include the Thompson et al (2008), Lim and Hong (2010) 45 

and Morrison and Millbrandt (2015) schemes. All work with time stepping, and include 46 

multiple hydrometeor types. We are looking for simpler situations with our marine fog model 47 

and work on boundary-layer stratus cloud. The 1-D time dependent radiation fog model 48 

developed by Brown and Roach (1976) sets out governing equations for humidity and liquid 49 

water mixing ratios which formally include a rate of condensation term (C in their equations 50 

1, 2 and 3). However, they make the statements "The microphysics of the condensation 51 

process is not explicitly included in the model. Instead at each time step of the integration 52 

(0.5 s) the temperature and water vapor mixing ratio are examined at every grid point. If these 53 

imply super-saturation, then condensation takes place until the air is just saturated. The 54 

appropriate latent heat adjustment is made simultaneously to the air temperature. Conversely, 55 

liquid water at a relative humidity of less than 100% is evaporated until the air is saturated or 56 

the liquid water has been used up." We have adopted the same, saturation adjustment, 57 

approach in our 1-D time dependent marine fog modelling. There have been many other 58 

relatively simple cloud and fog models, developed before and after 1976, which include BMP 59 

treatments of water vapor - fog/cloud droplet transitions in similar ways to the one we use. 60 

Using vapor pressure rather than mixing ratio, McDonald (1963) proposed essentially the 61 

same approach, as an improvement to that used by Fisher and Caplan (1963). Kessler (1995) 62 
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discusses similar schemes for convective clouds, including one described in the Kessler 63 

(1969) Meteorological Monograph. Current terminology would refer to these as one-moment 64 

BMPs. According to Straka (2009), the Soong and Ogura (1973) method is "the most popular 65 

scheme as of this (2009) writing". As with some other BMP schemes this is formulated for 66 

convective clouds and considers adjustments in a context of vertical displacement. We will 67 

show however that this is essentially the same as the initial adjustment used in our saturation 68 

adjustment, although using a different qs(T) formulation (Teten's formula). 69 

Other schemes have been developed which include droplet numbers and are referred to as 70 

two-moment BMPs (Liu et al, 2023). Oliver et al (1978) developed a model of turbulent 71 

boundary-layer fog and low level stratus cloud along similar lines to Brown and Roach. They 72 

treat total water mixing ratio (qt) as a dependent variable, assuming no precipitation, and split 73 

it between water vapor (q) and liquid water (ql) at the end of each model time step. They also 74 

recognise that the saturation adjustments are occurring within a turbulent flow and that 75 

departures from mean values of temperature and mixing ratios should be taken into 76 

consideration. They deal with ensemble means (𝑞𝑞�,𝑇𝑇�), variances (𝑞𝑞′2����) and correlations (𝑞𝑞′𝑇𝑇′�����). 77 

The same issues can apply to grid volume averages in prediction models. We have not yet 78 

attempted to include these sub-grid variability effects and our saturation adjustments are 79 

simply based on local mean quantities.  80 

Brown and Roach (1976) did not provide details of their scheme so we developed a 81 

simple code which could be useful. It is essentially a variant of the McDonald (1963) 82 

approach, but based on Bolton's (1980) empirical fit to the saturated vapor pressure, es(T), 83 

relationship. It also uses a weighted specific heat for dry air, which is temperature dependent, 84 

mixed with water vapor and cloud droplets, and allows the latent heat (L) to vary with 85 

temperature. We iterate to improve the accuracy of the adjustment. It is described below. The 86 

essential step is to determine the temperature change during condensation or evaporation to 87 

the final equilibrium state. Mass and heat are conserved in our transitions. There is broad 88 

recognition that clouds are an important component of climate models. The method briefly 89 

described by Siebesma and Seifert (2020) as an "all or nothing" cloud parametrisarion, 90 

neglecting sub-grid variabilitty, is essentially the same as the McDonald (1963) approach and 91 

focusses on 𝑞𝑞𝑞𝑞�  changes. They do however recognise the issues associated with spatial 92 

variability within a model grid volume. 93 

 94 
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2. Basic Concept and Assumptions 95 

 Consider a well-mixed volume ( q = 𝒒𝒒� etc.), or air parcel, that contains dry air, water 96 

vapor (with mixing ratio q, kg/kg) and water droplets (mixing ratio, ql), and is at temperature 97 

T (K) and pressure p (Pa). The parcel density is ρc = ρa + ρv + ρw, and we use the term 98 

"mixing ratio" in the atmosphere specific sense, as the mass of material (water vapor or liquid 99 

water) divided by the mass of dry air. We have used the symbol q, rather than w, for these 100 

mixing ratios, as in Straka (2009). Since q and ql << 1 the differences with conventional 101 

chemistry and physics definitions of "mixing ratio" (mass/total mass) are small but will make 102 

differences. We also use M = 1 + q + ql as the total mixing ratio of the air parcel, including 103 

dry air + water vapor + liquid water. Within an air parcel at a given temperature, T, as a result 104 

of various processes, these q and ql mixing ratios, or forecasts of their changes, may not be in 105 

thermodynamic equilibrium. The relative humidity, RH may be > 1 or we may have liquid 106 

water present with RH < 1, and changes would occur. Ignoring the many fine microphysics 107 

and chemistry details, and assuming no shortage of condensation nuclei, we assume a 108 

relatively rapid adjustment to an equilibrium situation with supersaturated air forming cloud 109 

droplets or with some cloud droplets evaporating if they are in unsaturated air. Both 110 

transformations are assumed to take place at constant total pressure (isobaric) and with no 111 

external source or sink of heat (adiabatic). The air parcel stays where it is with no vertical, or 112 

other, displacement and the saturation adjustment is assumed to be instantaneous. 113 

Temperatures will change as a result of latent heat release or requirement and we assume that 114 

dry air, water vapor and cloud droplets are all at the same temperature.  115 

 In a numerical model of cloud or fog development this saturation adjustment is made 116 

after a model time step accounting for advection and diffusion of momentum, heat, water 117 

vapor and liquid water mixing ratios, plus heating or cooling associated with radiative flux 118 

divergence. This adjustment is a major simplification of the cloud microphysics involved but 119 

for many situations a simple model can provide useful results. We use it in our modelling of 120 

boundary-layer fog and stratus cloud. As a matter of notation we will use lower case symbols, 121 

e, p, q, ql for continuous variables but upper case with numeric subscripts to specify specific 122 

values of those variables. Exceptions are T for temperature and t for time, and also M and 123 

total heat, H which will be constant in the adjustment. We suppose that, for our saturation 124 

adjustment procedure, the initial state of an air parcel is defined by T1, Q1, QL1 at pressure P, 125 

and we can also compute the saturation vapor pressure es(T1) and saturation mixing ratio, QS1 126 

= qs(T1, P). The modelled parcel may not be in microphysical equilibrium at the end of a 127 

dynamics and thermodynamics time step and for example, may have Q1 > QS1 or Q1 < QS1 128 
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and QL1 > 0. The goal is to adjust the air parcel to an equilibrium state T2, Q2, QL2. We 129 

assume no change in pressure and that all temperatures are > 273.15 K (0°C) to avoid 130 

complications with ice, noting that the freezing of cloud droplets and the direct deposition of 131 

ice onto ice nucleii will not always occur at 0°C and transitions may be more complex.  For T 132 

> 0°C, how can we determine the new equilibrium state? Our assumptions are conservation 133 

of water mass and of heat, assuming that droplets, water vapor and dry air are well mixed and 134 

at the same temperature. Then, in this transformation process, with M as the total mass, and 135 

H, the total heat energy per unit mass of dry air (and so of M total mass), we have, 136 

   M = 1.0 + q + ql = constant; with q, ql  ≥ 0   (1) 137 

and, with T in Kelvin, 138 

   H = qL + McpT = constant      (2)  139 

where L is the latent heat of vaporization and cp is a specific heat per unit total mass, at 140 

constant pressure. (Note that Cohard and Pinty (2000) use a "heat capacity" Cph per unit mass 141 

of dry air so our Mcp = Cph). 142 

 Values for the specific heat, of dry air or water vapor, at constant pressure, and the 143 

latent heat of vaporization, include work done in expansion or compression so we do not need 144 

to consider the PV changes, where V = 1/ρc. We are just concerned with changes in sensible 145 

heat (McpT) while our adjustments are at constant pressure. 146 

 Equation (2) can be simplified if we assume constant values of L and cp in our parcel, 147 

or just use cpa of dry air, at constant pressure.  However, L and cpa vary with T and, more 148 

significantantly, cp should be for moist air plus liquid water. It is not always clear what other 149 

authors have done in this regard. Also, conversions from vapor pressure, e, to mixing ratio, q 150 

sometimes assume p+e ≈ p as in McDonald (1963). Different authors use different 151 

relationships for es(T), L(T) and cpa(T). Ours are given below. 152 

The variation of L with T (K) can be approximated (Bolton, 1980) for T > 273.15K as,  153 

  L(T) = 2501 - 2.37(T-273.15)   kJkg-1.    (3)   154 
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The dry air specific heat, cpa will also vary, slowly, with temperature and pressure. Tables are 155 

available and Garratt (1992) provides an equation (his Equation A20) of cpa variation with 156 

temperature T(K) at standard atmospheric pressure (1013.25 hPa) as 157 

  cpa = 1005 + (T - 250)2/3364   Jkg-1K-1    (4)  158 

For an air parcel comtaining water vapor and possibly water droplets we then have 159 

  cp = (cpa(T) + q cpv + ql cl)/M,  in J kg-1 K-1.    (5) 160 

The specific heats cpv and cl do vary with temperature but not significantly in the range we are 161 

concernerd with (0°C to about 30°C) and we use constant values, cpv = 1859.0 J kg-1 K-1 and 162 

cl = 4217.0  J kg-1 K-1, at 0°C from Garratt (1992). For saturation vapor pressure the 163 

Clausius-Clapeyron (CC) equation, or Tetens equation, can be used for es(T), but, with 164 

dependence of L on T, we use the Bolton (1980) formula (Rogers and Yau, 1989, Garratt, 165 

1992, Appendix 2), which, for T in Kelvin, is 166 

  es(T) = 611.2 exp (17.67(T-273.15)/(T-29.65))       (Pa)   (6) 167 

Many such approximations are of the form es(TC) = A exp (B*TC/(TC + C)) for 168 

temperatures, TC in °C, see Buck (1981). Bolton's formula is claimed to be within 0.1% of 169 

the best available data at that time in the range -30°C < T(C) < 35°C and the result is very 170 

close to the Clausius - Clapyron curve in the temperature range we are concerned with. For 171 

saturation water vapor mixing ratio (qs), with the parcel under pressure, P and with the ratio 172 

of gas constants, ε = 0.622, we use 173 

    qs(T) = ε es(T)/(P - es(T)).       (7 ) 174 

  175 

3.  The saturation adjustment 176 

 As noted above the adjustment is between a non-equilibrium state (Q1, QL1,T1) with 177 

Q1 ≠ QS1 to an equilibrium state with Q2 = QS2, where QSi=QS(Ti ,P). Note than no 178 

adjustment is needed if Q1 < QS1 and QL1 = 0. It may also be possible, in cases with Q1 < 179 

QS1 and QL1 > 0, to evaporate all the droplets while Q2 < QS2. Our approach would then 180 

predict QL2 < 0 and adjustments are made to correct for that. 181 
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In the simple cases, but including effects of water vapour and any initial liquid water in 182 

Equation (5) for cp1, and with L1 = L(T1) we can use Equation (2) to establish that 183 

  H = L1 Q1 + Mcp1 T1 = L2 Q2 + Mcp2 T2 .     (8) 184 

As a first approximation many adjustment schemes fit a tangent line to the es(T) curve at T1 185 

and assume 186 

   QS2 = QS1 + (T2-T1) dQS/dT1     (9) 187 

with dQS/dT1 determined from differentiation of Equations (6) and (7) at T1.  If we then 188 

assume that Q2 = QS2 and, for our initial estimate (T2a) of T2, let A = L/(Mcp) be a constant, 189 

based on state 1 values, we obtain, with dQS/dT evaluated at T1,  190 

  T2a = T1 + A(Q1-QS1)/(1 + A(dQS/dT)) .    (10) 191 

Using Bolton's (1980)  es(T) relationship our expression for dQS/dT is 192 

  dQS/dT = 0.622 P dES/dT / (P - ES)2   where  193 

  dES/dT = 17.67x243.85xES/(T-29.65)2    (11) 194 

The corresponding Q2a can be considered as either QS(T2) or as the Q2 approximation 195 

obtained from Equation (8), but with cp2 = cp1 and L2 = L1. 196 

    Q2a = (H - Mcp1T2a)/L1     (12) 197 

Note that H can be computed from state 1 conditions, using L1 and cp1. In either case QL2a is 198 

simply M - 1.0 - Q2a from Equation (1). 199 

The next step is to note that cp2 ≠ cp1 in general and there may be a small change between 200 

L1 and L2. We tried various iteration schemes to improve our estimation of T2, Q2, QL2. As 201 

one method, we can evaluate QS2 at our estimated T2a, and then use Equation (8), with Q2 = 202 

QS2, plus computed cp2 and L2 values, to get another estimate of T2.  203 

The simplest iteration, repeatedly using Q2 = QS(T2) in an equation derived from Equation 204 

(8), would be 205 

   T2 =  (H - L2QS(T2))/(Mcp2)     (13a) 206 

but this failed to converge. However with a relaxation factor, α = 0.75 or 1.0, and 207 

       T2 =  (T2 + α(H - L2QS(T2))/(Mcp2))/(1+α)   (13b) 208 
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Equation (13b) converged satisfactorily (see Tables 1 and 2). With α = 0.5 or 2.0 there was 209 

still convergence but it was slower and we generally set α = 1.0 although convergence was 210 

faster (fewer iterations, 6 vs 9 for T changes < 10-4K) with α = 0.75 in cases with RH >1. 211 

Six sample cases are discussed in Section 6 but we can show test cases 2 and 4 in a plot 212 

of q and qs versus T in Figure 1. Both assume an initial temperature of 288K and the initial 213 

states (Q1 = 0,016 and 0.006) are at the top and bottom of the plot while (T1, QS1) is in the 214 

center. These are larger adjustments than we might expect in a single time step in a NWP or 215 

cloud model but illustrate the process well. Smaller adjustments are considered later (Table 216 

2). The black line in the figure corresponds to the saturation mixing ratio, QS(T) with 217 

Bolton's (1980) es(T) approximation while the red dashed line is tangent to that curve at T = 218 

288 K. Case 2 starts with (Q1, QL1, T1) = (0.0160, 0, 288K). We set P = 1013.25 hPa and QS1 219 

can be computed as 0.0105355, so state 1 starts with about 52% supersaturation. For Case 2 220 

the solid blue line shows Q(T) decreasing as as T increases while H = constant, M = constant. 221 

The specific heat, cp, from Equation (5) includes changing water vapor and liquid water 222 

impacts. The reduction in q would correspond to an increase in ql as T increases.       223 

Figure 1. Two saturation adjustment cases (2 and 4 in Table 1 below) with initial temperature 224 

T1 = 288K plus illustration of qs(T) and (dashed red line) the linear approximation qsa(T). The 225 

solid blue and green lines correspond to H = constant in the two cases. The corresponding 226 

dashed lines are with state 1 values of cp and L. 227 
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Our desired saturation adjustment corresponds to the point of intersection of the solid 228 

lines, at T2 = 292.055 K and Q2 = 0.0136961 (Table 1). If we use the tangent QS line and set 229 

cp = cp1 in the H = constant line, as in our, and others, initial estimate of state 2, we get the 230 

point of intersection of the dashed lines, at T2a = 292.917 K and Q2a = 0.0139360. In this case 231 

the increase in temperature change relative to the correct saturation adjustment is  232 

0.862/4.055 = 21%. The Q changes (Q1-Q2a)/(Q1-Q2) = QL2a/QL2 = 0.896, so 10% less 233 

liquid water. 234 

In Case 4 our initial state is  (Q1, QL1,T1) = (0.0060, 0.003, 288K). We have the same P 235 

= 1013.25 hPa and QS1 can again be computed as 0.0105355 and so RH is 57%. We have set 236 

QL = 0.003 which provides enough liquid water to evaporate during the transition. As liquid 237 

water evaporates the temperature decreases. If there were less liquid water the saturation 238 

adjustment would predict a negative QL2 and so checks are made to ensure that this does not 239 

occur and adjustment stops once all the liquid water has been evaporated (Case 5 in Table 1). 240 

The solid lines are with cp from Equation (5), and would be influenced by the initial value of 241 

QL1. The dashed lines are again with cp1 and the tangent to the QS(T) curve. Once again there 242 

is a significant difference between the points of intersection and the difference in temperature 243 

change relative to the correct value is  0.257/3.832 = 6.7%. The Q changes (Q1-Q2a)/(Q1-244 

Q2) = (QL1 - QL2a)/(QL1-QL2) = 0.787, so a prediction of 20% less liquid water evaporated 245 

with no iteration. 246 

Values are in Table 1. It is interesting that the temperature differences are greater in the 247 

supersaturated case than the evaporating droplets case but this is consistent with the relative 248 

slopes of the approximated constant H and tangent lines. 249 

Before discussing the details of other cases we will discuss other approaches to 250 

saturation adjustment in Sections 4 and 5. 251 

 252 

4. Other Schemes. 253 

4.1. The Soong-Ogura adjustment scheme. 254 

The Soong-Ogura (1973) "saturation technique" (S-O) is descibed in their appendix. It is 255 

presented in terms of potential temperature. Pressure changes are considered but, as noted by 256 

Straka (2009), Wilhelmson and Ogura (1972) argue that pressure adjustments can be ignored. 257 

For adjustments at constant pressure we can work with T in place of θ and remove π ftom the 258 

temperature adjustment equation. Soong and Ogura (1973, Equation A6) apply the same 259 
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tangential extrapolation as we have in Equations (9) and (10) and, with Teten's equation these 260 

lead to Equations (4.18) in Straka (2009) and (A9) in Soong and Ogura, (1973). Rederiving 261 

this, with our notation, T0 = 273.15 K, a = 17.27 and c = 35.86K, and for unit mass of dry air, 262 

we obtain 263 

 264 

T2 = T1 + B(L/Mcp)(Q1-QS1)   where   B = (1+a(L/Mcp)QS1(T0 - c)/(T1-c)2)-1. (S4.18) 265 

 266 

Straka (2009, 4.17) has bΔT in place of  (L/cp)QS1. The B expression (r1 in Soong and Ogura. 267 

1973) uses Teten's formula for saturation vapor pressure, which, for temperatures in K, is 268 

 269 

  es (T) = 610.78 exp (a(T - T0)/(T - c)) .    (14) 270 

 271 

For saturation mixing ratio we use Equation (7), qs(T) = ε es/(p-es), where ε is the ratio of gas 272 

constants (dry air / water vapor) and is 0.622.  Soong and Ogura (1973, A1) and Straka 273 

(2020, 4.7), in his presentation of the S-O scheme assume p-es ≈ p and use 274 

 275 

   qs =(380/pe) exp (b(T - T0)/(T - c))     (S4.7) 276 

 277 

where pe (Pa) is described as "the dimensional pressure at that grid point" and c = 35.86 278 

(Straka) or 36 (S-O). The Teten's and Bolton (1980) results for es are close in the temperature 279 

range we are considering, giving es = 1688.89 and 1687.66 Pa at 288K respectively, a less 280 

than 0.1% difference. There can however be a 1.7% difference between Equation (7),  281 

qs = ε es/(P - es) and the S-O use of qs = ε es/P. In out S-O scheme calculations we will use 282 

Equation (7) to avoid this difference.  The qs values for p = 101325 Pa and T = 288K are then 283 

0.0103680 and 0.0105437 without and with the p-e adjustment, while Bolton's result gives 284 

0.0105355. Values of T2, Q2, QL2 using the S-O scheme and Teten's equation are included in 285 

Tables 1 and 2. They are close to the first approximations with the scheme proposed here 286 

using Bolton's (1980) es(T) approximation. 287 

 288 

4.2 The Langlois/Cohard-Pinty adjustment scheme 289 

Langlois (1973) presented a "rapidly convergent" approximate scheme for "large-scale 290 

condensation in a dynamical weather model". Iteration is mentioned but it is nor clear how it 291 

would be performed and it is stated that "the main conclusion to be drawn .... is that the 292 

algorithm converges rapidly. Since residuals in the parts per million range are quite 293 
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acceptable, no iteration is required for supersaturations likely to be encountered in a realistic 294 

dynarnical weather model." Cohard and Pinty (2000, Appendix C) adapted this, with some 295 

refinements, as their "non-iterative adjustment at water saturation". We will refer to it as the 296 

LCP scheme. The essential step is an extra term in the Taylor series approximation to es(T) 297 

expanded about T1 and a "Newton-Raphson" approximation to the solution of, with our 298 

notation, 299 

  F(T2) = T2-T1 + (L1/Mcp1) (qs(T2)-Q1) = 0    (15) 300 

With an improved estimate of qs(T2) they argue they argue that there is no need to iterate 301 

although we will argue that there should be iteration to account for variations in L and, more 302 

significanly, cp values. They use a different es(T) relationship to us but applying their analysis 303 

with the Bolton (1980) es(T) approximation we can indeed obtain a better first estimate of T2.  304 

Using our notations and CP's Δs, the key equation is a variation of our Equation (10) 305 

which, with L1 = L(T1), can be written as  306 

    T2 =T1 - Δ1(1+Δ1Δ2/2)     (CP1) 307 

with,   Δ1 = L1 (QS1 - Q1)/(Mcp + L1 DQS1)    (CP2) 308 

and   Δ2 = L1  D2QS1/(Mcp + L1 DQS1).    (CP3) 309 

where L1 , QS1 = qs(T1) and derivatives  DQS1 = dqs/dT and D2QS1 = d2qs/dT2 are at T1. The 310 

"heat capacity" values used by CP (Appendix D), are for unit mass of dry air, and called Cph. 311 

They include water vapor and liquid water and are at (T1, Q1, QL1) but not adjusted to be per 312 

unit mass of the mixture. We adjust cp to be in Jkg-1K-1 via division by M and need to add 313 

that factor back in when dealing with mixing ratios per unit mass of dry air.  314 

We can also note that, with qs = ε es/(P - es),    we have. 315 

   dqs/dT = ε P des/dT/(P - es)2     (CP4) 316 

and      d2qs/dT2 = ε P (d2es/dT2/(P - es)2 + 2(des/dT)2/(P - es)3)  (CP5) 317 

With the Bolton equation (4a) for es(T) rewritten in the form 318 

  ln(es(T)/es0) = 17.67(1-243.5/(T-29.65)) 319 

we can differentiate to get 320 

   des/dT = 4302.645 es/(T-29.65)2     (CP6) 321 

and   d2es/dT2 = 4302.645 (des/dT/(T-29.65)2 - 2es/(T-29.65)3)  (CP7) 322 
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 323 

With no iteration the LCP non-iterative adjustment does give a better first approximation, 324 

as shown in the results in Section 6, Tables 1 and 2. However, iteration is still needed to 325 

make the L(T) and cp adjustments with (T2, Q2, QL2). Curvature of qs(T) is taken into account 326 

and the temperatures, T2, obtained from equation CP1 above approximately match the points 327 

of intersection of the curved qs(T) line and the dashed, blue and green, constant H lines which 328 

use T1, Q1, QL1 values for cp and L. In Table 2 with much smaller adjustments the LCP and 329 

simple tangent fit to the qs(T) curve give very similar results with minimal effect of curvature. 330 

Iteration to improve T2, Q2 and QL2 is still needed though if more accurate saturation 331 

adjustments are required. 332 

 333 

5. Time dependent adjustments. 334 

Many saturation adjustment schemes proceed via a rate of change approach as described 335 

in section 4.2.1 of Straka's (2009) book. That scheme was used for example by Bryan and 336 

Fritsch (2002) who cite Rutledge and Hobbs (1983) who in turn make the statement, 337 

"Following Yau and Austin (1979) we express the (rate of) condensation of water vapor to 338 

cloud water (PCOND or dQv/dt in Straka's Eqn 4.4) as ...". The equation was indeed briefly 339 

presented by Yau and Austin (1979), as scheme P1, and in turn attributed to Asai (1965), who 340 

provides additional details. It is presented as a rate of change over time step Δt, sometimes 341 

using potential temperature, θ, and sometimes T. Straka's (or Yau and Austin's) equations, 342 

using our notation and T rather than θ, and with sign corrections, are, 343 

  dq/dt = -(q-qs)/[(1 + L2 qs/McpRvT2) Δt]    (S4.4) 344 

and, with M added since q is per unit mass of dry air and our cp is per unit total mass,  345 

  dT/dt =-(L/Mcp)dq/dt       (S4.5/6) 346 

These were modified assuming T =π θ where π = (p/p0)Rd/cp
 is the Exner function. (Straka, 347 

S4.9 has an erroneous extra cp factor). The role of Δt is rather a mystery but presumably is a 348 

measure of the time needed to reach equilibrium. I was unable to derive the S4.4 equation 349 

myself, or completely follow Asai's (1965) explanation. To some extent, and noting that Δt is 350 

undefined, this does not matter - the essential point is that as t increases, on a somewhat 351 

arbitrary scale because of Δt, q → qs. The only thing that really matters is the relative change 352 

of T with q so that H is maintained as a constant. Straka's Equation 4.5/6 should ensure this 353 
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but L and cp will vary with T and cause complications. One approach is to assume that q has 354 

changed and then, since H is known and with the new q, we can determine T from Equ (2). 355 

This can account for L and cp variations with T, q and ql at each time step.  356 

We tested various approaches, using simple explicit finite differences with time step δt, in 357 

two of our test cases. We can rewrite Straka 4.4 as, 358 

  dq/dt = -A*(q-qs(T))  where A* = [(1 + L2 qs/cpRvT2) Δt]-1  (16a) 359 

With T = 288K we hava L2 qs/cpRvT2 = 1.642 and it varies from about  1.323 to 2.049 360 

over the temperature range (284-292K)  that occurs in our examples (Table 1). We left 361 

Equation (5a) in this form for comparison with other models, and took Δt  = 1s. Yau and 362 

Austin (1979) appear to do that while Rutledge and Hobbs (1983) used 2 and 5s. It is never 363 

quite clear what Δt is really meant to be, but it is needed to get correct dimensions. We 364 

consider it separate from the time step used in numerical solution of Equation (16a). The 365 

basis for Asai's analysis is that predicted changes in Q without a saturation adjustment can be 366 

split between changes in Q, assuming saturation, and in QL. Yau and Austin (1979) present 367 

this as a rate of condensation and Rutledge and Hobbs (1983) and Straka (2009) note 368 

potential sensitivity to the choice of Δt, or the number of iterations.  369 

We should emphasise that the time stepping approach works perfectly well if we simply 370 

set A* = constant. Equation (16a) basically indicates a relaxation or adjustment of q towards 371 

qs and the essential point is to account for T variations during this process and allow 372 

sufficient time for the adjustment to be made. A simple explicit forward stepping finite 373 

difference scheme, advancing from t to t + δt, essentially says 374 

   q(t +δt) = q(t) - A* δt (q(t)-qs(T)) .   (16b) 375 

An alternative, with qs(T) held fixed for that time step, is to solve Equation (16a) to give 376 

   q(t +δt) = qs(T) + e-A*δt(q(t)-qs(T)).    (16c) 377 

which, if A*δt is small and e-Aδt ≈ 1 - A*δt, is the same as Equation (16b). 378 

Instead of a finite difference representation of Equation (S4.5) we prefer to use Equation (2c), 379 

as 380 

   T(t + δt) = (H - q(t+δt) L(T(t)) /(M cp(T(t)))   (17) 381 

Ideally one would use L(T(t + δt)) and cp(T(t + δt)), but with a slow approach to the steady 382 

state we can use L and cp at T(t) in Equation (17). 383 
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With the T = 288K cases used in Table 1, and with A*δt > 0.5s in Equation (16a),  tests 384 

showed that using the simple explicit time difference scheme, the results were unstable. 385 

However with A*δt = 0.4s or less the forward time stepping was stable and q and T results 386 

were fully converged after 5 s with |q - qs| < 10-6. We generally used A*δt = 0.2s and use 25 387 

time steps. 388 

a)   b)  389 

Figure 2. Time dependent adjustments for cases 2 and 4. Time is nominally in seconds but A* 390 

or Δt are somewhat arbitrary, Here A*δt = 1s and time step, δt = 0.2 s, so A* = 5.0. 391 

 392 

The time evolution of q, ql and qs with time are shown in Figure 2. In Fig 2a, water vapor 393 

from initially supersaturated air condenses, QL increases and the air warms leading to an 394 

increase in QS until by time ≈ 3s the air parcel is in an equilibrium state. A smoother 395 

transition is obtained with a smaller δt but the final limiting values are the same. Figure 2b 396 

illustrates a case where cloud droplets evaporate, air cools, QS is reduced and again things are 397 

in equilibrium by t ~ 3s. Integrations were continued until A*δt = 5s to obtain the final values 398 

in Table 1 below. In all our cases the final near steady state exactly matched our simple 399 

iterative approach. Both are easy to apply. 400 

 401 

6. Sample saturation adjustments: (T1,Q1,QL1) → (T2, Q2, QL2) 402 

6.1 Different possible situations 403 

Our saturation adjustment can involve 4 possible situations or scenarios. 404 

S1: Situations where Q1≤ QS1 and QL1 = 0.  405 

We just need an initial check is to see whether any condensation or evaporation will occur.  406 
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No adjustment takes place and no changes are needed; T2 = T1;  Q2 = Q1;  QL2 = QL1. 407 

S2:  Situations where Q1 > QS1, QL1 ≥ 0. 408 

In these circumstances where Q1 > QS1 we assume that Q2 = QS2 = QS(T2). the procedure is 409 

desctibed in Section 3. When applying these ideas in a dynamical model, within a model time 410 

step we are dealing with a relatively small change 411 

S3: Situations where Q1 < QS1, QL1 > 0 and QL2 ≥ 0 412 

In this transition, some of the QL evaporates, Q increases, the air parcel becomes saturated 413 

and Q2 = QS(T2), bearing in mind that as latent heat is provided for the evaporation, the air 414 

temperature and QS will decrease. In the equilibrium state the air parcel is saturated while 415 

some of the liquid droplets may remain. The procedure, as in S2, is described in Section 3. It 416 

is essential to check that QL2 ≥ 0 in order to maintain M constant. However, if all of the 417 

liquid water has evaporated before the air is saturated then those calculations lead to QL2 < 0, 418 

an invalid situation needing S4. 419 

S4: If Q1+QL1 < QS2 , which is not known initially, the procedure above leads to Q2 = QS2  420 

but  QL2 < 0, and not acceptable.  We then assume that the final equilibrium will occur with 421 

all of the liquid water evaporated and the temperature reduced by QL1 x L/cp. 422 

Assuming conservation of heat (H, per unit mass of dry air) we then have an equilibrium 423 

state with  424 

  T2 = (H-Q2*L2)/(cp2*M ),   Q2 = Q1 + QL1    and   QL2 = 0,    (18) 425 

Because of variation of L and cpa with T, q and ql, we can again iterate to refine the T2 426 

estimate. 427 

6.2 Sample Cases 428 

In our use of this procedure in our fog/cloud model we are making adjustments after a small 429 

time increment where, at each grid point, T, Q and QL will have been modified via advection, 430 

turbulent diffusion and radiative flux divergence. The changes will be relatively small in a 431 

small time step but for illustration we can use some tests where the initial state may be 432 

somewhat different from equilibrium. Five test cases are shown in Table 1. We set T1 = 288K 433 

and P = 101325 Pa in each case.  Test 1 needs no adjustment. Tests 2 and 3 correspond to 434 

scenatio 2 above, with or without any initial QL. Test 4 is scenario 3 and Test 5 involves 435 

scenario 4 436 

 437 
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For cases 2 and 4 added rows indicate the first approximation values prior to iteration 438 

and calculations based on saturation adjustments proposed elsewhere. These include the Soon 439 

and Ogute (1973) scheme, Langlois (1973)/ Cohard and Pinsky(2000), or LCP, "non-iteratine 440 

adjustment" model and our time dependwent model. The widely used time dependent model 441 

often attributed to Yau and Austin (1979) and using an equation due to Asai (1965) was also 442 

used and gave identical results. These are discussed in later sections. 443 

 444 

Table 1.  Results of ADJUST test cases, T1 = 288K, approximately 10K temperature range 445 

 446 

Regarding Test 2 and Test 4 values as correct, Test 2a with no iteration overpredicts the T2 - 447 

T1 increase by 21% and underpredicts QL2 by 10.4%. Test 4a overpredicts the temperature 448 

decrease by 6.7% and underpredicts the QL1-QL2 decrease by 21.3%. 449 

We see from Table 1 that total water per unit mass of dry air, (M - 1.0) and the total 450 

water, QT are always conserved, so that Q2+QL2 = Q1 + QL1. The total heat content per unit 451 

mass of dry air (Q*L + cp*T) is also conserved with our iteration scheme (tests 2,3,4,5). The 452 

k values are the number of iterations needed to make successive T estimates agree within 10-4 453 

K, but the iterative cases converge quite quickly. Relaxing the permitted "error" reduces the 454 

number of iterations, typically to 3 with 10-2 K temperature error tolerance. After the first step 455 

(k = 1), Q2 is not equal to QS2 but is set to QS(T2) in subsequent steps. Note that the iteration is 456 

Test #  T1K Q1 QS1 QL1 T2 K Q2 QS2 QL2 k 

1 Q1 < QS1, QL1 = 0  288 0.01 0.0105355 0.0 288 0.01 0.0105355 0.0 0 

2 Q1 > QS1, QL1 = 0 288 0.016 0.0105355 0.0 292.055  0.0136961 0.0136961 0.0023039 5 

2a T2a, Q2a, QL2a     292.917  0.0139360 0.0144684 0.0020640 0 

2b Soong and Ogura   0.0105437  292.963 0.0139166 0.0145198 0.0020834 0 

2c LCP estimates     292.477 0.0141204 0.0140698 0.0018796 0 

2d Time stepping After 5Aδt, δt = 0.2s, explicit 292.055 0.0136961 0.0136961 0.0023039  

3 Q1 > QS1, QL1 > 0 288 0.016 0.0105355 0.002 292.042  0.0136844 0.0136844 0.0043156 5 

4 Q1 < QS1, QL1 > 0 288 0.006 0.0105355 0.003 284.168  0.0081681 0.0081681 0.0008319 8 

4a T2a, Q2a, QL2a     283.911  0.0077070 0.0080278 0.0012931 0 

4b Soong and Ogura   0.0105437  283.858 0.0077288 0.0080051 0.0012712 0 

4c LCP estimates     283.599 0.0078369 0.0078609 0.0011631 0 

4d Time stepping After 5Aδt, δt = 0.2s, explicit 284.168 0.0081681 0.0081681 0.0008319  

5 Q1 < QS1, QL1 > 0 288 0.006 0.0105355 0.001 286.228  0.007000 0.0093734 0.0 5 



17 

essentially to improve the estimate of T2 but also includes changes to the values of cp and L 457 

values as T2 is refined. These are monitored but relatively small, of order 0.1% in L and 0.5% 458 

in cp, in some of the tests shown. Test 1 just confirms no change if air unsaturated and no 459 

liquid water is present. In tests 2 and 3, the air starts supersaturated and temperatures rise 460 

with release of latent heat. T1 to T2 changes are approximately +4.06 K. With the first 461 

estimate of dQS/dT in these cases the initial difference was 4.92 K, a difference of roughly 462 

20% of the temperature change. Tests 4 and 5 start with sub-saturated air containing liquid 463 

water. In test 4 the air parcel becomes saturated while some liquid water remains, case 2a, 464 

while in test 5 all of the liquid water has evaporated without causing saturation, case 2b. 465 

Temperature change differences are slightly smaller than in the supersaturated case but the 466 

iteration still supplies a 20% improvement. The time stepping scheme uses the 467 

Yau/Austin/Asai formulation in (corrected versions of) the equations presented by Straka 468 

(2009) and gives the same results when integrated through to a steady state. To avoid 469 

accumulation of roundoff errors at each time step we used Equation (2) to determine T after 470 

changes in Q rather than Straka's equation for dθ/dt, or the time derivative of Equation (2) 471 

which would involve time detivatives dL/dT dT/dt and dcp/dt. 472 

 473 

Table 2.  Results of ADJUST test cases, T1 = 288K, Q1 = 0.99 and 1.01 times initial 474 

saturation mixing ratio, QS1. 475 

Test #  T1K Q1 QS1 QL1 T2 K Q2 QS2 QL2 k 

6 Q1 > QS1, QL1 = 0 288 0.010641 0.010536 0.0 288.084 0.0105937 0.0105937 0.00004735 5 

6a T2a, Q2a, QL2a     288.095 0.0106014 0.0106015 0.00003962 0 

6b Soong and Ogura   0.010544  288.089 0.0106041 0.0106053 0.00003693 0 

6c LCP estimates     288.095 0.0106014 0.0106014 0.00003959 0 

6d Time-stepping     288.084 0.0105936 0.0105936 0.00004735  

7 Q1 < QS1, QL1 > 0 288 0.010418 0.010536 0.003 287.907 0.0104712 0.0104712 0.00294680 5 

7a T2a, Q2a, QL2a     287.894 0.0104624 0.0104628 0.00295557 0 

7b Soong and Ogura   0.010544  287.886 0.0104661 0.0104650 0.00295194 0 

7c LCP estimates     287.894 0.0104626 0.0104625 0.00295545 0 

7d Time-stepping     287.907 0.0104712 0.0104712 0.00294680  

 476 

In our use of this procedure within a simple 1-D (z,t) time dependent fog and cloud model 477 

the adjustment procedure is called at each grid point at each time step and the changes are 478 
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smaller. In Table 2 we consider cases where State 1 is at saturation +/- 1%. Results again 479 

show that iteration still gives a substantial change in the saturation adjustments. If we 480 

compare Tests 6 and 6a we see a predicted temperature changes of 0.084K and 0.0095K so 481 

the single direct calculation is over predicted by 13% without iteration while the liquid water 482 

content is underpredicted by 16%. For Tests 7,7a the "no-iteration" changes are 483 

overprediction of delta T by 14% and underprediction of QL drop by 16%. Several factors 484 

cause these changes but the biggest effect is from changes in cp due to contributions from the 485 

liquid water, which combine with temperature changes to give q and ql changes through 486 

Equations (2) and (1). 487 

 488 

8. Conclusions  489 

Many saturation adjustment schemes have been developed and used in a variety of cloud 490 

and fog models but details are sometimes hard to find. In developing our own adjustment 491 

code we decided to incorporate temperature dependence of specific and latent heats and to 492 

use a simple iterative procedure to establish an accurate equilibrium state following water 493 

vapor-cloud droplet transitions. It works satisfactorily and may be preferable to representing 494 

the adjustment as a time dependent process. 495 

 496 
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