Land Surface Schemes

1) CLASS (The Canadian Land Surface Scheme)

Developed at Environment Canada. Originally described in:

![Diagram of land surface schemes](image)

Lateral heat flow is neglected; the finite-difference form of the one-dimensional heat conservation equation is applied to each layer to obtain the change in average layer temperature T_i over a time step Δt:

$$T_i(t + 1) = T_i(t) + \left[G(z_{i-1}, t) - G(z_i, t) \right] \frac{\Delta t}{C_i \Delta z_i} + S_i$$ (1)

where $G(z_{i-1}, t)$ and $G(z_i, t)$ are the downward heat fluxes at the top and bottom of the layer, respectively, C_i is the volumetric heat capacity of the soil, Δz_i is the layer depth, and S_i is a correction term applied in case of freezing or thawing, or the percolation of ground water (see section 2.2). G and z are both taken to be positive downward.

...
To evaluate the surface temperature, the surface energy balance equation is expressed as a non-linear function of $T(0)$ and solved iteratively. The energy balance equation is given by

$$K_* + L_* + Q_H + Q_E = G(0)$$

(7)

where K_* and L_* are, respectively, the net shortwave and net longwave radiation absorbed at the surface, Q_H and Q_E are the sensible and latent heat fluxes, and $G(0)$ is the surface heat flux into the ground.

The net shortwave radiation K_* depends on the incoming shortwave radiation K^I and the ground surface albedo α_*:

$$K_* = (1 - \alpha_*)K^I$$

(8)

The net longwave radiation absorbed at the surface, L_*, is given by the difference between the incoming atmospheric radiation L^I and the radiation emitted by the surface:

$$L_* = L^I - \sigma T(0)^4$$

(10)

where σ is the Stefan–Boltzmann constant. The surface is assumed to radiate as a black body; further refinement is a useless complication at this stage, since the effective emissivity depends not only on the measured surface value but on the effects of local microtopography.

The sensible and latent heat fluxes Q_H and Q_E are given by the bulk transfer formulae

$$Q_H = \rho_a c_p V_a c_D [T_* - T(0)]$$

(11)

and

$$Q_E = L_* \rho_a c_v V_a c_D [q_* - q(0)]$$

(12)

where ρ_a, c_p, T_*, and q_* represent the density, specific heat, temperature, and specific humidity, respectively, of air in the constant flux layer, V_a is the wind speed, L_* is the latent heat of vaporization (or sublimation, if a snow pack is present), and c_D is a drag coefficient that depends on surface roughness length, wind speed and atmospheric stability (McFarlane and Laprise, 1985).

2) ISBA (Interactions of the Soil-Biosphere-Atmosphere)

Available at http://www.cnrm.meteo.fr/isbadoc/model.html

Developed at CNRM, France. Originally described in:

The prognostic equations for the superficial and mean surface temperatures (T_{surf} and T_p) are obtained from the force-restore method following:

$$\frac{\partial T_{surf}}{\partial t} = C_{TOT} (R_n - H - LE) + C_T L_f \left(\text{freez}_g - \text{melt}_g + \text{freez}_s - \text{melt}_s \right) - \frac{2\pi}{\tau} (T_{surf} - T_p)$$

$$\frac{\partial T_p}{\partial t} = \frac{1}{\tau} (T_{surf} - T_p)$$
in which H, LE, and Rn are the sensible heat, latent heat, and net radiational fluxes at the surface, CTOT is a thermal coefficient, Lf is the latent heat of fusion, freezes and melts are fluxes of freezing and melting snow, and t is a time constant of one day. The first term on the rhs of (1) represents the forcing from radiative fluxes at the surface; the second term is for the release of latent heat due to freezing and melting of soil water and snow; and the last term of (1) [like the only rhs term in (2)], is a “restoring” or relaxation term.

The net radiation at the surface is

$$R_n = F_{SS}^{-}(1 - \alpha) + \varepsilon_F(F_{SI}^{-} - \sigma_{SB}T_{surf}^4)$$

where F_{SS}^{-} and F_{SI}^{-} are the incoming solar and infrared radiation at the surface, and σ_{SB} is the Stefan-Boltzmann constant. The turbulent fluxes are calculated by means of the classical aerodynamic equations (see section 2). For the sensible heat flux:

$$H = \rho_a c_p C_T u_T (T_{surf} - T_a)$$

where c_p is the specific heat; ρ_a and T_a are for the air density and temperature at the lowest atmospheric level; and C_T is the thermal drag coefficient which depends on the stability of the atmosphere.

The water vapor flux E is the sum of the evaporation from bare ground (i.e., E_g), from the vegetation (i.e., E_v), and from the snow (i.e., E_s):

$$E = L_e E_g + L_v E_v + L_s E_s$$

$$E_g = (1 - \text{veg})(1 - p_{avg})\rho_a C_T u_T (h_s q_{sat}(T_{surf}) - q_a)$$

$$E_v = \text{veg}(1 - p_{avg})\rho_a C_T u_T h_v (q_{sat}(T_{surf}) - q_a)$$

$$E_s = p_{sn} \rho_a C_T u_T (q_{sat}(T_{surf}) - q_a)$$

where L_v and L_s are the specific heat of evaporation and sublimation, $q_{sat}(T_{surf})$ is the saturated specific humidity at the temperature T_{surf}, and q_a is the atmospheric specific humidity at the lowest model level.

Fig. 1. Hydrological budget in ISBA.