Two identical smokestacks (smokestack A and smokestack B) are separated by 1 km along a North-South line. There is a residential area to the east of the smokestacks. If the height of both smokestacks is 100 m , find the location of maximum concentration at the ground for a $3 \mathrm{~m} / \mathrm{s}$ westerly wind. Assume linear spread of the plume (i.e. $\sigma_{y}=I_{y} x$ and $\sigma_{z}=I_{z} x$) with $I_{y}=10$ degrees and $I_{z}=3$ degrees.

Answer:
Superposition of two plumes. $U=3 \mathrm{~m} / \mathrm{s}, H=100 \mathrm{~m}$ separation is $L=500 \mathrm{~m}$
$I_{y}=10^{\circ}\left(\pi / 180^{\circ}\right)=0.174$ and $I_{z}=3^{\circ}\left(\pi / 180^{\circ}\right)=0.0524$
From eq. sheet, one Plume is: $C(x, y, z)=\frac{Q}{2 \pi U \sigma_{y} \sigma_{z}} \exp \left[-\frac{1}{2}\left(\frac{y}{\sigma_{y}}\right)^{2}\right] \exp \left[-\frac{1}{2}\left(\frac{z-H}{\sigma_{z}}\right)^{2}\right]$
Two plumes offset by $-L$ and $+L$ are added together gives:
$C(x, y, z)=\frac{Q}{2 \pi U I_{y} I_{z} x^{2}} \exp \left[-\frac{1}{2}\left(\frac{z-H}{I_{z} x}\right)^{2}\right]\left(\exp \left[-\frac{1}{2}\left(\frac{y-L}{I_{y} x}\right)^{2}\right]+\exp \left[-\frac{1}{2}\left(\frac{y+L}{I_{y} x}\right)^{2}\right]\right)$
The maximum (on the ground) will occur at $z=0$, and $\frac{d C}{d x}=0$.
Depending on separation of the plumes, the maximum could either occur at $y= \pm L$ or $y=0$.
Assume from symmetry that the maximum will occur at $y=0$. Rewrite equation as

$$
\begin{gathered}
C=\frac{A}{x^{2}} 2 \exp \left[\left(\frac{B}{x}\right)^{2}\right], \quad \text { where } \mathrm{A}=\frac{Q}{2 \pi U I_{y} I_{z}}, B^{2}=-\frac{1}{2}\left\{\left(\frac{H}{I_{z}}\right)^{2}+\left(\frac{L}{I_{y}}\right)^{2}\right\} \\
\frac{d C}{d x}=\frac{d\left\{\frac{2 A}{x^{2}} \exp \left[\left(\frac{B}{x}\right)^{2}\right]\right\}}{d x} \\
\text { Lookup: } \frac{d\left[x^{-2} e^{\left(\frac{a}{x}\right)^{2}}\right]}{d x}=-\frac{2\left(x^{2}+a^{2}\right)}{x^{5}} \exp \left[\left(\frac{a}{x}\right)^{2}\right]
\end{gathered}
$$

$\frac{d C}{d x}=\frac{-4 A\left(x^{2}+B^{2}\right)}{x^{5}} \exp \left[\left(\frac{B}{x}\right)^{2}\right]=0$, which gives $x= \pm i B$. Sub'ing values gives $x_{y=0}=2436 \mathrm{~m}$.
Technically, this should be checked against the $y= \pm L$ values, which is the same except with

$$
C=\frac{A}{x^{2}} 2 \exp \left[\left(\frac{B_{2}}{x}\right)^{2}\right], \quad \text { where } \mathrm{A}=\frac{Q}{2 \pi U I_{y} I_{z}}, \quad B_{2}^{2}=-\frac{1}{2}\left\{\left(\frac{H}{I_{z}}\right)^{2}\right\}
$$

For $x \pm i B$, this gives $x_{y=L}=1350 \mathrm{~m}$.
Since $C\left(x_{y= \pm L}, \pm L, 0\right)=\frac{2 A}{x_{y=L}^{2}}$ and $C\left(x_{y=0}, 0,0\right)=\frac{2 A}{x_{y=0}^{2}}$, the highest concentration must be at $C\left(x_{y= \pm L}, \pm L, 0\right)=\frac{2 A}{x_{y=L}^{2}}$, because $x_{y=L}<$ gives $x_{y=0}$.

Graphical solutions, for illustration:

A tower is set up to measure friction velocity $\left(u_{*}\right)$. The logger records calculations of all wind speed averages $(\bar{u}, \bar{v}, \bar{w})$, variances $\left(\overline{u^{2}}, \overline{v^{2}}, \overline{w^{2}}\right)$, and covariances $(\overline{u v}, \overline{u w}, \overline{v w})$, for 30 minute periods, but raw, high-frequency measurements (i.e. $u(t)$, etc) are not recorded. Are the campaign it was determined that the tower was tilted by an angle of η. Using the equations for rotation around the y-axis given below, derive an equation for friction velocity accounting for the tower tilt.

$$
\begin{gathered}
u_{r}=u \cos \eta+w \sin \eta \\
v_{r}=v \\
w_{r}=-u \sin \eta+w \cos \eta
\end{gathered}
$$

Answer:

$$
u_{*}^{4}={\overline{u_{r} w_{r}}}^{2}+{\overline{v_{r} w_{r}}}^{2}=\left(\frac{1}{n} \sum u_{r} w_{r}\right)^{2}+\left(\frac{1}{n} \sum v_{r} w_{r}\right)^{2}
$$

Showing the first term only for example: $\frac{1}{n} \sum u_{r} w_{r}=\frac{1}{n} \sum(u \cos \eta+w \sin \eta)(-u \sin \eta+w \cos \eta)$

$$
\begin{aligned}
& =\frac{1}{n} \sum\left(-u^{2} \cos \eta \sin \eta+u w \cos ^{2} \eta-u w \sin ^{2} \eta+w^{2} \sin \eta \cos \eta\right) \\
& =-\overline{u^{2}} \cos \eta \sin \eta+\overline{u w}\left(\cos ^{2} \eta-\sin ^{2} \eta\right)+\overline{w^{2}} \sin \eta \cos \eta
\end{aligned}
$$

