
ESS5203.03 - Turbulence and Diffusion in the Atmospheric Boundary-Layer : 
Winter 2020

Text: J.R.Garratt,  The Atmospheric Boundary Layer, 1994. Cambridge, and notes from 
J.C. Kaimal and J.J. Finnigan, 1994, Atmospheric Boundary-Layer Flows - Oxford.
See also http://www.met.rdg.ac.uk/~swrhgnrj/teaching/MTMG49/   

1a) General Introduction.  Laminar and Turbulent flow, averaging, the atmospheric 
boundary-layer - diurnal cycle, role of density stratification.  G1

1b) Review of governing equations for incompressible flow, continuity, Navier 
Stokes, equation of state, thermodynamic equation.  Vorticity (G2)

------------------------------------------------------------------
Boundary-Layer definitions. Aerodynamics - laminar flow, boundary-layer 
approximations to N-S equns.

In the absence of any body forces, the Navier - Stokes equations for velocity components,
ui in a viscous fluid can be written, inertial frame of reference. Cartesian tensor notation.
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while the continuity equation for an incompressible fluid is,
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For air μ ≈ 1.8 x10-5 Nm-2s, ρ ≈ 1.2 kgm-3 then ν = μ/ρ = 1.5 x 10-5 m2s-1.  (vary with T 
and p)

ABL or PBL, Surface layer. Roughness sublayer.  Flow above a horizontally 
homogeneous, infinite, flat, plane. Surface roughness z0.

Geostrophic and gradient wind level. Coriolis force, stratification.  Constant Flux layer.

Hodograph and profiles.  Ekman spiral (constant eddy viscosity ~ 10m2s-1) - see Garratt 
p43. more realistic see p46. and profiles below (Weng and Taylor, 2003)
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Navier-Stokes and continuity equations. Role of molecular viscosity. Laminar and turbulent flows. 
Range of scales mm to km. Thermodynamics, potential temperature. Turbulent fluxes, momentum, 
heat, water vapour, etc. Surface energy budget.

U = U + u'.  Averages!  Reynolds rules.  u*
2 = -u'w'  (with x-axis aligned with surface wind).  The 

friction velocity.

PBL depth, of order 1 km.  Stresses, fluxes drop by about 10% over lowest 100m, consider them 
approximately constant up to ?  50m, 100m .....

Buckingham's pi theorem,  see   https://en.wikipedia.org/wiki/Buckingham_π_theorem 
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Used in several places in boundary-layer turbulence. A key application is:

Constant stress layer, unidirectional flow, distance from flat, uniform, rough surface, z, Neutral 
stratification.

Considser  dU/dz = f(u*, z, ???) , Assume far enough from surface that details of the roughness 
elements are not important.

Dimensional considerations,  [dU/dz] = T-1, [u*] =  LT-1, [z] = L.

So 3 variables, 2 dimensions, one π1 = zdU/dz/u*.  so must have π1 = constant, (1/k) - by convention.

dU/dz = u*/kz.
Has a problem at z = 0 stay away from roughness elements.  Suppose we integrate the equation?

U = (u*/k) ln z + Constant

Suppose U = 0 at z = z0.- the roughness length - U = (u*/k) ln (z/z0).  ? Observations.

See also http://www.yorku.ca/pat/research/Askervein/index.html

Modified form for convenient model application, U = (u*/k) ln (1+z/z0).  Then U = 0 at z = 0.  
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Typical z0 values,  https://en.wikipedia.org/wiki/Roughness_length

Terrain description  (m)
Open sea, Fetch at least 5 km 0.0002
Mud flats, snow; no vegetation, no obstacles 0.005
Open flat terrain; grass, few isolated obstacles 0.03
Low crops; occasional large obstacles, x/H > 20 0.10
High crops; scattered obstacles, 15 < x/H < 20 0.25
parkland, bushes; numerous obstacles, x/H ≈ 10 0.5
Regular large obstacle coverage (suburb, forest) 1.0
City centre with high- and low-rise buildings ≥ 2

x is fetch over surface.  Footprint issues.  Note that ln z is the relevant quantity. Small variations in z0 
not critical, variations by factor 10 or more affect flow, e.g water - land.

Rough guide, approximately 1/30- 1/10 of size of roughness elements.  Sand grain roughness, d/30.

Navier-Stokes Equations.

Cartesian co-ordinates on an f-plane,  Boussinesq Approximation

Du/Dt = -(1/ρ)∂p/∂x + fv + υ(∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z2)

Dv/Dt = -(1/ρ)∂p/∂y - fu + υ(∂2v/∂x2 + ∂2v/∂y2 + ∂2v/∂z2)

Dw/Dt =  -(1/ρ0)∂pp/∂z -(ρp/ρ0) g + υ(∂2w/∂x2 + ∂2w/∂y2 + ∂2w/∂z2)

pp and ρp  pressures and densities as perturbations from a background hydrostatic state.

Noting that,   Du/Dt =  ∂u/∂t + u∂u/∂x + v∂u/∂y + w∂u/∂z   etc.

Continuity       ∂ρ/∂t +  (ρU) = 0   or, equivalently,  Dρ/Dt + ρ (U) = 0

Incompressible fluid,   Dρ/Dt = 0  so (U) = 0.

Mean + turbulence perturbation  u = U + u' etc,  p = p0 + pb + p' 

Means can be 1-D, 2-D, 3-D, steady state or time dependent. Perturbations are always 
3D and time varying.

Reynolds number R = UL/υ.  High R means molecular viscous termd neglected.
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Reynolds Averaged Navier Stokes,   RANS equations, b-layer approx.

∂U/∂t + U∂U/∂x + V∂U/∂y + W∂U/∂z = -(1/ρ)∂pb/∂x + fV - ∂<u'w'>/∂z 

∂V/∂t + U∂V/∂x + V∂V/∂y + W∂V/∂z = -(1/ρ)∂pb/∂y - fU - ∂<v'w'>/∂z 

∂U/∂x + ∂V/∂y + ∂W/∂z = 0  :  Note   ∂u'/∂x + ∂v'/∂y + ∂w'/∂z = 0   as well

Assume pb(x,y) specified and replaced by Geostrophic wind term.

  -(1/ρ)∂p/∂y - fUg = 0,   -(1/ρ)∂p/∂x + fVg = 0

1-D case: 
 ∂U/∂t = + f(V-Vg) - ∂<u'w'>/∂z  ;  ∂V/∂t  = -f(U - Ug) - ∂<v'w'>/∂z 

Since ∂U/∂x + ∂V/∂y = 0, W = const = 0 (flat ground). Two equations 4 unknowns

Eddy Viscosity

τx/ρ = <-u'w'> = K ∂U/∂z  :  τy/ρ = <-v'w'> = K ∂V/∂z 

A LOCAL gradient hypothesis - non-local closure schemes?

K = constant ?   Mixing length  K =  u*l(z) or u* kz  (from surface layer, log profile)

Ekman layer solution, constant K, steady state.  Let W = U + iV,  Vg = 0

leads to     U = Ug[1-e-αzcos(αz)]  ;  V = (f/|f|)Uge-αzsin(αz)  where α2 = |f|/(2K).

Other closures.  K = velocity scale x length scale. May depend on stability (dθ0/dz ).

Velocity scales,  u* or E = ((u'2 + v'2 + w'2)/2)1/2,   TKE equation needed. (E2 = TKE per 
unit mass) TKE equation includes ε - dissipation rate.  Usually αE, 

Length scales?   kz, k(z+z0),  1/l = 1/k(z+z0) + 1/λ.  Blackadar  , λ = 0.00027|Ug|/f

cf. Taylor (1969).
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With stratification can use (Delage, 1974)

TKE equation derivation. Full equn for ∂ui/∂t, subtract ∂Ui/∂t equation and get equation 
for ∂ui'/∂t, Multiply by uj', add ui'∂uj'/∂t, average to get equn for ∂<uj'ui'>/∂t,  let i =j and 
apply summation. Include viscous terms which lead to dissipation.

For stratification also need thermodynamic equation, for potential temperature, θ

   ∂θ/∂t  + u∂θ/∂x + v∂θ/∂y  + w∂θ/∂z ≈ 0  but there may be heat sources.

Mean + perturbation and average, and the assumption that <w'θ'> = -Kh∂θ/∂z.
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