ESS5203.03 - Turbulence and Diffusion in the ABL : Winter 2020 - Notes 2b

Text: J.R.Garratt, The Atmospheric Boundary Layer, 1994. Cambridge, Chapter 8

Boundary-Layer Modelling issues.

Modelling within large scale models, modelling of the boundary-layer. Surface layer or Planetary BL?
1-D steady state, 1-D time dependent - diurnal cycles, 2-D, 3-D steady state.

Boundary conditions, lower and top. How to treat surface? Coupled to soil (or ocean or ice) model.
CLASS

Slab, RANS local or non-local closure, 1%, 1.5, 2" order closures, LES.

Where to start? Garratt puts stress on surface boundary. Energy budget issues.

1-D Diurnal cycle (Weng and Taylor, 2003, Boundary-Layer Meteorology)

ON MODELLING THE ONE-DIMENSIONAL ATMOSPHERIC
BOUNDARY LAYER

In an idealised, horizontally homogeneous ABL and in the absence of radiative flux
divergence and moisture, the Reynolds averaged equations describing the dynamics
of the ABL can be written as
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In this paper we study some of the closure schemes commonly used in ABL
modelling. They are all ]%—m‘der schemes i which the equations for the turbulent
kinetic energy (TKE) and a turbulence length scale are used. The turbulent length
scale equation can either be diagnostic (E — £. E — € — £ and g>£ Model I) or
prognostic (E — €. or its modification and g>£ Model II).
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where £, 1s a turbulent mixing length, E is the turbulent kinetic energy (TKE). the
constant « is the ratio of the surface shear stress to TKE and Pr is the turbulent
Prandtl number (defined as Pr = K,/ K},. the value of 0.74 is used here). One ap-
proach to model £, is simply to formulate a diagnostic equation for the length scale
that relates it to the distance from the surface and the stability of the atmosphere;
another uses the prognostic equation for the dissipation rate of TKE, €. One can
then formulate a length scale from E and €, i.e.,

ta= (@E)? /e, (9)

Both approaches need an equation for the TKE, which, in one-dimensional
form., is
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where P; and Pp, are TKE production terms by the shear and buoyancy respectively
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Here B is the coefficient of thermal expansion, g is the acceleration due to gravity.

E-1, E-¢, q>-/ closures are 1.5 order or (low) 2nd order closures. Can also formulate full 2™
order closure.



E-¢ needs an equation for «.
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(11). In the E — € closure scheme the rate of dissipation of TKE, €, is governed by
the prognostic equation,
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where the three terms on the RHS are loosely labelled as the production, dissipation

or destruction and diffusion of € respectively. The often used constants are C¢q =
1.44,C.» = 1.92 and C, = a(C., — C.1) /K>

Based on a creative imagination? Seems to work well and is widely used in engineering applications but
needs some adjustment in PBL. More creative imagination in q*-/ equation, Mellor, Yamada
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As in other studies, the model uses a stretched vertical coordinate to ensure
sufficient resolution near the surface and to resolve strong gradients. We set
Z+20 , 2

Z =1n
20 by

where bp is a constant (67.5 m is used in these calculations). Equations are trans-
formed into the new coordinate system before they are discretized into their finite
difference equivalents. Flow variables are stored on a staggered grid, where mean
variables (U, V and T) are at layer midpoints and turbulent quantities (E and
turbulence fluxes) at layer lower boundary levels and z, (the top of the computation
domain). The numerical scheme employed for time integration is Crank—Nicolson.
The resulting set of difference equations is solved using a block LU factorization
algorithm (Karpik, 1988).

The surface boundary conditions used are a non-slip condition for velocity
(U = V = 0), a specified time dependent temperature or heat flux if required,
and the assumption that production balances the dissipation of TKE (P = €). At
the upper boundary, we specify (U, V) = (U,, V,). ® = ©, (constant) and set the
vertical derivatives of TKE. €, shear stresses and other turbulent fluxes to zero.
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Figure [ Initial profiles of wind {IF. V). TEE (E) and shear stress ({gw) . (vw) )y and resolts from
E — £ closure under neutral seratification.
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Figure 2. Vertical profiles of wind (L7, V), TKE (E) and shear stress | {nw) . (vw)) from standard
E — ¢ and E — ¢ — £ closures under neutral stratification.



4.3. DIURNAL CYCLE

Our diurnal cycle studies are based on running the models by specifying the diurnal
variation of the surface potential temperature (®g) or the surface heat flux ((wé)).
Several forms were tried including the sinusoidal variations of ®y and an empirical
formulation of (wé), (Stull, 1988, Section 7.3). Here, to construct a typical diurnal
variation of ®g, we use the measured screen height (z = 2 m) temperature from
Day 33 of the Wangara Experiment (Clarke et al., 1971). We take their measure-
ments of hourly potential temperature, ®; (i = 0, 1, ..., 23 representing different
hours), at screen height and then set the surface potential temperature, ®g at 1900
hours, equal to ® ¢ and estimate @ at other hours by @9 = o+ 1.1 x (®; —O9),
wherei =0, 1,...,23 (The factor 1.1 is an attempt to extrapolate the screen height
temperature to the surface). A cubic spline interpolation was used for &g at times
between hours, see Figure 14a. The initial potential temperature profile for all the
model runs is given by @(z, 0) = ©1¢9 = 281.1 Kfor0 < z < 1000 m, and ®(z, 0)
=281.1 + 0.0035 (z — 1000) for z = 1000 m. The initial velocity field is a steady
state, neutral ABL with (U,, V,) = (10, 0) ms™', f = 107*s~'and zo = 0.1 m.
Thereafter the surface potential temperature is allowed to vary according to Figure
14a with the calculation starting at 1900 local time (LT).

292 —

Observation at screen height
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So we cover stable and unstable cases. Initial condition is steady state neutrally-stratified solution.
Integrate for 10 days repeating diurnal cycle, Upper boundary had Ug =10 ms™, Vg=0, 6 =271.1K.
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Figure 15 Mean wind component, LY (m 51}, from different turbulence closures. From top to bottom
the closures used are E — £ (D074}, E — & (the standard), qu Models I and I1
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Figure 17. The TEE, E l::md2 5_1}, from different turbulence closures. From top to bottom the closures
used are E — £ (D741, E — ¢ (the standard], quf Models 1 and 11. Note the different contour intervals

and different x-axis scales in profile plots.



5. Conclusions

Several different lé-ﬂ[dE:I' turbulence closure models are used to simulate the at-
mospheric boundary layer. The eddy viscosity concept is employed to model the
turbulent fluxes. All models use the turbulent kinetic energy eguation together with
either a diagnostic expression or a prognostic eguation to represent the turbulent
length scale. The effects of stability are realized via the turbulent length scale and
the TKE in E — ¥ closure, the TKE and the dissipation rate of TKE in E — ¢
closure and its modified versions and the turbulent length scale, the TKE and a
stability function in g*f Models I and IL

The turbulence length scale plays a very important role in any turbulence closure
models. In the simple situations studied here, the models with TKE and a diagnostic
equation for £ are quite good. while the closures with TKE and a prognostic equa-
tion for £ do not guarantee success although these models do carry more physical
processes.

Full second-order closure scheme models, which can predict all components of
the Reynolds stress, have significant advantages for some flow situations, e.g., flow
over hills. Ayotte and Taylor (1995) used the LRR second-order scheme for their
neutral, linear ABL model of flow over topography but limited the time integration
of the background flow calculation to 4 hr in order to avoid having too deep a
boundary layer. The problem with the - or g*£-equation, and prediction of a very
deep ABL and large values for the length scale in this flow situation, need to be
resolved. However a model including prognostic eguations for the shear stress is
required for flows that are rapidly distorted by topography.
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Computational issues,
Finite difference grid, explicit or implicit, near singularity at ground, z-transformation and wall layers.

Better treatment of the surface boundary condition, for potential temperature and mixing ratio. Coupling
with soil layer.



