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fhJMMARY 

The problem of determining the distribution of velocity and shear stress in the flow above a surface 
with an abrupt change in roughness is considered by using the ' mixing-length ' theory to relate the shear 
stress to the velocity profile and solving the resulting system of partial differential equations numerically. 
The results are compared with those obtained by Panofsky and Townsend (1964) and Taylor (1%7), by 
assuming special forms for the velocity or shear stress profiles. 

NOTATION 

height of internal boundary layer 
functions in shear stress distributions 
von K6rrnWs constant (= 0.4) 
mixing length 
length scale for self-preserving flow 
ratio of downstream to upstream roughness lengths (= zl/zo) 
roughness change parameter ( = In 2) 
surface friction velocity parameter 

surface friction velocities for x < 0, x > 0 
velocity components in x and z directions 
horizontal distance downwind of roughness change 
vertical height 
roughness lengths for x < 0, x > 0 

internal boundary layer thickness 
horizontal kinematic shear stress and surface value 
scaled vertical height (= z/d) 

logarithmic vertical scale = In 
denote non-dimensionalized quantities; e.g. U', x'. 
The non-dimensionalization is with respect to uo and zI. 

Some of the above notation is shown schematically in Fig. 1 

(= u' -2 (x')  

z1 ( 7) 

1. INTRODUCTION 
Elliott (1958), Panofsky and Townsend (1964), and Taylor (1967) have considered 

the effect of an abrupt change in surface roughness on the airflow close to the ground 
under conditions of neutral thermal stability. The basic aim of these papers has been to 
describe the flow downstream of a roughness change, the change taking place across a 
line perpendicular to the mean wind direction. Upstream of the roughness change the 
flow is assumed to be in equilibrium with the underlying surface and is assumed to have 
a kinematic shear stress independent of height (= ugZ) and a logarithmic velocity profile 
of the form 

where zo is the upstream roughness length and k is von KArmAn's constant. 
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Some experimental observations of this flow situation have been made and are 
described in Munn (1966, p. 109) whilst others are now under way. Panofsky and 
Townsend give some comparisons between theoretical and experimental velocity profiles 
but these are rather inconclusive, the main factor being that velocity variations are relatively 
small and insensitive. Shear stress values would provide a much better comparison. 

The present paper considers the same flow situation but uses numerical solution of 
the partial differential equations describing the flow instead of assuming special forms for 
shear stress or velocity profiles within an internal boundary layer. 

2. DESCRIPTION OF PREVIOUS THEORIES 

In addition to the usual boundary layer approximations and neglect of the viscous 
terms in the momentum equation the work of Elliott, Panofsky and Townsend and Taylor 
is based on the hypothesis that the effect of the roughness change is confined to an ' internal 
boundary layer ' of height d (x) within which the velocity profile may be represented by an 
assumed form. It is the assumed form for velocity profile that varies in the three theories. 
Above the internal boundary layer the kinematic shear stress is assumed to retain its 
original upstream value (u:) whilst the new value of surface kinematic shear stress, which 
will be a function of x,  is denoted by u t  (x ) .  The assumed form for velocity profile within 
the internal boundary layer is substituted into the momentum equation which is then 
integrated across the layer to give one relationship between d ( x )  and u1 (x). The require- 
ment that the velocity is continuous at the outer edge of the interval boundary layer 
provides a second relation and the resulting differential equations may then be solved 
to give the downstream variation of d (x ) ,  ul (x )  and, subsequently, the velocity profile. 
Although it is not essential, and I am most grateful to one of the referees for pointing this 
out, the earlier theories have also made the assumption that the velocity and shear stress 
profiles are related by the equation 

where zi is the local value of the roughness length. This has the value zo for x < 0 and 
z1 for x >, 0. Eq. ( 2 )  could be considered as a ' mixing-length ' relation 

where 1, the mixing-length is given by 

1 = k ( z  + za) . * (3) 

SURFACE ROUGHNESS : 20 SURFACE ROUGHNESS : 2 1  

SURFACE SHEAR  STRESS:^ CURFGCE SHEAR STRESS = ~ 3 x 1  

Figure 1. Schematic representation of the internal boundary layer. 



ROUGHNESS CHANGE FLOW 79 

If these relations are assumed to hold within the internal boundary layer the assumed 

The comparison between the three theories is clearest in terms of the resulting vertical 
forms for velocity profile give rise to equivalent forms for the shear stress profiles. 

distribution of (kinematic shear stress)*. Using the notation 

the distributions of shear stress assumed within the internal boundary layer are 

Elliott : T1" = UO (1 - s) = U1 ( X )  . - (5) 
z 

Panofsky and Townsend : T ~ / ~  = uo [(I - S) + Sv], where 7 = - d 
= u1 - (u1 - uo) 7 * (6)  

Taylor : T ~ / ~  = u0 [(I - S) + S (10 v3 - 15 7' -I- 6 q')] . (7) 

Eq. (7) is based on an application of the von KBrmin-Pohlhausen technique using 
the highest order polynomial that will permit the reduction of the problem to a single 
ordinary differential equation. 

A comparison of these three forms is given in Fig. 2. It should be borne in mind that 
d ( x )  and u1 ( x )  will be different in final solutions to the three cases. 

Although the downstream variation in velocity profiles and surface shear stress may 
be obtained from the previous theories without recourse to the mixing length or a similar 
hypothesis the cross-stream distribution of shear stress cannot be obtained without its 
use. In this sense the mixing-length hypothesis, or some similar closure of the governing 
system of equations, is essential in order to be able to find a solution to the problem. 

The hypotheses concerning the velocity profile within the internal boundary layer 
are, however, basically a mathematical simplification leading to an approximate solution 
along the lines of the von KBrmBn-Pohlhausen technique (see for example Goldstein 
1938, p. 158). An alternative to using these assumed profiles is to perform a numerical 
solution of the governing partial differential equations. Results from this approach are 

zld 

Figure 2. Comparison of shear stress forms with S = - 1. 
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presented here and compared with earlier results to test how accurate the previous theories 
have been in giving the solution to the boundary layer equations used. The question of 
the validity or approximate validity of the mixing length hypothesis is a separate matter 
but there are good reasons for supposing that its use will at least give approximately 
correct solutions. The real test will be from direct measurements of shear stress and wind 
shear within the internal boundary layer, whilst comparison of experimental results 
with numerical solutions obtained by methods such as those described here will be useful 
in determining whether the predictions and hypotheses are approximately correct. 

3. EQUATIONS AND METHOD OF SOLUTION 

Using the notation given at the beginning of the paper and schematically in Fig. 1, 
the equations governing the flow are : 

The x-momentum equation 
3u 37 u-+w-=-  

* (8) 

* (9) 

These equations, together with Eq. (2), form a parabolic system which may be solved, 

3U 
3 X  32  3 2 '  

3u 3w 
The continuity equation 

-+==0.  3% . 

in theory at least, with the boundary and initial conditions 

U = W = O  on z=O, x > O .  

We may non-dimensionalize these equations with respect to y and zl, introduce 
5 = In (z/zl + 1) and eliminate T to give 

where 
U W x 2 , x ' = -  and z'=-. u'=z* w = -  UO 21 2 1  

The initial condition now becomes 

* (12) 
1 
k U'=-ln(mz'  +1) on x ' = O  . 

where m = zl/zo. We will also use the notation M = In (zo/zl) for comparison with 
previous theories. 

The method used to obtain numerical solutions to the problem was basically the 
standard one of replacing the 5 derivatives by finite differences to give a system of ordinary 
differential equations for dUt'/dx, where Ur' is the x-component of velocity at a fixed 



81 

2 
21 

2opoo- 

- 

15000 

PANOFSKY-TOWNSEND - -- SOLUTION BASED ON FQ 17) - PRESENT SOLUTION ---- 
EXPONENTIAL FORM 

Figure 3. Shear stress profiles, M = - 5. 
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Figure 4. Shear stress profiles, M = + 4. 
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vertical height. These equations for the dUt/dx were then solved numerically using a 
version of the Runge-Kutta method in standard use on the University of Toronto's 
IBM 7094 computer. Details of the finite difference equations and the operation of the 
method are given in an Appendix. Checks were made using finer grid spacings and 
higher accuracy criteria to test the accuracy of the solutions in some test cases and the 
results to be given are estimated to be within 1 per cent of the exact solutions of the 
differential equations. 

In any comparison between the results obtained by this method and experimental 
results, the usual inaccuracies inherent in the boundary layer approximation will occur for 
small x.  In addition the fact that we are taking 1 = k (z + zo) when x > 0 and 
I = k (z + zl) when x > 0, for all z, will expose an inadequacy of the theory at small x 
for heights of the same order of magnitude as the roughness lengths. At any given height 
the local effective value of surface roughness should perhaps start off as zo at x = 0 and 
gradually change to z1 as the effects of the roughness change diffuse out into the flow. 
For large heights the value is unimportant whilst for small heights the change may be 
expected to take place quite rapidly but the assumption of an abrupt change at x = O 
will produce some erroneous results in the region close to the roughness change. 

These errors are due to the way in which the problem is set up rather than any method 
of solution and for the heights and downstream distances of practical interest will be 
negligible. 

- 0 

-X 

* - 
O +x. 

+ x  0 

O + x  

5 ' L p U 0  

uyuo 

o X / z t  = 105 + x/z l  = 10' x X / Z ~  = 103 0 x / z ,  = 102 

Figure 5. Self-preservation of shear stress distribution M = - 2. 
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4. COMPARISON OF RESULTS WITH OTHER THEORIES 

Numerical results for velocity and shear stress have been obtained for a range of 
values of MI both positive, corresponding to flow from a relatively rough to a relatively 
smooth surface and negative corresponding to smooth to rough flow. Inasmuch as the 
present approach predicts the vertical variation in shear stress, whereas earlier theories 
make assumptions which may be considered as essentially equivalent to this, it seems 
appropriate to consider the shear stress profiles as a basis for comparison. We can do 
this by considering the profiles of T (or T ~ / ~ )  against z (using values for d ( x )  and u1 ( x )  
calculated using the appropriate theory) as is done in Figs. 3 and 4. 

These and similar results show that the Panofsky-Townsend distribution (Eq. (6)) is 
considerably better than that given by Eq. (7), or the Elliott form (Eq. (5)), and gives shear 
stress profiles to within about 20 per cent of the finite difference solutions at sufficiently 
large downstream distances. The error in terms of T ~ / ~  will be about 10 per cent. The 
fact that results are closer for M = - 5 than M = + 4 is probably due to the relative 
values of x/zo in the two cases; the further downstream we go the closer the present 
numerical solution and the Panofsky-Townsend solution become. In  the results shown 
the greatest differences occur for M = + 4 at x/zl = lo4. This corresponds to x/zo = 200 
and an internal boundary layer thickness of about 3,500 z1 or 70 zo. Whilst this is perhaps 

I 
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a borderline case in terms of the complete elimination of the type of error discussed at 
the end of Section 3, the profiles are quite similar at x/zl = lo5 and the differences may 
be significant in any comparison of theory and experiment. 

Alternately we may define an internal boundary layer thickness which can be calcu- 
lated from the numerical solutions. The boundary layer thickness chosen, which we denote 
by S, is the height at which the difference ( ~ ~ 1 ~  - uo) had been reduced to 10 per cent 
of its value at the surface, i.e. (ul - uo). This height will have unrealistic values for small 
x where it is of the same order of magnitude as the roughness lengths but once it is greater 
than the larger of, say, lo2 zo and 102 z1 it will provide a sensible estimate of the internal 
boundary layer thickness. Figs. 5 and 6 show ( ~ ~ 1 ~  - uo)/(ul - uo) plotted against z/6 at 
different downstream distances for M = - 2 and M = + 2. It can be seen that the 
profiles of T+ are very nearly self-preserving in form and could be represented, at least 
in the lower half of the layer, by a linear variation such as that assumed by Panofsky and 
Townsend. 

We may also compare the shear stress results with the analysis made by Townsend 
(1965,1966) on the basis that the flow in the internal boundary layer will be approximately 
self-preserving. The self-preserving form for shear stress that he proposes is 

7 - 2402 = (70 - u2) F (;) . (13) 

where Is is a length scale of the self-preserving process. It should be noted that this is 
different from the self-preserving forms associated with the Elliott, Panofsky-Townsend 
and Eq. (7) theories which are of the form: 

The self-preserving theory is developed in detail by Townsend for small changes in 
friction velocity and in the case of large negative values of M. The assumption of self- 
preservation in conjunction with the mixing-length hypothesis predicts an exponential 
form for F, i.e. 

The theory is, however, unable to predict Is or the surface shear stress accurately 
in the cases of moderate roughness change which are considered here. The resulting form 

is shown in Figs. 3 and 4 with an Is obtained by matching the profiles at the point where 
(T - u t )  had fallen to one quarter of its value at the surface. It can be seen that the shapes 
of the profiles obtained numerically are close to the exponential form predicted by 
Townsend except for the case of M = - 5, x/z l  = lo’. Here better agreement could 
be obtained by using a higher value of 7o in Eq. (16) than that predicted by the numerical 
solution. 

Figs. 7 and 8 show the downstream variation in surface shear stress parameter S 
predicted by Panofsky and Townsend, Eq. (7) and the present solution. The Panofsky- 
Townsend results are based on their values for d given in Fig. 1 of their paper with S 
calculated from their approximate relation 
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Use of the corresponding exact relation makes very little difference to the results. 
Once again differences between the present results and those based on the Panofsky- 

Townsend theory are small and get smaller as x increases. The same is true of the velocity 
profile results shown in Figs. 9 and 10. Again the variations between theories are greatest 
in the rough to smooth flow case. 

-30- I I '  I I I I I 
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the rough to smooth flow case. 
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Figure 7. Surface shear stress parameter for smooth-rough flows. 
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Figure 8. Surface shear stress parameter for rough-smooth flows. 
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Figure 9. Theoretical wind profiles, M = - 5. 

The results for thickness of the internal boundary layer, characterized by S are 
similar to the results given by Panofsky and Townsend. Fig. 11 shows the variation of 6 
with x given by the present solutions. 

5. CONCLUSIONS 

The principal conclusion is that of the three hypotheses concerning the distribution 
of shear stress in an internal boundary layer that proposed by Panofsky and Townsend 
(Eq. (6)) is the most accurate in describing the solutions to Eqs. (8), (9) and (2), and if 
such a method is required, will give quite good results. The availability of high speed 
digital computers does, however, mean that the methods used in this paper are quite 
practical for solving problems such as these, the average time taken for a solution from 
x’ = 0 to x’ = lo6 being about 8 minutes on an IBM 7094 computer system. 

The shape of the shear stress profile given by Townsend’s (1965, 1966) theory of self 
preservation is in good agreement with the results obtained here but the predictions of 
surface shear stress and internal boundary layer thickness given by the self-preservation 
theory are only applicable in the case of small roughness changes. It may be possible to 
develop a theory along the lines of the Elliott and Panofsky-Townsend theories using an 
exponential form but unless a large number of calculations were required it would have no 
advantage over the numerical techniques used here. 
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Figure 10. Theoretical wind profiles, M = 4. 

The fundamental problem remains that of the applicability of the mixing length 
hypothesis to this type of flow. Change of roughness flows do perhaps provide one of 
the most interesting applications of this type of semi-empirical theory. If we restrict our 
consideration for the moment to flows above a change of roughness in cases where the 
upstream flow is non-developing (e.g. pipe or channel flow, the logarithmic boundary 
layer discussed, or the atmospheric wind spiral) we may use the observed values of shear 
stress and velocity profile in the upstream equilibrium flow to determine a form for the 
mixing length. This we may expect to be of the form 

where, at least in the first 3 cases given as examples, the form o f f  does not appear to 
depend on zo, and will thus be the same in the final downstream steady state. (Experi- 
mental results for mixing length distributions in a two-dimensional channel are given by 
Taylor (1967). The results given for pipes and channels by Nikuradse (1929, 1933), some 
of which are reproduced in Goldstein (1938, p. 357) and Schlichting (1960, Fig. 20.6) 
are incorrect near the centre-line of the channel). Simply by altering zo at the roughness 
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6 /z,  

X / Z ,  

Figure 11. Internal boundary layer thickness, 6 .  

change we obtain results for the downstream variations in velocity and shear stress profiles 
which are at least qualitatively correct and will probably be sufficiently accurate for most 
purposes. Whilst this approach does little to further our understanding of the basic 
mechanisms of turbulent flow it does provide a means of describing a flow situation which 
is of considerable interest to micrometeorologists, even if their main concern is simply to 
avoid it. 
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APPENDIX 

DETAILS OF NUMERICAL METHOD 

The basis of the method used to solve Eqs. (10) and (11) is to replace the 5 derivatives 
by finite differences, to give a set of ordinary differential equations with x as the independent 
variable and dependent variables U5, where U5 is the value of U' at a fixed value of 
5 (= [j). We thus obtain Uj along a series of lines 5 = 55. These lines were equally 
spaced along the 5 axis and central finite difference approximations, correct to order hz, 
(where h is the line spacing) were obtained. 

The finite differences used to replace 3U/b5, b2 U/3C2 in Eq. (10) are 

Eq. (11) may be used to give W5 in terms of W5-iJ dUj/dx, dUj-i/dx, by using 
finite differences centred on a point midway between 55 and 55-1. This gives 

Substituting for W5 from this equation and for the (-derivatives from (Al) and (A2) 
into Eq. (10) now gives the result 

Using Eqs. (A4) and (A3) we could now start out at the ground (to) where Wo = 0 
and dUo/dx = O and work out one step at a time to determine dUj/dx for j = 1,2, . . . N 
given U5 for j = 0, 1, . . . , N + 1 and in this way integrate downstream. The additional 
value UN+I required at each step being given by the outer boundary condition that 
r = u,2, thus 

where Z N  is the value of z' corresponding to 5 = ( N  = Nh. 
The problem of numerical stability associated with this type of problem usually 

gives rise to a condition that the downstream steplength (i.e. the stepsize used in the 
numerical solution of the equations for dUj/dx) must be less than some function of the 
cross-stream stepsize or line spacing - frequently some factor multiplied by the square 
of the cross-stream spacing. Now in the problem considered here it is the cross-stream 
spacing of z as against 5 that appears to govern the stability and hence the (-line spacing 
close to the wall that governs the maximum downstream stepsize compatible with numerical 
stability. In order to increase the downstream stepsize and reduce computing time we 
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may increase the effective z-spacing at the wall by assuming a logarithmic velocity profile 
of the form 

for 5 < 51, where 51 is chosen to correspond to one of the original lines ( 5  ;= Ih). This 
gives rise to some modification of the equation for dUI/dx which is now the starting point 
for the evaluation of the remaining cases of Eq. (A4). 

In non-dimensional form (A6) becomes 

so 
Ul' 

UI = 51. 

Now the continuity Eq. (11) gives, on integration from 0 to 51, 

or 

This we may substitute into Eq. (10) along with the finite difference approximations 
to give 

k* e-51 

h3 
(UItl  - ZUI + UI-1) (UI+l - UI-1) dUr 

and Ur-1 = ((51 - h)/51) Uz, corresponding to the value given by Eq. (A6). 

OUTER FLOW WITH 5 =u: ASSUMED 



ROUGHNESS CHANGE FLOW 91 

TABLE A1. PARAMETERS USED IN NUMERICAL SOLUTIONS 

h 5I 2‘ I 5N 2’ N 
x =  0 + 1 0  0.125 0.25 0’28 6 4 x 102 
x = 10 + l o 2  0.125 1.0 1.7 7 1 x 103 

= i 0 * + 1 0 3  0.25 1.5 3.5 8’25 3.6 x 103 

x = 103 + 1 0 4  0.25 2.5 11.2 10 2 x 104 

x = 104 + 105 0.5 3 19 12.5 2.5 x 105 

x = 105 + 106 0.5 5 148 15 3 x 106 

We may now use Eq. (As) to evaluate d U I / d x ,  then Eq. (A8) for WI and then Eqs. 
(M), (A3) to evaluate the remaining x derivatives. We treat this scheme as defining a 
set of first order ordinary differential equations which we may solve from, say, x = a 
to x = b given suitable initial conditions at x = a. 

The integration (from x = 0 to x = lo6 in most cases) was performed in a series of 
blocks, from 0 -+ 10, 10 -+ lo2, etc., and the values of I ,  N and h were altered from block 
to block to give a solution that was both accurate for low values of x and did not take too 
much computer time at large x .  An increase in N at a block change was achieved by 
repeated use of Eq. (A5) to give initial values for U’ on the ‘ new lines whilst adjustments 
in h were in the form of a doubling of the line spacing and eliminating the intermediate 
lines. The system used is shown schematically in Fig. A1 and the values of parameters 
h, &, z’ I ,  [N, z’ N are given in Table A1 for smooth to rough flows. Higher values of N 
were found necessary for rough to smooth flow cases. 

The downstream integration was performed using a modified Runge-Kutta method 
capable of adjusting its step length to give rapid downstream integration whilst keeping 
estimated errors below a stipulated maximum. The accuracy parameter used was equiva- 
lent to a permitted error in the velocity values (U,) of approximately per block. 
The ability of the method to adjust its own steplength is very useful as it eliminates the 
need for an involved numerical stability analysis or large number of trials to find the best 
values for step spacing. The programmes were written in FORTRAN IV and run on the 
University of Toronto’s IBM 7094 computer. The Runge-Kutta method is described by 
N. F. Stewart (1965), An integration subroutine using a Runge-Kutta method,’ MSc. 
Thesis, University of Toronto. 


