
Some notes on a virus model
1 – the SIR model

Peter A. Taylor <pat@yorku.ca>

Department of Earth and Space Science and Engineering,

Lassonde School of Engineering, York University,

Toronto, Ontario M3J 1P3, CANADA



Some notes on a Virus spread model:  Peter Taylor - March 25 2020: First let me 

emphasize that I am not an expert in epidemiology or related areas - this is just a 

simple application of some basic Applied Math. 

A starting point is the simple, but non-linear “logistic equation” for the spread of 

disease,

dI/dt = B*I*(N-I)

where I is the number infected and N is the total population. This has no recovery, 

just continuous infection. There is exponential growth initially, if I(0) is a small initial 

seed, and eventually the whole population is infected. It has an analytic solution 

suited to 1st year calculus! The mathematics gets more complicated when some I 

recover but initially there is still exponential growth.

The next step is the SIR (Susceptible, Infected, Recovered (or 

dead)) version which seems more realistic.  It is well described 

at https://www.maa.org/press/periodicals/loci/joma/the-sir-

model-for-spread-of-disease-the-differential-equation-model and 

originates from a 1927 paper by Kermack and McKendrick.  

(Kermack, W.O. and McKendrick, A.G. (1927) Contributions to 

the Mathematical Theory of Epidemics. Proceedings of the 

Royal Society of London A, 115, 700-721).

Logistic equation solution.

With I/N = in and BN = b the equation 

becomes d(in)/dt = b in(1-in) and we 

can run a solution with b = 0.5 and 

in(0) = 10-6 - i.e. I in a million; red are 

infected, green are susceptible = (1-in)

https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model


The basic SIR equations set up in Kermack and McKendrick (1927) relate, S(t)-the number of 

susceptible individuals, I(t)-the number of infected individuals, and R(t)-the number of recovered 

(or deceased) individuals. The total population N = S + I + R, and N is considered constant.

S, I and R can be normalized by N, s = S/N, in = I/N etc., using “in” to avoid confusion with (-1)1/2

and the governing equations become:

din/dt = b*s*in – k*in;  with infections increasing as a result of interactions between infected 

and susceptible members of the community.

dr/dt = k*in;  so some infected members recover, and some die. Recovery implies immunity and 

no longer susceptible.

s = 1 – in – r.   The total, normalized population is 1 so s represents the remaining susceptible 

members.

A simple set of 3 equations in the 3 variables: s, in, and r. The din/dt equation is however non-

linear, as is the logistic equation, and that is what makes things interesting.



With t measured in days, k, in the recovery equation is an 

average recovery rate for an infected individual in days-1 while b is 

a little more complicated in that in the un-normalized version of 

the equation it is bS that is in days-1. Thus, b could be interpreted 

as the number of infection transfers per day from an infected 

individual to another individual (who may or may not be 

susceptible). A key parameter is the ratio of b/k, which is the 

dynamic model equivalent of the “basic reproduction number” 

(not rate, no units!), R0, used in epidemiology, see 

(https://en.wikipedia.org/wiki/Basic_reproduction_number). If 
transmission is fast and recovery slow there will be problems. We 

may not be able to control k but b can be reduced by reducing 

“social contacts”.

I couldn’t get an analytic solution to the non-linear system of ODE 

equations above, although there are analytic solutions to the 

logistic equation. However a simple forward Euler numerical 

scheme works, as would other numerical solution methods for 

ODEs.  In Matlab I used the code as on the right and get sample 

results as shown. It also gives the same results as the maa web 

site if you use their input.

%SIR model – Matlab code 
t=0:0.1:200;
dt=0.1;  in=0.01; s = 1-in; r = 0;
S(1)= s;IN(1)=in; R(1)= r;
for j = 2:2001

[dindt,drdt] = deriv(s,in);
in = in + dindt*dt;  r = r + drdt*dt; s = 1-in-r;   
S(j)=s; IN(j)=in; R(j)=r;

end
plot(t,IN,'r')
xlim([0 200]); ylim([0 1]); xlabel('time in days')
ylabel('fraction of the population')
hold on; plot(t,S,'blue'); plot(t,R,'g')

function [dindt,drdt] = deriv(s,in)
b=0.2; k=0.1;
dindt=b*s*in - k*in;
drdt=k*in;
end

https://en.wikipedia.org/wiki/Basic_reproduction_number


The model was run with b=0.2 and k = 0.1, 

both in units of days-1. Results are as a 

fraction of the population – the natural way to 

look at infections of this type! The k and b 

values can be interpreted as a typical 

recovery time of 10 days and an infection of 

a susceptible individual by a single infected 

individual every 5 days, if, as early in the 

spread, most of the population is susceptible. 

Once recovered (including the deceased) 

individuals are assumed immune.

The four sets of curves are for initial values 

in(0) = 10-3, 10-4, 10-5 and 10-6. Lower initial 

values delay the peak infection but do not 

reduce it.

The color code is

Red – infected

Blue – susceptible

Green – recovered or dead. 



You are encouraged to code and play with the model, varying b and k to 
see what the impacts are. The higher the b/k ratio the more rapidly the 
infection takes off and the higher the peak. In the case shown above 80% 
of the population is infected at some point before either recovery or 
death while 20% escape.  The biggest problem is the number infected at 
the peak (15.4% of the population). Even if only 1 in 10 require hospital 
treatment no country is set up to handle those numbers.

Two examples with different b/k ratios are shown on the right. Note that 
both of these are in units of (days)-1 but one could simply scale the time 
and the results would be essentially the same with a stretched or 
compressed time axis. Running the model with b = 0.4 and k = 0.2 gives 
the same curves, but everything speeds up by a factor 2.

Both figures are for in(0) = 10-3 and b = 0.2 days-1, so the same rate of 
infection. The top figure is with a longer recovery time, k = 0.05 days-1, 
while the lower has k = 0.15 days-1. With k ≥ b , i.e. a short recovery time, 
the spread of the virus does not occur and those infected initially 
recover, or die, without infecting too many others, i.e. less than one 
each.



Again, the critical parameter, in 

this simple model, is the 

parameter b, and its 

relationship with k. If we fix 

in(0) at 10-4 and k = 0.1 days-1

we can vary b.  The figure below 

uses b = 1.0, 0.5, 0.25, 0.2, 0.15 

days-1, (from left to right!). The 

conclusion is that we should 

limit contacts, and probably do 

that for an extended period, 

maybe 6 months.  By then it 

might be hoped that vaccines 

might have been developed and 

treatment refined. Ignoring 

things and having rapid growth 

with b=1 would get it over faster 

but stress hospitals and 

morgues.



A next step is a slightly extended model, SEIRD, which has 
exposed but not symptomatic individuals and splits r into 
recovered and deceased. Some notes are on my web site 
at  http://www.yorku.ca/pat/SEIRDmodel.pdf

The basic idea here is to show a simple model that 
anyone with 1st year university or college mathematics 
should be able to follow. Limiting contacts and potential 
infection is critical, for all of us, if we want to reduce the 
potential to overload the hospitals and death rates. 

Given the present and potential situation in the 

next few weeks we consider the situation with a 

dramatic change of behavior to push b < k. If that 

can be done then the infection would decrease and 

eventually cease, as shown here. The numbers 

infected may be large initially but will decrease with 

time if b<k. This needs to be maintained until in is 

very close to 0. At that point tracking and isolating 

any infected individuals might be possible to 

prevent a second wave of infections as social 

contacts increase and b could creep back above k.  

Remember that the color code is

Red – infected ; Blue – susceptible

Green – recovered or dead. 

http://www.yorku.ca/pat/SEIRDmodel.pdf

