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Some notes on a Virus spread model:  Peter Taylor-March 17 2020:  First let me emphasize that I am 

not an expert in epidemiology or related areas - this is just a simple application of some basic Applied Math.  

Thinking about virus spreading I send an earlier note using a simple equation from Calculus 1014. There we 

assumed the key virus spread equation is DY/dt = A*Y*(N-Y), where Y is the number infected and N is the total 

population. There is no recovery, just continuous infection. It has an analytic solution suited to 1st year calculus! 

The mathematics gets more complicated when some Y recover but initially there is still exponential growth. 

Taking this a bit further one can use the SIR (Susceptible, Infected, Recovered (or dead)) version which seems 

more realistic.  It is well described at https://www.maa.org/press/periodicals/loci/joma/the-sir-

model-for-spread-of-disease-the-differential-equation-model and originates from a 1927 paper by 

Kermack and McKendrick.  (Kermack, W.O. and McKendrick, A.G. (1927) Contributions to the 

Mathematical Theory of Epidemics. Proceedings of the Royal Society of London A, 115, 700-721) 

The basic SIR equations set up in Kermack and McKendrick (1927) relate, S(t)-the number of 

susceptible individuals, I(t)-the number of infected individuals, and R(t)-the number of recovered (or 

deceased) individuals. The total population N = S + I + R, and N is considered constant. 

S, I and R can be normalized by N, s = S/N, in = I/N etc., using “in” to avoid confusion with (-1)1/2 and 

the governing equations become 

din/dt = b*s*in – k*in;  with infections increasing as a result of interactions between infected and 

susceptible members of the community. 

dr/dt = k*in;  so some infected members recover, and some die. Recovery implies immunity and no 

longer susceptible.   

s = 1 – in – r.   The total, normalized population is 1 so s represents the remaining susceptible members 

I had originally used β for b and γ for k as in some figure titles below. 

With t measured in days, k, in the recovery equation is an average recovery rate for an infected 

individual in days-1 while b is a little more complicated in that in the un-normalized version of the 

equation it is bS that is in days-1. Thus, b could be interpreted as the number of infection transfers per 

day from an infected to a susceptible individual. A key parameter is the ratio of b/k. If transmission is 

fast and recovery slow there will be problems. We may not be able to control k but b can be reduced 

by reducing “social contacts”.  

I couldn’t get an analytic solution to the non-linear system of equations above, but a simple forward Euler 

numerical scheme works.  In Matlab I used the code below and get sample results as shown, and the same 

results as the maa web site if I use their input. 

It should be stressed that the results below are numerical solutions to non-linear differential equations and 

coefficients b and k are taken as constant.  In reality there will be significant variations in interaction and 

transfer rates and in recovery rates but the overall conclusion is that reducing interactions between those 

infected and those not is the key factor in limiting the eventual spread of the virus, and it may take some time, 

as most experts and some politicians are telling us..  

https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model
https://www.maa.org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model
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%SIR model 
t=0:0.1:200; 
dt=0.1;  in=0.01; s = 1-in; r = 0; 
S(1)= s;IN(1)=in; R(1)= r; 
for j = 2:2001 
    [dindt,drdt] = deriv(s,in); 
    in = in + dindt*dt;  r = r + drdt*dt; s = 1-in-r;    
    S(j)=s; IN(j)=in; R(j)=r; 
end 
plot(t,IN,'r') 
xlim([0 200]); ylim([0 1]); xlabel('time in days') 
ylabel('fraction of the population') 
hold on; plot(t,S,'blue'); plot(t,R,'g') 
 
function [dindt,drdt] = deriv(s,in) 
b=0.2; k=0.1; 
dindt=b*s*in - k*in; 
drdt=k*in; 
end 
 
The initial results on the right-hand side looked at the 

sensitivity to b (beta) and k (gamma).   

 

Changing beta -b and gamma – k one can vary total 

number who get infected, the height of the peak and 

maybe prevent some (40% in final figure) from getting 

it at all.  It all depends on contact frequency beta(b) 

and recovery rate gamma (k). If k=0 all susceptible 

members of the population will be infected in the end, 

and r =0, as below, with b = 0.2. 
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The next step would be to look at estimates related to the current Covid 19 situation.  There are infection 

numbers, but it is not clear that they are at all accurate and it is not clear how long the infection continues until 

the individual has recovered, or died.  I estimate that k-1 is probably in the 5, 10, 20-day range used above. 

 

We have also not discussed the initial values used in the code at t=0. What impact does in(0) have? Comparisons 

below suggest that, provided it is relatively small it just impacts timing and not the final outcome. The in(0) = 0.1 

case is rather extreme but even then the impact is not great.  What matters is the b/k ratio. 

 

My naieve interpretation of this is that the concern about importing cases from other countries may be 

excessive at this point. If you keep all out from the start then that would work (if in(0) = 0 the solution is simply 

in =0!) but once there are a few cases, adding a few more has only a small impact – but this is just a model!  

Here in(0) has been varies from 0.1 by factors of 10 to 0.000001. Delays are about 25 days per decade change in 

i(0). Delay is good in that health facilities can be expanded and more will be developed in terms of treatment but 

the final outcome in terms of the total numbers who have been infected and recovered or died is not 

significantly changed. 

 

 

The critical parameter, in this simple model, is the parameter b, and its relationship with k. If we fix in(0) at 10-4 

and k = 0.1 we can vary b.  The figure below uses b = 1.0, 0.5, 0.25, 0.2, 0.15 (from left to right!). The conclusion 

is that we should limit contacts, and probably do that for an extended period, maybe 6 months.  By then it might 
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be hoped that vaccines might have been developed and treatment refined. Ignoring things and having rapid 

growth with b=1 would get it over faster but stress hospitals and morgues. 

 

 

 

 

 

 

 

Note that even with b = 0.15 roughly half the population had been infected and recovered (or died). Going to 

lower values of b the model may be less 

reliable.  With b = k the equation din/dt = 

b*s*in – k*in leaves the number infected 

virtually constant while s is very close to 1.   

Also if b < k then the infection would 

decrease and eventually cease, as shown 

here. So, as long as there are not significant 

numbers initially, the numbers infected will 

decrease with time if b<k.   

 

Remember that the color code is 

Red – infected 

Blue – susceptible 

Green – recovered or dead.  

 

---------------------------------------------   


