WIND AND TURBULENCE INTENSITY VARIATIONS AT THE WEICAN NORTH CAPE SITE

Stefan Miller, Peter Taylor and Soudeh Afsharian
CRESS, York University, Toronto, Canada

Gerald Giroux
Wind Energy Institute of Canada (WEICan), North Cape, Prince Edward Island, Canada

Acknowledgements
Research supported by NSERC Discovery grant to Dr. Taylor.
Experimental Setup

Six 10m automatic meteorological observation stations (masts) were installed, with each mast measuring:

- 10m horizontal wind vector*
- 2m air temperature
- relative humidity

ADDITIONAL MEASUREMENTS

Mast 3
- 1m, 2m and 4m air temperature
- ground temperature (~ 5cm depth)

Mast 4
- 0.5m and 1m wind speed*

Mast 5, 6
- air pressure
- precipitation amount

*with associated statistics
North Cape, PEI
Mast Locations
Some Photos...

The Turbines

Mast 4
Wind Speed Ratio
Turbulence Intensity: σ/U
Wind Speed Ratio as a Function of Distance Inland; Wind Speeds >= 3m/s; Bin Width = 30

Wind Speed Ratio (Normalized by Average Wind Speed over all Masts)

Distance Inland (m)
TI as a Function of Distance Inland; Wind Speeds >= 3m/s; Bin Width = 30
Wind Speed with Height vs Wind Direction; Bin Width = 2

Mast 4
Roughness Length

- Mast 3 and Mast 4 which are located along the cliff measured the temperature and wind speed respectively at several levels.

- Assuming a logarithmic wind profile for $U(z)$ allowed the roughness length (z_0) to be inferred using linear regression on cases of near neutral stratification defined as $|T(10m) - T(1m)| \leq 0.5^\circ C$.

\[
U(z) = \frac{u_*}{\kappa} \ln \frac{z}{z_0}
\]
Roughness Length vs Wind Direction; Avg Wind Speed $\geq 3\text{m/s}$; $|T(10\text{m})-T(1\text{m})| \leq 0.5\text{K}$; $r^2 \geq 0.95$
Questions?