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How high can a tree grow? Actually, a more basic question is why would a tree grow 
high? The answer to that is both simple and complex. The simple reason is to out-
compete other trees in search of maximal sunlight intensities for utilization in photo-
synthesis.

In a forest, shading by taller trees 
results in a very strong attenuation of 
sunlight intensity: to levels 0.1 to 1% 
of full sunlight[1]. So, it’s natural to 
propose that tallness will confer a 
strong adaptive fit for a tree species. A 
more complex answer is related to 
adaptation to niche. In other words, 
growing tall expends a great deal of 
energy. Some species adapt to low 
light intensities, stay short and avoid 
the energetic cost of being tall. Other 
species splurge and grow tall.

[1]Whittaker RH 1975. Communities and Ecosystems. MacMillan Publishing Co. New York. pp. 60–67.

In many ecosystems, trees 
don’t necessarily dominate 
the landscape, dependent on 
environmental and other 
conditions. One way to illus-
trate this is by using taxo-
nomic descriptions of plant 
forms (from Raunkiaer,
a famous figure in European 
plant ecology) to assess the 
relative proportion of trees in 
different communities. 

ecology

Phanerophyte

(trees)

Chamaephytes

(shrubs taller and
shorter than 25 cm) 

Geophyte

(perennial herb with bud
or bulb below surface)

Therophyte

(an annual)

Hemicryptophyte

(perenniel herb
with bud at ground
surface)

25 cm

96% 2% 2%
10% 17% 54% 12% 7%

Tropical Rain Forest
Cold-temperate Forest

In a tropical rain forest, trees dominate, overwhelmingly so. In a cold-temperate 
forest (similar to Ontario), short shrubs dominate[1]. So, growing high can have 
advantages, but there are costs; trees are not necessarily the dominant growth form, 
and environmental conditions don’t always favor a tall tree. Nevertheless, tall trees 
have appeared relatively recently in evolutionary time.
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In the context of evolutionary time, the invasion of land by plants is relatively recent, 
only 500 million years ago. Plants had to evolve many adaptive properties to allow 
them to survive in a dry environment. Their life cycles were modified to protect their 
offspring from dessication, they developed root systems to drink water from the newly 
developed soils, they evolved an increasingly complex vasculature to move both 
water and nutrients long distances. And, they grew to greater and greater heights.

[1]Source: Willis, K.J. and J.C. McElwain 2002. The Evolution of Plants. Oxford University Press.

the evolution of height

6.5 cm

20 cm

Cooksonia is one of the first land invaders 
known from the fossil record. It appeared 
about 428 million years ago (Ma), and 
grew to a height of about 6.5 cm.

Aglaophyton major grew upwards 
from horizontal rhizomes, attaining a 
height of about 20 cm. It appeared 
about 400 Ma.

18 cm
Rhynian appeared at the same 
time (400 Ma), and attained a 
height of about 18 cm.

With the development of roots, providing a source of water 
and mechanical support, greater heights could be attained.
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So, trees do grow high to compete, and have evolved to greater heights over the past 
400 million years, But, how high can a tree grow? One factor which may affect tree 
height is the mechancial properties of the tree. The mechanical nature of a tree is 
best modeled by a column. The major (constant) stress a tree or column undergoes is 
compression.

Short 
compression
member

Ductile
Material

Brittle
Material

Compression failure 
depends upon the length of 
the column (or tree) and its 
thickness relative to its 
length. For short columns, 
when compressive axial 
force (σ = F/A where F is 
the force and A the area of 
the columnar end) is 
applied, failure may be 
deformation if the material 
is ductile, or fracture if the 
material is brittle[1].

[1]Engineering Fundamentals (www.efunda.com) “Buckling of Columns”

F

F

For a tree, the compressive force is equal to the height times the wood density: The 
density (ρ) of wood varies with species, but the value for a Sequoia tree may be appro-
priate: 436 kg m–3. Measurements of compression to rupture are known for a Sequoia, 
about 42.4 MN m–2. We can calculate the maximum height a tree can attain before it 
undergoes compressive rupture. 

compression = ρ • h

h
critical

=
compression

ρ

h
critical

=
42.4 •106(N • m−2) • 1(kg(f))

9.80665(N)
436(kg • m3)

h
critical

= 9916.5(m) Very high, indeed.

structural

Note that 9.80665 newtons 
are equal to 1 kg(f) under 

standard gravity. 
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But a calculation using compression = ρ • h 
is too simple. Rather than being a short 
compressive member, trees are more similar 
to a long column. For long columns, colum-
nar geometry (length versus diameter) and 
stiffness (Young’s modulus) become impor-
tant. In this case, buckling occurs prior to 
failure. Like the short column, failure will 
depend upon the stiffness. Inelastic buckling 
results in kneeling[1].

[1]Source: Engineering Fundamentals (www.efunda.com) “Buckling of Columns”

The effect of buckling on 
column failure was 
originally addressed by 
M. Euler in a paper 
entitled “Sur La Force 
des Colonnes” published 
in 1759 in Memoires de 

l'academie des sciences 

de Berlin 13, 1759, pp. 

252-282.

Long
compression
member

Buckling
(kneeling)

Buckling

structural
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For trees, the column is clamped at the bottom by the root system. The critical bucking 
load is obtained from modifications of the generalized form of Euler’s formula. Where, 
F

cr
 is the critical buckling load 

(elastic stability limit), E is the 
Young’s modulus of the wood 
(column material), I is the area 
moment of inertia (see next page) 
(for a circular cross section of a 
tree, I = π•r4/4, r being the radius, 
or I = π•d4/64, d being the diam-
eter), and L

eff
 is the effective length 

of the column. L
eff

 depends upon 
how the column is supported. For 
a column with one end clamped 
and the other free, L

eff
 = 2•L (where L is the height of the column). 

One major assumption that should be borne in mind when this equation is used to deter-
mine the maximum height of a tree is that trees are only columnar to a first approxima-
tion, because they taper with height. This should effectively increase the height they can 
attain without columnar failure. This will be counterbalenced by the fact that axial com-
pressive force is only one potential force: wind results in significant shear. Finally, me-
chanical failure of trees often occurs as a consequence of uprooting, thus the assumption 
of a clamped and free end are violated.

[1]Source:  Niklas, Karl J 1992. Plant Biomechanics. An engineering approach to plant form and  
  function. University of Chicago Press.

F
cr

=
E • I • π 2

L
eff

2

Generalized form of Euler’s formula
[1]

structural
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F
cr

=
E • I • π 2

L
eff

2

Generalized form of Euler’s formula

In Euler’s formula for the strength of columns, the area 
moment of inertia, I, is a crucial term.

The area (or second) moment of inertia
along the x-axis is described by:

I
x

= y
2
dA∫

area moment of
inertia about the x-axis

perpendicular distance
to the area element dA
from the x axis

elemental
area

Similarly, along the y-axis: I
y

= x
2
dA∫

The intuitive explanation for the area moment of inertia is that the force acting on the 
column (or some other shape) will vary linearly with distance from a given axis. So, 
the area moment of inertia measures the resistance to bending in response to an applied 
force. It does so by summing the contribution of each small area element. The greater 
the area moment of inertia, the greater the resistance to bending.

For a circular cross section of radius r:

x

y

r

R

dR

The area of the ring is the
circumference: 2•π•R times 
the increment dR:

2 • π • R • dR

The general form of the area
moment of inertia[1]:

I = R
2
dA∫

becomes:
I = R

22πR dR

0

r

∫
[1]

Nota bene: x2 + y2 = R2

structural
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x

y

r

R

dR

I = R
22πR dR

0

r

∫

The area moment of inertia

can be simplified:

I = 2π R
3
dR

0

r

∫

and evaluated:

I = 2π
R

4 ]0

r

4

= 2π
r

4 − 04[ ]
4

=
π • r

4

2

Since d

dR
R

4 = 4R
3,  or d

dR

R
4

4
= R

3

then, R
3∫ dR =

R
4

4

Nota bene :  I = I
x

+ I
y
,  by symmetry,  I

x
= Iy

so, π • r
4

2
= 2 • I

x
,  thus I

x
=
π • r

4

4

=
π • r

4

4
I

x

Therefore, for a tree with a circular cross section, the area moment of inertia is:

Plus a constant 
for the indefinite 
integral.

structural
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F
cr

=
E • I • π 2

L
eff

2

Generalized form of Euler’s formula

In Euler’s formula for the strength of columns, besides 
the area moment of inertia (I), Young’s modulus (E) also 
deserves closer scrutiny.

St
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 (F
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re

a)

Strain (deformation)

strength

extensibility

material

fails

If we apply a stress (a force per area) on some material, the structure will be deformed 
(strain). Strain is a fractional deformation, hence dimension-less.
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The steeper the slope (the greater the value of Young’s modulus, in units of force per 
area), the stiffer (less deformable) the material.

lo
a
d
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g

unlo
adin

g

Experimentally, materials may be ‘viscoelas-
tic’, leading to a stress-strain relation in which 
load and unloading of the force follow differ-
ent paths of deformation.

St
re

ss
 (F

or
ce

 p
er

 a
re

a)

Strain (deformation)

structural

[1]Source:  Vogel, Steven (1988) Life’s Devices. The physical world of animals and plants. Princeton  
  University Press. pp. 183–184.
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F
cr

=
E • I • π 2

L
eff

2

Generalized form of Euler’s formula

With a solution for the area moment of inertia (I=πr4/4) 
and data for Young’s modulus of elasticity (shown else-
where), we can arrange Euler’s formula to determine the 
critical height of a tree[1] by equating it with the weight 
of the tree.

[1]Source:  McMahon, T. (1973) Size and shape in biology. Science 179:1201–1204.

F
cr

=
E • π • r

4

4
• π 2

(2 • h)2 ,  and F
cr

= ρ • π • r
2 • h

where Leff = 2 • h (h is the height),
and Fcr  (in kg(f)) is equal to the density (ρ) times
the cylinder volume (π • r2 • h). Then,

ρ • π • r
2 • h =

E • π • r
4

4
• π 2

(2 • h)2

Solving for the height, h,

h
3 =

E • π • r
4

4
• π 2

4 • ρ • π • r
2

h
3 =

E • r
2 • π 2

16 • ρ

h =
π 2

16
 

 
 

 

 
 

1
3

• E

ρ

 

 
 

 

 
 

1
3

• r
2

3

h = 0.851• E

ρ

 

 
 

 

 
 

1
3

• r
2

3

Note the 2/3 power dependence on tree 
radius, and the cube root of the ratio of 

Young’s modulus to wood density.

structural

where ρ•π•r2•h is the 
weight of the tree.

Combining the two equations.
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common name species diameter height
Modulus of 
Rupture

Modulus of 
Elasticity density

compression 
parallel to 
grain

meters meters GN•m–2 GN•M–2 kg m–3 MN•m–2

Redwood Sequoia sempervirens 7.6808 97.8408 0.074 9.40 436 42.4
Eastern Hemlock Tsuga canadensis 1.6332 50.2920 0.059 8.30 431 21.2
Trembling Aspen Populus tremuloides 0.9702 41.4528 0.059 8.22 401 14.8
White Pine Pinus strobus 2.4174 40.2336 0.061 8.81 373 16.8
Sugar Maple Acer saccharum 1.8030 35.0520 0.108 12.65 676 27.7
Yellow Poplar Liriodendron tulipfera 3.0238 33.8328 0.064 10.38 427 18.3
Yellow Birch Betula lutea 1.5038 31.6992 0.117 14.53 668 23.3
Black Locust Robina pseudoacacia 2.5225 28.6512 0.134 14.20 798 70.2
Eastern Cottonwood Populus deltoides 3.5898 28.3464 0.060 9.53 433 15.7
Hornbeam Ostrya virginiana 0.9298 21.3360 0.100 11.76 762 n/a
Common Apple Malus sylvestris 1.1400 21.3360 0.088 8.77 745 n/a
Dogwood Cornus florida 0.8894 10.0584 0.105 10.64 796 n/a

Below are some data for example trees. Diameters and heights are for the largest known 
examples of the various species. Modulus of rupture is the force (per area) required for 
compressive failure of the wood. Modulus of elasticity is the Young’s modulus. Also 
included are the rupture force for compression parallel to the grain[1].

[1]Sources:  diameter and height from American Forestry Register of Big Trees.
  Moduli and densities from Niklas, KJ (1992) Plant Biomechanics. Table 2.3, page 114.
  Compression from Forest Products Laboratory (1999) Wood Handbook. USDA Forest   
  Service

means 0.086 10.599 578.8 27.822

structural
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[1]Sources:  American Forests National Register of Big Trees (www.americanforests.org) (869 trees), and
  British Champion Trees (www.treeregister.org) (38 trees)
  McMahon, T. (1973) Size and shape in biology. Science 179:1201–1204.
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r= 0.87
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Here are plotted the height versus diameters of the largest trees for a variety of species[1]. 
The critical height (above which failure would occur) is also shown. Note that the pre-
dicted slope for critical height is D0.667, and that both American Big Trees and British 
Champion Trees have lower slopes: D0.525 and D0.652, respectively. One might conclude, 
reasonably, that trees to not grow to a height which would result in structural failure 
through compressive loading/buckling. 

structural
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[1]Niklas, KJ (1993) The scaling of plant height: Acomparison among major plant clades and anatomical 
grades. Annals of Botany 72:165–172.

Height (meters) Scaling of height versus stem 
diameter can be extended by 
examining smaller plants 
(non-tree)[1]. The critical 
buckling height limit is 
re-drawn from the graph of 
‘Big Trees’. With the range of 
heights and diameters 
extended over many orders of 
magnitude, it is clear that 
heights are normally signifi-
cantly below the mechanical 
limit described by the Euler 
formula.

Besides mechanical con-
straints, the height of a tree 
will also be limited by the 
availability of water, which 
must be drawn to extraordi-
nary heights in opposition to 
the force of gravity.

Diameter (meters)
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trees
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structural
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[1]Source:  Smith, GM, EM Gilbert, GS Bryan, RI  
  Evans, JF Stauffer (1953) A Textbook of  
  General Botany. 5th ed. Macmillan Co.

Water is essential for biological life, which is why the ability to draw water to the maxi-
mal height of the tree is crucial for survival and may constrain the height of a tree. To 
explore the physical limits on elevating water, we must first explore the structure and 
function of the water transport system in a tree (or other vascular plant)[1].

water flow

Water enters the plant roots 
from the soil matrix. It passes 
between and through the cells 
until it enters the xylem ves-
sels.

xylem vessel

H2O

Xylem vessels are constructed 
from individual cells, arranged 
end-to-end, which differentiate 
into a single pipe structure 
(above, a-d), non-vital (dead) 
in its final varied mature form 
(below).
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[1]Source:  Smith, GM, EM Gilbert, GS Bryan, RI  
  Evans, JF Stauffer (1953) A Textbook of  
  General Botany. 5th ed. Macmillan Co.

In the stem of a tree, the architec-
ture of the vasculature can be 
very complex, with numerous 
cell types including the water-
transporting xylem vessels[1].

water flow

xylem vessel

H2O

The size of the xylem vessels 
varies, some can be quite large, 
about 150 µm in diameter 
(range 20–300 µm in dicotyle-
donous trees, about 50 µm in 
conifers). Nevertheless, this is 
still a small tube in the context 
of hydrodynamics. In fact, 
microfluidic.

In the leaves, water continues 
to be transported through the 
xylem, but then passes through 
and between cells for a final 
exit from the plant through the 
stomata, via transpiration 
(evaporation).

H2O

H2O
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[1]Source:  Kramer, PJ (1983) Water Relations of Plants. Academic Press. pp. 274-275
[2]Source: Nobel, PS (1991) Physicochemical and Environmental Plant Physiology. Academic Press.  
  pp. 91–95.

water flow

The rates of flow are 
strongly affected by the 
atmospheric relative 
humidity, since it is 
evaporation of water at the leaves 
that ‘pulls’ water up from the 
soil. The energetics of the ‘pull-
ing’ force are given by the water 
potential of the water vapor, and 
its dependence on relative 
humidity[2]:

Ψ
wv

=
RT

V 
w

ln % relative humidity
100

 

 
 

 

 
 + ρw

gh

The flow of water from the roots through the stem 
and branches can be measured. One technique 
is to apply a pulse of heat at one location, 
and monitor the temperature further up 
the stem or branch. Flow rates are 
shown for an oak tree in units of 
meters per hour. The rates decrease 
towards the top, because the con-
ducting surface ratio (that is, xylem 
cross area to leaf area) increases[1]. 
In a variety of species, flow rates 
vary from about 0.1 to 60 meters 
per hour.

where R is the gas constant (8.314 
m3 Pa mol–1 ºK–1), T is the tem-
perature (ºK), V

w
 is the partial 

molal volume of water (1.805•10–5 
m3 mol–1 at 20ºC [293ºK]). At 20ºC, the term RT/V

w
 is 135 MPa. The second term is the 

gravitational potential: ρ
w
 is the density of water (998.2 kg m–3 at 20ºC), g is the gravita-

tional constant (9.807 m sec–2) and h is the height. For a tree 100 m high, ρ
w
gh is 978 kPa. 

Even at a relatively high relative humidity (95%), the water potential is about –6 MPa, 
more than sufficient to ‘pull’ water from the soil,  providing the flow through the xylem 
vessels (the hydraulic tubes of the tree) is not limiting. 
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[1]Sources:  Landau, LD and EM Lifshitz (1959) Fluid Mechanics (Pergamon Press) is the ‘classic’  
  text. Zimmerman MH (1974) Transport in Xylem in Zimmerman MH and CL Brown (eds.)  
  Trees. Structure and Function (Springer-Verlag) presents the material in the context of  
  water transport in trees

micro-fluidics

0

100 200 300 400 500

Velocity
(arbitrary values, in m sec–1)

The basic equation describing the flow velocity of a liquid through a tube (such as a 
xylem vessel) is the Poiseuille equation[1]:

v =
Δp
l

 

 
 

 

 
 

1
4 •η
 

 
 

 

 
 (R2 − r2)

velocity (meters sec–1) pressure difference
(Pascal = 1 kg m–1 sec–1)

distance (meters)
viscosity (water = 0.01 gm cm–1 sec–1, or Pa sec)

tube radius

distance from
center of tube

The equation describes a parabolic velocity profile within the tube, dependent upon the 
pressure gradient (dP/dx, which is linear along the tube, thus ∆p/l) and the viscosity of the 
liquid. Note that this formulation requires laminar flow, that is, dP/dy and dP/dz are both 
zero so that flow is unidirectional:

Lo
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n 
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e 
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f t
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 tu
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 (r
)

The fastest velocity is at the center of the tube (r = 0): v =
Δp
l

 

 
 

 

 
 

1
4 •η
 

 
 

 

 
 R

2
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[1]Sources:  Landau, LD and EM Lifshitz (1959) Fluid Mechanics. Pergamon Press is the ‘classic’ text.
  Zimmerman MH (1974) Transport in Xylem in Zimmerman MH and CL Brown (eds.)  
  Trees. Structure and Function. Springer-Verlag presents the material in the context of water  
  transport in trees

micro-fluidics

Rather than flow velocity of a liquid through a tube, the Poiseuille equation is often cast 
in the form of the volume of liquid passing through the tube. Thus, the volume must be 
considered[1]. A volume passing each second through any section of the tube is described 
by: 

Thus, volume flow depends upon the the tube radius to the fourth power. However, in the 
context of water transport in a tree, velocity is far easier to measure than volume flow. As 
noted before, the use of the Poiseuille equation to describe flow depends upon an very 
important assumption, that the flow is laminar in nature: No Turbulence (otherwise the 
flow will not be unidirectional). This will only be true for low Reynolds number.

A volume 2 • π • r •ν  dr
passes through an annular element
2 • π • r  dr
of the cross - sectional area. Thus, the volume flow is:

Jv = 2 • π r •
0

R

∫ ν  dr

Using

ν = Δp
l

 

 
 

 

 
 

1
4 •η
 

 
 

 

 
 R

2 − r2( )
The solution is :

Jv =
Δp
l

 

 
 

 

 
 

π
8 •η
 

 
 

 

 
 • R4

J
v
(r) = 2 • π • r • Δp

l

 

 
 

 

 
 

1
4 •η
 

 
 

 

 
 R

2 − r2( ) dr

re - arranging and simplifying :

J
v
(r) = π • Δp

l

 

 
 

 

 
 

1
2 •η
 

 
 

 

 
 r • R2 − r3( ) dr

integrating

J
v

= π • Δp
l

 

 
 

 

 
 

1
2 •η
 

 
 

 

 
 r • R2 − r3( ) dr

0

R

∫

from d
dr
r

4 = 4 • r3 and d
dr
r

2 = 2 • r,  then

1
2 r

2
R

2 − 1
4 r

4( ) 0

R] = 1
2 R

4 − 1
4 R

4 = 1
4 R

4,  and

J
v

= π • Δp
l

 

 
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 
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1
8 •η
 

 
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 • R4
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[1]Source:  Nobel PS (1991) Physicochemical and Environmental Plant Physiology. Academic Press.  
  pp.505–513.

micro-fluidics

A low Reynolds number is a pre-requisite for laminar, non-turbulent flow through the 
xylem vessel. The Reynolds number is a dimension-less ratio of inertial components of 
velocity to the resistance to flow:

v =
Δp
l

 

 
 

 

 
 

1
4 •η
 

 
 

 

 
 R

2

R
e

=
ρ •ν • l
η

velocity (cm sec–1)

viscosity (water = 0.01 gm cm–1 sec–1)

density (water = 1 gm cm–3)

tube diameter (cm)

R
e

=
1 (gm cm-3) • 0.56 (cm sec-1) • 0.015 (cm)

0.01 (gm cm-1 sec-1)
= 0.84

For a xylem vessel of 150 micron diameter and 
a flow rate of 20 meters hour–1, the Reynolds 
number is:

This is much lower than the cut-off for turbulent flow (about 
2000)[1], so the Poiseuille equation is valid.

Using the Poiseuille equation for velocity, we can calculate 
the pressure gradient required for water transport in a tree:

Δp
l

 

 
 

 

 
 =

4 •η
R

2

 

 
 

 

 
 •ν =

4 • 0.01 (Pa • sec)
0.0152  (cm2)

 

 
 

 

 
 • 0.56 (cm • sec-1) = 99.56 (Pa • cm-1)

The pressure for a tree of height 100 m would be:

99.56 (Pa • cm-1) • (100 (m) •100 (cm • m-1) = 9.956 •105  (Pa), or ca 1 MPa

The 1 MPa value is an underestimate, because it does not account for constrictions to 
flow at the junctions of the xylem vessels (resulting in a smaller tube radius). Nor does it 
account for the counteracting gravitational effect: 

ρwater • g • h = 999.8 (kg • m-3) • 9.78 (m • sec-1) •100 (m) = 9.778 •105  (kg • m-1 • sec-1,  or Pa), or ca 1 MPa

Accounting for these two factors, a required pressure gradient of about 3 MPa for a tree 
100 meters high (that is, 0.03 MPa meter–1 for any tree) would be more realistic[1].

When inertial components dominate, turbu-
lence of the medium will occur, so that pres-
sure gradients are no longer uni-directional 
(dP/dy and dP/dz are not ‘zero’). When 
viscosity dominates, the flow will be laminar.
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[1]Zimmerman MH (1974) Transport in Xylem in Zimmerman MH and CL Brown (eds.) Trees. Structure 
and Function. Springer-Verlag.
[2]Shabala S and RR Lew (2002) Turgor regulation in osmotically stressed Arabidopsis thaliana epider-
mal root cells: Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell 
turgor measurements. Plant Physiol. 129:290-299. 
[3]Kramer, PJ (1983) Water Relations of Plants. Academic Press. pp. 274-275

tensile strength

v =
Δp
l

 

 
 

 

 
 

1
4 •η
 

 
 

 

 
 R

2A more general summary of pressure gradients, xylem vessel 
size, and flow rates was compiled by Zimmerman[1], based on 
the Poiseuille equation:

The pressure gradient is not created at the 
soil/root interface. Although uptake of water 
into cells due to osmotic potentials can create 
internal pressures in the range of 0.6 MPa[2], 
these are insufficient to push water to the top 
of a tall tree. Instead, evaporation from the 
leaves creates a ‘negative’ pressure, which 
sucks water from the soil. The negative pres-
sures can be measured using a pressure cham-
ber (or pressure bomb)[3].

A branch or leaf is cut from the top of 
the tree (in some instances, if the top is inac-
cessible, a rifle is used to ‘shoot’ the leaf 
down). It is placed inside the pressure cham-
ber. Pressure is applied and the cut cross-
section is watched to determine the amount of 
pressure required to force the sap through the 
cut. This pressure equals the negative pressure 
inside the leaf. Essentially, when the leaf is cut, the sap ‘snaps’ back into the leaf (since 
the negative pressure has been allieviated at the cut site). Applying pressure to the leaf 
gives a measure of the equilibrium pressure that existed in the leaf prior to being cut. The 
measured negative values will depend to a great extent on factors such as time of day 
(most negative in the early afternoon); for a Douglas fir tree, -2.2 MPa was observed at 
the top of the tree (79 meters), -1.7 MPa closer to the base of the tree (30 meters)[1].
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The question naturally arises: How can water maintain cohesion under such negative pressures? 
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[1]Source:  Zimmerman MH (1974) Transport in Xylem in Zimmerman MH and CL Brown (eds.)  
  Trees. Structure and Function. Springer-Verlag. pp. 188–190.
[2]From ρ • g • h = ca 0.996 MPa.  
[3]Tyree MT and MA Dixon (1983) Cavitation events in Thuja occidentalis L.? Ultrasonic acoustic 
emissions from the sapwood can be measured. Plant Physiology 72:1094–1099.

tensile strength

A variety of techniques have been used to measure the tensile strength of water[1]. One 
method was to sandwich a water film between two steel plates and measure the force 
required to pull the plates apart. The value obtained was about 3.0 MPa. Centrifuging 
capillary tubes filled with water and determining the internal tension at which the water 
capilary breaks yields values in the range of 20.0 MPa. Fern sporangia can also be used 
to measure the tensile strength of water, a system closer to our biological context. The 
sporangia is enclosed by an annulus which goes halfway around the inside containing 
the spores. As water evaporates from the annulus cells, the annulus shrinks and eventu-
ally breaks to release the spores. The release occurs when the cohesive strength of 
water is overcome. This can be observed by the appearence of bubbles.

The measurements were made 
by placing the sporangium in 
an enclosed chamber in which 
the relative humidity was con-
trolled. The sporangia would 
not open unless the solution 
controlling the relative humid-
ity had an osmotic value of 
more than 30-50 MPa.

How do these values compare to the tensile force on water, hanging from the top of a tree?
To hang from the top of a 100 meter tree, the required tensile strength must be at least 1.0 
MPa[2], but, because of resistance to flow in the xylem, as well as resistance to water 
uptake from the soil into the roots, undoubtably greater stresses must develop.

In fact, the sound of 
water capillaries snap-
ping in the tree can be 
heard, with a sensitive 
enough ultrasonic 
microphone[3]. So, the 
tensile strength of water 
can be limiting.

2 V

10 µs
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How high can a tree grow? It depends! Although greater height can confer a selective 
advantage, it comes with a cost, and may be constrained by environmental limitations 
(such as water availability). Structurally, greater height simply requires a greater diam-
eter (and a well-anchored base); both could be arranged in  evolutionary time. More 
water required? Increase the size of the xylem vessels! Can water be pulled to the top of 
the tree without breakage? Here, the experimental work points to a significant, real 
problem with cavitation. That is, in a biological context, maintaining the water columns 
from the soil to the top of the tree appears to be a challenge. In this case, it is quite 
likely that a different evolutionary adaptation must appear, could peristaltic pumping or 
some other mechanism minimize the challenges of maintaining thin strands of water 
vertically for distances greater than 100 meter? It remains to be seen.

Tsuga canadensis L. (Eastern Hemlock) Quercus alba L. (White Oak)
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Work Problem:

As noted before, a major structural failure in trees is uprooting, and, to a lesser extent 
breakage due to shear at high wind velocities. Consider the structural impact of shallow, 
wide-spreading root systems versus large tap roots extending deep into the supporting 
soil[1]. Contrast 
their ability to 
grow high.

Work Problem:

Many plants do not require a water supply from the 
soil. They are commonly described as ‘air plants’ (or 
epiphytes). In some instances, they catch rainwater 
using  vase-like structures. In others, they collect 
moisture by condensation, The example shown to the 
left is a lichen (Usnea sp.) draped over the branches 
of a redwood (Sequoia sempervirens), one of the 
tallest trees[2]. Propose mechanisms by which this 
would occur.

Work Problem:

Assume, as has been implied, that water tensile strength may limit the height of a tree, 
based on the observation that the water columns break. On the basis of tensile strength, 
contrast the possible heights of a tree if alternative liquids were used in place of water. 
Hint: It may be useful to explore the relation between tensile strength, compressibility, 
and surface tension. 

[1]Bell AD (1991) Plant Form. An illustrated guide to flowering plant morphology. Oxford University 
Press. pp.101.
[2]From Kenneth L. Fisher’s website on Redwood Forest Ecology 
(www.humboldt.edu/~sillett/redwoods.html)
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The physicist and futurist, Freeman Dyson, proposed the possibility of extraterrestrial 
colonization of comets (”...it is  likely that space around the solar system is populated 
by huge numbers of comets, small worlds a few miles in diameter, rich in water and the 
other chemicals essential to life.”[1]) by using genetically engineered trees with modifi-
cations suitable for survival in the rigour –cold and vacuum– of space (Dyson trees[2]). 
Thus, the leaves would be impermeant to gases but transparent to >400 nm light, and 
opaque to damaging ultraviolet. Water and CO2 required for photosynthesis would be 
extracted from the comet itself, while the O2 produced as a byproduct of photosynthesis 
would provide for heterotrophic life forms; for example, humans. The idea of trees 
growing on comets exists in other forms, such as the Baobab trees out-growing their 
very small planets in the children’s story, The Little Prince[3].  

[1]From Dyson Freeman's essay "The World, The Flesh, and the Devil" republished in The Scientist as 
Rebel (2006) New York Review Books.
[2]http://en.wikipedia.org/wiki/Dyson_tree
[3]The Baobab. From The Little Prince by Antoine de Saint-Exupery (1943)

Dyson considered the height of a tree[1]: “How 
high can a tree on a comet grow? The answer 
is surprising.  On any celestial body whose 
diameter is of the order of ten miles or less, 
the force of gravity is so weak that a tree can 
grow infinitely high. Ordinary wood is strong 
enough to lift its own weight to an arbitrary 
distance from the center of gravity.  This 
means that from a comet of ten-mile diameter, 
trees can grow out for hundreds of miles, 
collecting the energy of sunlight from an area 
thousands of times as large as the area of the 
comet itself.  Seen from far away, the comet 
will look like a small potato sprouting an 
immense growth of stems and foliage. When 
man comes to live on the comets, he will find 
himself returning to the arboreal existence of 
his ancestors.”

Work Problem:

Is Freeman Dyson right about the height of Dyson trees?
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[1]From Dyson Freeman's essay "The World, The Flesh, and the Devil" republished in The Scientist as 
Rebel (2006) New York Review Books.
[2]http://en.wikipedia.org/wiki/Dyson_tree
[3]The Baobab. From The Little Prince by Antoine de Saint-Exupery (1943)

Work Problem:

Provide a formal derivation of the equation used to calculate the tensile strength.

Provide explanation(s) for the peculiar temperature dependence of the tensile strength of 
water.

Explain why the tube is Z-shaped (Briggs used an angle of 140º).

One technique used to measure the tensile 
strength of water was a Z-shaped tube 
mounted on a rotating plate. The force 
required to ‘break’ the water column at the 
center can be calculated from the angular 
velocity, radius, water density, and the area 
of the tube lumen. The data are shown in 
the figure. Maximal tensile strength is about 
280 bars, equivalent to 28 MPa. Source: 
Briggs, LJ (1950) Limiting negative pres-
sure of water. Journal of Applied Physics 
21:721–722.


