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Diffusion to capture can be explored using a simple model that assumes infinite absorp-

tive capacity at the colony perimeter, so that we need consider only diffusive supply:
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Initially, there will be many molecules 

at plane A, diffusing away. Then, in 

the long term, a steady state gradient 

of molecules will appear, such that

!C/!x is time invariant 

(that is, !C/!t = 0). 
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The time dependence (Fick’s Second Law) is:

Under steady state conditions, !C/!t is equal to 

!zero", simplifying analysis. 

Since Volvox is spherical, we are not interested in !C/!x, but instead !C/!r, where r is the 

radial distance from the spherical cell.
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[1]Berg, HC (1993) Random Walks in Biology. Princeton University Press. pp. 19–27. 
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For a spherical (colony) “absorber” of radius a:

a r

C = 0

C = C
0
 at infinite radial distance

With the boundary conditions that C = 0 at the 

surface of the colony of radius a,

and C = C
0
 at an ‘infinite’ distance away,

the spatial distribution of molecules, C(r) is:
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Graphically:
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The flux for the spherical (colony) is:
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 J(r) = (D•Co•(a/a2)•(4•!•a2). Simplifying:

On an area basis, from the sphere area equal to 4•!•a2, setting r = a and multiplying J(r) 

by the area:

(units of mole sec–1)

That is diffusive supply. We now need to consider the metabolic demand of the cell 

which is dependent on the metabolic rate per unit area of the cell ("):

(units of mole sec–1)

(mole cm–2 sec–1)

(cm2)

Setting the diffusive and metabolic current equation equal to each other reveals the 

critical size of the cell, where diffusive currents cannot fulfill the colony’s metabolic 

requirements:

(cm2 sec–1)

Concentration and metabolic rate both affect the 

critical size of the colony, as does the diffusion 

coefficient for the nutrient molecule.

(mole cm–3)

(mole cm–2 sec–1)

(units of cm)
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To determine the constraints of advective supply on the colony is more complicated than 

the constraints of diffusive supply.

The leap from the combination of diffusive and advective fluxes to the Peclet

Number is not very intuitive.

 
!C

!t
= D

!
2
C

!r
2

!C

!t
+u •

!C

!r
• C= D

!
2
C

!r
2

flow velocity

concentration gradient

concentration

Note that this is not completely accurate, since the 

velocity is a vector that will vary both with distance 

from the colony and its polar location. Analogously, 

the concentration gradient may vary as a vector (that 

is, !C/!x, !C/!y, and !C/!z). 

There is a test for the flow rate at which u•(!c/!r)•C becomes more important (larger 

than) diffusive supply, the dimension-less Peclet Number:
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and are simplified by considering characteristic

velocities and lengths, so that
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To the diffusive flux equation

we need to add another term

Now, in the Volvocalean multi-cellular colonies, the flagella extend out into the medium. 

With coordinated flagellar beating, the colonies are motile, moving either uni-

directionally, or sometimes simply spinning in place. Are these advective flows generated 

by the flagellar beating important in nutrient supply?

where U is the characteristic velocity (average fluid 

velocity), and L is the characteristic length (for 

example, the diameter of the cell).
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where a is the cell radius, u the velocity, and 

D is the Diffusion coefficient.

The ratio can be simplified
For Volvox colonies, the Peclet 

number is about 100[1]. Advective 

flow dominates.

[1]Solari CA, Drescher K, Ganguly S, Kessler JO, Michod RE, Goldstein RE (2011) Flagellar phenotype 

plasticity in volvocalean algae correlates with Peclet number. J. R. Soc. Interface 
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