as time increases, t/g = 1, 2, 3, ...,g is the generation time N₀ is the number of cells at time T = 0 N_T is the number of cells at time T Logistic growth curve: $N_T = \frac{K \bullet N_0 \bullet e^{T/g}}{K + N_0 (e^{T/g} - 1)}$ K is the

carrying capacity

A cube has a surface area of $6 \cdot L^2$. Its volume is L^3 . As long as the shape is constant, the ratio of suraface area to volume will always be $(6 \bullet L^2) / L^3$, or 6/L.

For a sphere, the surface area is $4 \cdot \pi \cdot r^2$, and the volume is $\pi \cdot r^3$; the corresponding ratio of surface area to volume is 4/r.

(area) $A_1 = 6 \cdot L^2$ $A_k = 6 \cdot (k \cdot L)^2 A_k = 6 \cdot k^2 \cdot L^2$ (= $k^2 \cdot A_1$) (volume) $V_1 = L^3$ $V_k = (k \cdot L)^3$ $V_k = k^3 \cdot L^3$ (= $k^3 \cdot V_1$) The scaling coefficient is different for area (k^2) and for volume (k^3) .

Heat conduction rates are defined by the relation: $P_{cond} = Q / t = k \cdot A \cdot [(T_a - T_b) / L]$ where P_{cond} is the rate of conduction (transferred heat, Q, divided by time, t); k is the thermal conductivity; T_a and T_b are the temperatures of the two heat reservoirs a and b; A is the area; and L is the distance. Thermal conductivities of water and air are about 0.6 and 0024 W m⁻¹ K⁻¹, respectively.

Thermal radiation is defined by the relation: $P_{rad} = \sigma \cdot \epsilon \cdot A \cdot T^4$ where P_{rad} is the rate of radiation; σ is the Stefan-Boltzmann constant (5.6703 • 10⁻⁸ W $m^{-2} K^{-4}$; ϵ is the emissivity (varies from 0 to 1, where 1 is for a blackbody radiator); A is the area; and T is the temperature (in Kelvins). The net radiative emission or absorption will depend upon the difference in temperature: $P_{net} = \sigma \bullet \epsilon \bullet A \bullet (T^4_{body} - T^4_{ambient})$

compression =
$$\rho \bullet h$$
 $F_{cr} = \frac{E \bullet I \bullet \pi^2}{L_{eff}^2} \Psi_{wv} = \frac{RT}{\overline{V}_w} \ln\left(\frac{\% \text{ relative humidity}}{100}\right) + \rho_w gh$
 $F_{cr} = \frac{E \bullet \frac{\pi \bullet r}{4} \bullet \pi^2}{(2 \bullet h)^2}, \text{ and } F_{cr} = \rho \bullet \pi \bullet r^2 \bullet h$

Symbol	Value	Units	Comments
GAS CONSTANT			
R	8.314	J mol ⁻¹ K ⁻¹	R is the Boltzmann constant times Avogadro's Number (6.023•10 ²³)
	1.987	cal mol ⁻¹ K ⁻¹	
	8.314	m^3 Pa mol ⁻¹ K ⁻¹	
RT	$2.437 \bullet 10^3$	J mol ⁻¹	At 20 °C (293 °K)
	$5.833 \bullet 10^2$	cal mol ⁻¹	At 20 °C (293 °K)
	2.437	liter MPa mol ⁻¹	At 20 °C (293 °K)
RT/F	25.3	mV	At 20 °C (293 °K)
2.303 • RT	5.612	kJ mol ⁻¹	At 20 °C (293 °K)
	1.342	kcal mol ⁻¹	At 20 °C (293 °K)
FARADAY CONSTANT			
F	9.649 • 10 ⁴	coulombs mol ⁻¹	F is the electric charge times Avogadro's Number
	9.649 • 10 ⁴	J mol ⁻¹ V ⁻¹	
	23.06	kcal mol ⁻¹ V ⁻¹	
CONVERSIONS			
kcal	4.187	kJ (kiloJoules)	Joules is an energy unit (equal to 1 Newton•meter)
Watt	1	J sec ⁻¹	
Volt	1	J coulomb ⁻¹	
Amperes	1	coulomb sec ⁻¹	
Pascal (Pa)	1	Newton meter ⁻²	Pascal is a pressure unit (equal to 10^{-5} bars)
Siemens	1	Ohm ⁻¹	Siemens (S) is conductance, the inverse of resistance (Ohm)
PHYSICAL PROPERTIES			
η"	1.004 • 10 ⁻³	Pa sec	viscosity of water at 20 °C
ν _w	$1.004 \bullet 10^{-6}$	$m^2 sec^{-1}$	kinematic viscosity of water at 20 °C (viscosity/density)
V _w	$1.805 \bullet 10^{-5}$	$M^3 \text{ mol}^{-1}$	Partial molal volume of water at 20 °C (viscosity/density)

Source: Nobel, Park S (1991) Physicochemical and Environmental Physiology