SAMPLE ASSIGNMENT

The fairy fly is reputedly the smallest flying insect. In fact, the feathery appendages can barely be considered wings. How is it that a fairy fly can fly?

Hints:
The drag coefficient $\left(\mathrm{C}_{\mathrm{d}}\right)$ and its relation to the Reynolds number (Re) may give some insight into the effect of small size on air-borne animals. Considering acceleration versus air friction may also offer insight into how a fairy fly can fly (for example, comparative estimates of terminal velocity).

The viscosity (η) of air is $1.716 \cdot 10^{-5}$ poise at $0^{\circ} \mathrm{C}, 1.813 \cdot 10^{-5}$ poise at $20^{\circ} \mathrm{C}, 1.907 \cdot 10^{-5}$ poise at $40^{\circ} \mathrm{C}$. A poise has units of Pa sec ; Pascal (Pa) has units of $\mathrm{N} \mathrm{m}^{-2}$; Newton (N) has units of $\mathrm{kg} \mathrm{m} \mathrm{sec}^{-1}$. The kinematic viscosity (v) of air is $1.327 \cdot 10^{-5} \mathrm{~m}^{2} \mathrm{sec}^{-1}$ at $0^{\circ} \mathrm{C}, 1.505 \cdot 10^{-5} \mathrm{~m}^{2} \mathrm{sec}^{-1}$ at $20^{\circ} \mathrm{C}, 1.691 \cdot 10^{-5} \mathrm{~m}^{2} \mathrm{sec}^{-1}$ at $40^{\circ} \mathrm{C}$. The kinematic viscosity is the viscosity divided by the density $(v=\eta / \rho)\left(\mathrm{m}^{2} \sec ^{-1}=\mathrm{N} \mathrm{m}^{-2} / \mathrm{kg} \mathrm{m}^{-3}\right)$.

