SAMPLE ASSIGNMENT

The fairy fly is reputedly the smallest flying insect. In fact, the feathery appendages can barely be considered wings. How is it that a fairy fly can fly?

Hints:

The drag coefficient (C_d) and its relation to the Reynolds number (Re) may give some insight into the effect of small size on air-borne animals. Considering acceleration versus air friction may also offer insight into how a fairy fly can fly (for example, comparative estimates of terminal velocity).

The viscosity (η) of air is 1.716 • 10⁻⁵ poise at 0°C, 1.813 • 10⁻⁵ poise at 20°C, 1.907 • 10⁻⁵ poise at 40°C. A poise has units of Pa sec; Pascal (Pa) has units of N m⁻²; Newton (N) has units of kg m sec⁻¹. The kinematic viscosity (υ) of air is 1.327 • 10⁻⁵ m² sec⁻¹ at 0°C, 1.505 • 10⁻⁵ m² sec⁻¹ at 20°C, 1.691 • 10⁻⁵ m² sec⁻¹ at 40°C. The kinematic viscosity is the viscosity divided by the density ($\upsilon = \eta/\rho$) (m² sec⁻¹ = N m⁻² / kg m⁻³).