SAMPLE ASSIGNMENT

Here are examples of swimming speeds and size for a variety of organisms, from bacteria to whales ${ }^{1}$. What is the relation between speed and size? What are the physical constraints that result in such an apparent strong correlation between speed versus size?

Swimming speed and length in animals.

Species	Length	Swimming Speed ($\mathrm{cm} / \mathrm{sec}$)	Reference
1. Bacillus subtilus	$2.5 \mu \mathrm{~m}$	1.5×10^{-3}	Tabulae Biologicae
2. Spirillum volutans	13.0 m m	1.1×10^{-2}	idem
3. Euglena sp.	38.0 mm	2.3×10^{-2}	idem
4. Paramecium sp.	220.0 mm	1.0×10^{-1}	idem
5. Unionicola ypsilophorus (water mite)	1.3 mm	4.0×10^{-1}	Welsh (1932, J. Gen. Physiol. 16:349)
6. Pleuronectes platessa (plaice, larval)	7.6 mm	6.4	Boyar (1961, Trans. Amer. Fish. Soc. 90:21)
7. P. platessa	9.5 mm	11.5	idem
8. Carassius auratus (goldfish)	7.0 mm	75	Bainbridge (1961, Symp. Zool. Soc. London 5:13)
9. Leuciscus leuciscus (European dace)	10.0 cm	130	idem
10. L. leuciscus	15.0 cm	175	idem
11. L. leuciscus	20.0 cm	220	idem
12. Pomolobus pseudo harengus (river herring)	30.0 cm	440	Dow (1962, J. Conseil Internat. Explor. Mer 27:77)
13. Pygoscelis adeliae (Adélie penguin)	75.0 cm	380	Meinertzhagen (1955, Ibis 97:81)
14. Thunnus albacares (yellowfin tuna)	98.0 cm	2,080	Walters and Firestone (1964, Nature 202:208)
15. Acanthocybium solanderi (wahoo)	1.1 m	2,150	idem
16. Delphinus delphis (common dolphin)	2.2 m	1,030	Hill (1950, Sci. Prog. 38:209)
17. Sibbaldus musculus (blue whale)	26.0 m	1,030	idem

Hints:
The drag coefficient $\left(\mathrm{C}_{\mathrm{d}}\right)$ and its relation to the Reynolds number (Re) may give some insight into the effect of size on speed. At what size does turbulent flow dominate $(\operatorname{Re}>1)$?

The viscosity (η) of water is $1.787 \cdot 10^{-3}$ poise at $0^{\circ} \mathrm{C}, 1.002 \cdot 10^{-3}$ poise at $20^{\circ} \mathrm{C}, 0.653 \cdot 10^{-3}$ poise at $40^{\circ} \mathrm{C}$. A poise has units of Pa sec; Pascal (Pa) has units of $\mathrm{N} \mathrm{m}^{-2}$; Newton (N) has units of $\mathrm{kg} \mathrm{m} \mathrm{sec}^{-1}$. The kinematic viscosity (v) of water is $1.787 \cdot 10^{-6} \mathrm{~m}^{2} \mathrm{sec}^{-1}$ at $0^{\circ} \mathrm{C}, 1.004 \cdot 10^{-6} \mathrm{~m}^{2} \mathrm{sec}^{-1}$ at $20^{\circ} \mathrm{C}, 0.658 \cdot 10^{-6}$ $\mathrm{m}^{2} \sec ^{-1}$ at $40^{\circ} \mathrm{C}$. The kinematic viscosity is the viscosity divided by the density $(v=\eta / \rho)\left(\mathrm{m}^{2} \sec ^{-1}=\mathrm{N} \mathrm{m}^{-}\right.$ ${ }^{2} / \mathrm{kg} \mathrm{m}^{-3}$).

[^0]
[^0]: ${ }^{1}$ McMahon TA and JT Bonner (1983) On Size and Life. Scientific American. pp. 152

