

Logistic growth curve:

$$
N_{T}=\frac{K \bullet N_{0} \bullet e^{T / g}}{K+N_{0}\left(e^{T / g}-1\right)}
$$

carrying capacity

A cube has a surface area of $6 \cdot \mathrm{~L}^{2}$. Its volume is L^{3}. As long as the shape is constant, the ratio of suraface area to volume will always be $\left(6 \cdot L^{2}\right) / L^{3}$, or $6 / \mathrm{L}$.

For a sphere, the surface area is $4 \bullet \pi \bullet r^{2}$, and the volume is $\pi \cdot r^{3}$; the corresponding ratio of surface area to volume is $4 / \mathrm{r}$.

$\begin{array}{llll}\text { (area) } \mathrm{A}_{1}=6 \cdot \mathrm{~L}^{2} & \mathrm{~A}_{\mathrm{k}}=6 \cdot(\mathrm{k} \bullet \mathrm{L})^{2} & \mathrm{~A}_{\mathrm{k}}=6 \cdot \mathrm{k}^{2} \cdot \mathrm{~L}^{2} & \left(=\mathrm{k}^{2} \cdot \mathrm{~A}_{1}\right) \\ \text { (volume) } \mathrm{V}_{1}=\mathrm{L}^{3} & \mathrm{~V}_{\mathrm{k}}=(\mathrm{k} \cdot \mathrm{L})^{3} & \mathrm{~V}_{\mathrm{k}}=\mathrm{k}^{3} \cdot \mathrm{~L}^{3} & \left(=\mathrm{k}^{3} \cdot \mathrm{~V}_{1}\right)\end{array}$
The scaling coefficient is different for area $\left(\mathrm{k}^{2}\right)$ and for volume $\left(\mathrm{k}^{3}\right)$.
Heat conduction rates are defined by the relation:

$$
\mathrm{P}_{\text {cond }}=\mathrm{Q} / \mathrm{t}=\mathrm{k} \bullet \mathrm{~A} \bullet\left[\left(\mathrm{~T}_{\mathrm{a}}-\mathrm{T}_{\mathrm{b}}\right) / \mathrm{L}\right]
$$

where $\mathrm{P}_{\text {cond }}$ is the rate of conduction (transferred heat, Q , divided by time, t); k is the thermal conductivity; T_{a} and T_{b} are the temperatures of the two heat reservoirs a and b ; A is the area; and L is the distance. Thermal conductivities of water and air are about 0.6 and $0024 \mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}$, respectively.

Thermal radiation is defined by the relation:

$$
\mathrm{P}_{\mathrm{rad}}=\sigma \bullet \varepsilon \bullet \mathrm{A} \bullet \mathrm{~T}^{4}
$$

where $P_{r a d}$ is the rate of radiation; σ is the Stefan-Boltzmann constant $\left(5.6703 \cdot 10^{-8} \mathrm{~W}\right.$ $\mathrm{m}^{-2} \mathrm{~K}^{-4} ; \varepsilon$ is the emissivity (varies from 0 to 1 , where 1 is for a blackbody radiator); A is the area; and T is the temperature (in Kelvins). The net radiative emission or absorption will depend upon the difference in temperature:

$$
\mathrm{P}_{\text {net }}=\sigma \bullet \varepsilon \bullet \mathrm{A} \bullet\left(\mathrm{~T}_{\text {body }}^{4}-\mathrm{T}_{\text {ambient }}^{4}\right)
$$

compression $=\rho \bullet h \quad h_{\text {critical }}=\frac{42.4 \cdot 10^{6}\left(\mathrm{~N} \cdot \mathrm{~m}^{-2}\right) \cdot \frac{1(\mathrm{~kg}(\mathrm{f}))}{9.80665(\mathrm{~N})}}{436\left(\mathrm{~kg} \cdot \mathrm{~m}^{3}\right)}$

$$
F_{c r}=\frac{E \bullet I \bullet \pi^{2}}{L_{e f f}^{2}} \quad F_{c r}=\frac{E \bullet \frac{\pi \bullet r}{4} \cdot \pi^{2}}{(2 \bullet h)^{2}}, \text { and } F_{c r}=\rho \bullet \pi \bullet r^{2} \bullet h
$$

$$
\Psi_{w v}=\frac{R T}{\bar{V}_{w}} \ln \left(\frac{\% \text { relative humidity }}{100}\right)+\rho_{w} g h
$$

$$
v=\left(\frac{\Delta p}{l}\right)\left(\frac{1}{4 \bullet \eta}\right) R^{2} \quad \mathrm{~J}_{\mathrm{v}}=\left(\frac{\Delta \mathrm{p}}{1}\right)\left(\frac{\pi}{8 \bullet \eta}\right) \cdot R^{4}
$$

$$
\begin{aligned}
& J=-\frac{1}{2} \cdot \frac{\Delta^{2}}{\tau} \cdot \frac{d C}{d x} \quad \frac{\partial c}{\partial t}=D \frac{\partial^{2} c}{\partial x^{2}} \\
& D=\frac{1}{2} \cdot \frac{\Delta^{2}}{\tau} \nabla v=u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+w \frac{\partial}{\partial z} \\
& \text { velocity vector } \\
& \text {-the notation grad } v \\
& \text { is sometimes used } \\
& \text { with velocity components, } u, v \text {, and } w \text {, } \\
& \text { in the three dimensions, } \mathrm{x}, \mathrm{y} \text {, and } \mathrm{z} \text {. } \\
& J_{r}(a)=-D \cdot C_{0} \cdot 4 \cdot \pi \cdot a=I_{D} \text { (diffusive current) } \\
& \text { (units of mole } \mathrm{sec}^{-1} \text {) } \\
& \text { (mole } \mathrm{cm}^{-2} \mathrm{sec}^{-1} \text {) } \\
& I_{m}=4 \bullet \pi \bullet a^{2} \bullet \beta \text { (metabolic current) } \\
& \left(\mathrm{cm}^{2}\right) \quad \text { (units of mole } \mathrm{sec}^{-1} \text {) } \\
& P_{e}=\frac{2 \cdot a \bullet u}{D} \\
& \text { concentration gradient } \\
& Q=\frac{\Delta p}{l} \frac{\pi a^{4}}{8 \eta} \\
& \mu_{j}^{\text {liquid }}=\mu_{j}^{*}+R T \ln a_{j}+\overline{V_{j}} P+z_{j} F E+m_{j} g h \\
& \text { Fick's Second Law : } \\
& \text { (steady state) } \\
& C(r)=C_{0}\left(1-\frac{a}{r}\right) \quad \frac{\partial C}{\partial t}=D \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial C}{\partial r}\right)=0 \\
& p_{o}(t)=e^{-\lambda} \\
& p_{n}=e^{-\lambda T} \frac{(\lambda T)^{n}}{n!}=\frac{e^{-\mu} \mu^{k}}{k!}
\end{aligned}
$$

$\operatorname{Rotor}_{(\mathrm{n})}+\mathrm{m} \mathrm{H}_{\text {outside }}^{+} \longleftrightarrow$ Rotor $_{(\mathrm{n}+1)}+\mathrm{m} \mathrm{H}_{\text {inside }}^{+}$

$$
\mathrm{ADP}+\mathrm{P}_{\mathrm{i}}+\mathrm{mH}_{\text {outside }}^{+} \longleftrightarrow \mathrm{ATP}+\mathrm{mH}_{\text {inside }}^{+}
$$

The work exerted will depend upon the speed of the contraction, and the cross-sectional area of the muscle times its length. Muscle contraction speeds are normally in the range of 3 milliseconds. The initial velocity will equal the impulse force divided by the mass ($v=\mathrm{F}_{\mathrm{impuls}} /$ mass $)$.

The work done in the leap is proportional to mass and the height of the leap ($\mathrm{W} \propto \mathrm{mH}$), while the work of the muscles is proportional to the mass of the muscle (or the whole organism) $(\mathrm{W} \propto \mathrm{m})$. It follows then, that the total work is related solely to the height, since the organism's mass cancels out. Thus, the height of the leap is not proportional to the organisms's size, but rather is similar for any organism. D'Arcy Thompson describes this as an example of the Principle of Biological Similitude.

$$
\begin{aligned}
& \mu_{j}^{\text {liquid }}=\mu_{j}^{*}+R T \ln a_{j}+\overline{V_{j}} P+z_{j} F E+m_{j} g h \\
& \quad a_{j}=\gamma_{j} c_{j} \\
& \text { The activity of water (a) is the }
\end{aligned}
$$

product of the activity coefficient and the concentration of water

$$
R T \ln a_{j}=\overline{V_{j}} \Pi
$$

The partial molal volume of species j is the incremental increase in volume with the addition of species j . For water, it is $18.0 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$.

The terms inter-relate various properties of water: changes in its activity with the addition of solutes,
and the relation to pressure.

$$
\Pi_{s}=R T \sum_{j} c_{j} \quad \text { Van’t Hoff relation }
$$

