bacteria is remeanalirkable, and in-2-phosphoglycerate cludes allterninditive pathways for carbon dioxintide fixation, such as the hydroxy figdis in ionate pathway.

\square

B

Fig. 1A-D. Outlines of the four known pathways for autotrophic CO_{2} fixation ${ }^{1}$. The reactions catalyzed by key enzymes of these pathways are indicated by bold arrows. A Calvin-Bassham-Benson cycle; B reductive citric acid cycle; C reductive acetyl-CoA pathway; D 3-hydroxypropionate cycle. [C] Assimilated cell carbon, $[H]$ reduction equivalent, $\mathrm{Fd}_{\text {red }}$ reduced ferredoxin, $\left[\mathrm{CH}_{3}-\right]$ enzyme-bound methyl group, [CO-] enzyme-bound carbon monoxide group.

[^0]

CO_{2} Fisation
(Ribulose 1.5-diphosphate)

6-carbou intermedicate ${ }^{*}$ (2-curboxy-3-heto-)ribitol 1.5-dipluosplate?

$$
\stackrel{{ }^{*} \mathrm{CO}_{2} \mathrm{H}_{2} \mathrm{C}-\mathrm{OP}}{1} \begin{gathered}
\mathrm{C}^{1} \mathrm{C}=\mathrm{O} \\
1 \\
\mathrm{H}_{-}^{3} \mathrm{C}-\mathrm{OH} \\
\mathrm{H}^{4} \mathrm{C}-\mathrm{OH} \\
\mathrm{H}_{2}^{\mathrm{C}} \mathrm{C}-\mathrm{OB} \mathrm{P}
\end{gathered}
$$

*Rubisco deaves
2-carboxy-3-kato-D-ribitol. 1.5-diphosphate
to $3-P G A(\lambda)$ and
an analog

$$
\begin{gathered}
\mathrm{H}_{2}-\mathrm{C}-\mathrm{OH} \\
\mathrm{HOOC}-\mathrm{C}-\mathrm{OH} \\
\mathrm{H} \cdot \mathrm{C}_{1}-\mathrm{OH} \\
\mathrm{H}-\mathrm{C}-\mathrm{OH} \\
\mathrm{H}_{2}-\mathrm{C}-\mathrm{OP}
\end{gathered}
$$

inhibits irreversibly Commies an intermechacite bore during the enzymatic reaction)

$$
H_{2} C-O(P)
$$

$$
\begin{gathered}
{ }^{4} \mathrm{C}-C^{2} \mathrm{C}-\mathrm{OH} \\
1 \mathrm{~N} \\
{ }^{3} \mathrm{C}=\mathrm{O} \\
1= \\
H-{ }^{4} \mathrm{C}-\mathrm{OH} \\
1 \\
\mathrm{H}_{2}^{5} \mathrm{C}-\mathrm{OP}
\end{gathered}
$$

$$
\mathrm{LH}_{2} \mathrm{O}
$$

$$
\begin{aligned}
& \begin{array}{cc}
\mathrm{H}_{2}-\mathrm{C}-\mathrm{OP} \\
1 \\
H 00^{*} \mathrm{C}-\mathrm{C}^{2} \mathrm{C}-\mathrm{OH} \\
1 & \begin{array}{c}
\text { 3-phospho } \\
\text { glyerate }
\end{array} \\
\mathrm{H} & (3 \text { PbA })
\end{array}{ }^{3} \mathrm{COOH} \quad 1 \\
& \begin{array}{cc}
\mathrm{H}_{2}-\mathrm{C}-\mathrm{OP} \\
1 \\
H 00^{*} \mathrm{C}-\mathrm{C}^{2} \mathrm{C}-\mathrm{OH} \\
1 & \begin{array}{c}
\text { 3-phospho } \\
\text { glyerate }
\end{array} \\
\mathrm{H} & (3 \text { PbA })
\end{array}{ }^{3} \mathrm{COOH} \quad 1
\end{aligned}
$$

Ribulose 1,5-bisphosphate carboxylase catalyzes the fixation of atmospheric carbon dioxide into carbohydrate. It is the most prevalent protein in the world. Without this enzyme, heterotrophic organisms (such as humans) could not survive. The carboxylation reaction is quite complex, as seen below.

Figure 6.5 Reaction sequence in the carboxylation of RuBP by RubisCO. For the sake of simplicity $-\mathrm{PO}_{3}^{2-}$ is symbolized as -P. An enediol, formed by keto-enol isomerization of the carbonyl group of the RuBP (A), allows the nucleophilic reaction of CO_{2} with the $\mathrm{C}-2$ atom of RuBP by which 2-carboxy-3ketoarabinitol 1,5 -bisphosphate (B) is formed. After hydration (C), the bond between C-2 and C-3 is cleaved and two molecules of 3-phosphoglycerate are formed (D).
Source: Heldt, Hans-Walter (1997) Plant Biochemistry and Molecuar Biology. Oxford University Press. page 152.

The substrate for RuBisco is CO_{2} rather than bicarbonate $\left(\mathrm{H}_{3} \mathrm{CO}_{3}^{-}\right)$based on

Substrate Labeling

$$
\begin{gathered}
12 \mathrm{CO}_{2}+\mathrm{H}^{14} \mathrm{CO}_{3}^{-} \\
14 \mathrm{CO}_{2}+\mathrm{H}^{12} \mathrm{CO}_{3}^{-} \\
{ }^{12} \mathrm{CO}_{2}+\mathrm{H}^{14} \mathrm{CO}_{3}^{-}+\mathrm{CA}
\end{gathered}
$$ Incorporation

slow
fast
fast
where $C A$ is carbonic anhydoase, which catalyzes the reaction:

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftarrows \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}
$$

The enzyme is multimeric, $\sim 550 \mathrm{kDa}$ chit genome: \& large subunits ($\sim 54 \mathrm{kDa}$ each) nuclear genome: \& small subunits (~12 kia each) assembled by chaperonins (ATP-required) to geld hose final form.

The catalytic active site is shared between two L sulounits.

The L subunit is highly conserved. the S (small) subunit is not, and its role is not clear.

Dimers $\lambda L\left(L_{r}\right)$ have catalytic activity.

RuBISCO Structure ${ }^{1}$

Top_Down:

Sideways:

[^1]Rubisco is located in the chloroplast stoma at a very high concentration for a protein ($0.5 \mathrm{~mm}[250 \mathrm{mg} / \mathrm{ml} 1]$) so, the active site concentration is about 4 mm .
This is higher than the concentration of its substrate RuDD (Ribulose 1.5-diplosphate) which is about 0.1 to 2 mM .

Regulation of RuBISCo activity is very complex:
(Activate) ${ }^{(D)}$
(*)

of a lysine (zoril)
higher than
physiological ($n 10 \mu \mathrm{M}$) side. chain.
E.CO2. Mg ${ }^{2+}$ is the active form, binding RuBS at the active site.
(overhead)
(1) The Rubisco activare is そAspros itself light-activatiel and is very important in controlling
the 'poise state' of carbon fixation as a function of light, and therefore ATP \& NADPH production.

Activating site
Figure 7.3. Schematic of the reaction site of ribulose bisphosphate carboxylase and the oxygenase showing molecular events in
carboxylation and oxygenation of RuBP to (3PGA) or phosphoglycolate and 3PGA, respectively

Regeneration of Ribulose 1.5-diphosphate.

3-phosphoglycerate ADP \& low ATP/ADP 1,3 diphosphoglyurate phosphorylation as doezidinge is phosphate. of $3-P G$ to give $1,3-d P G$)

(reduction of $1,3-d P G$ to gield glyceraldehygle 3 phosphate
Both of the reactions above should te familiar from glycolysis (though in the reverse direction)

The 3-phosphoglyceraldehycle can enter a number of alternate reactions to eventually regenerate the starting compound RuDD.
(1)

3 -phosphogly eraldelyyde
dihydroxyguetone phosphate
dihis droxyace tove phos phate
(2) $\mathrm{H}_{2}-\mathrm{C}-\mathrm{O}(\mathrm{P})$

D-frectose 1,6 diphosphate.

$$
H-C-O H
$$

$$
H_{2}-C-O(P)
$$

$$
\begin{gathered}
H_{2}-C-O P \\
1 \\
C=O \\
1 \\
H_{0}-C-H \\
1 \\
H-C-O H \\
1 \\
H-C-O H \\
H_{2}-C-O P \\
H 2 O P
\end{gathered}
$$

fructose bisphosphatase (requires Mg ${ }^{2+}$ stimulated by fructore - 1.6diphospleate)
1)-fouctose 6 -phosphate

$$
\begin{aligned}
& H^{\prime}-O H \\
& \left.H_{2}-C-O P\right)
\end{aligned}
$$

(3)

3 phosphoglyceraldehysle

$$
\begin{array}{ll}
H-C-O H & H-c-O H \\
H_{2}-C-O P & H_{2}-C-O P
\end{array}
$$

fructore 1.6-
diphosphate and Mos ${ }^{2+}$.

$$
\begin{gathered}
H \\
{ }^{H} C^{\prime}=0 \\
1 \\
H{ }^{\prime}-C-O H \\
1 \\
H-C-O H \\
H \\
H_{2} C-O P
\end{gathered}
$$

D-eristhrare-4-phosphate

$$
\begin{gathered}
\mathrm{H}_{2}-\mathrm{C}-\mathrm{OH} \\
1 \\
\mathrm{C}=\mathrm{O} \\
1 \\
\mathrm{HO} \mathrm{~B}^{-\mathrm{C}} \mathrm{C}-\mathrm{H} \\
1 \\
\mathrm{H}-\mathrm{C}-\mathrm{OH} \\
1 \\
\mathrm{H}_{2}-\mathrm{C}-\mathrm{OP}
\end{gathered}
$$

D-xyulose-5-phosphate
(4)
dohigdroxyacetone

$$
\begin{gathered}
H_{2}-C-O P \\
1 \\
C=O \\
1 \\
H_{2}-{ }^{\prime \prime} C-O H
\end{gathered}
$$

$$
\begin{gathered}
\left.H_{2}-C-O P\right) \\
C=0
\end{gathered}
$$

$\xrightarrow[\text { fructose }]{\longrightarrow}$ $H O_{-1}^{m}-H$
$H-C-O H$
$H_{-}^{*}-1-O H$
$H-C-O H$

$$
\mathrm{H}_{2}-\mathrm{C}-\mathrm{OP}
$$

D-erythrose
4 phosplate
diphosphate aldolaise

$$
\begin{gathered}
H_{2}-\mathrm{C}-O H \\
1 \\
C=O \\
H^{\prime \prime}-C-H \\
H^{\prime}-C-O H \\
H-C-O H \\
H-C-O H \\
H_{2}^{\prime}-C-O P
\end{gathered}
$$

1)-sedo heptulose 7 -phosphate
(5),

$$
\begin{aligned}
& \mathrm{H}_{2}-\mathrm{C}-\mathrm{OH} \text {, } \\
& \text { 1. } \begin{array}{r}
\mathrm{C}=0, \\
1 \\
1
\end{array} \\
& \mathrm{HO} \mathrm{O}^{\circ} \mathrm{C}-\mathrm{H} \\
& \mathrm{H}^{*} \mathrm{C}-\mathrm{OH} \\
& \mathrm{H}-\mathrm{H}_{1}^{1} \mathrm{C}-\mathrm{OH} \\
& \mathrm{H}-\mathrm{C}-\mathrm{OH} \\
& \mathrm{H}-\mathrm{C}-\mathrm{OH} \\
& \mathrm{H}_{2}=\mathrm{C}-\mathrm{OP} \\
& \mathrm{H}_{2}-\mathrm{C}-\mathrm{OP}
\end{aligned}
$$

sedoheptulose
7 phosplate

$$
\begin{gathered}
H^{\prime} \\
{ }^{+} C=O \\
1 \\
H{ }^{*} C-O H \\
H^{\prime} \\
H-C-O H \\
1 \\
H-C-O H \\
1 \\
H_{2}-C-O P
\end{gathered}
$$

1)-ribose- 5 phosphate

$$
\begin{gathered}
H_{2}-C-O H \\
1 \\
C=O \\
1 \\
H O^{14}-C-H \\
1 \\
H-C-O H \\
1 \\
H_{2}-C-O P
\end{gathered}
$$

D-xyulose 5 -phosphate

$$
\begin{aligned}
& \text { H } \\
& *^{\prime} \dot{C}=0 \\
& \text { H }{ }^{* \prime} \mathrm{C}-\mathrm{OH} \\
& \mathrm{H}^{*} \mathrm{C}-\mathrm{OH} \text {. } \\
& \text { H-C-ON } \\
& \mathrm{H}_{2}-\mathrm{C}-\mathrm{OP} \\
& \mathrm{H}_{2}-\mathrm{C}-\mathrm{OH} . \\
& C=0 \\
& H O-\frac{1 H}{C}-H \text {. } \\
& \mathrm{H}-\mathrm{C}-\mathrm{OH} \\
& \mathrm{H}_{2}-\mathrm{C}-\mathrm{O}(\mathrm{P}) \\
& \text { ribose } \\
& \text { phosphate } \\
& \text { isomerase } \\
& \text { ribulose phosphate } \\
& \text { 3-epimerase } \\
& \text { D-Ribulose } \\
& \text { 1.5-diphosphate } \\
& \text { (regenerated) } \\
& \mathrm{H}-\mathrm{C}-\mathrm{OH} \\
& \stackrel{1}{\mathrm{H}_{2}-\mathrm{C}-\mathrm{OP}}
\end{aligned}
$$

${ }^{14} \mathrm{CO}_{2}$ LABELIN6: Evidence for the Calvin Cycle
Distributions ${ }^{14} \mathrm{C}$ after 5.4 sec incubation.
Carbon Atom PGA fructose seclohept. ribulose
ulose

1	82%	3%	2%	11%
2	9	3	2	10
3	9	43	28	69
4		42	24	5
5		3	27	3
6		3	2	
7			2	

Initial experiments were done with algae (Chlorella and Suneclesmus). After "1 HOr addition, the calls were killed by dropping them into bailing aleshol.
30 sec labeling: ${ }^{4} \mathrm{C}$ in 3-PGAt, trove plospliates. and herore phosphates

5 see labeling: ${ }^{14} \mathrm{C}$ in the carbonyl group of 3-PbA. Eventually, it was realized CO_{2} was condensing with a pentose phosphate, then cleaving to (2) $3-P G A$
In the hexose phosphates. $C-3 \sum_{1}^{\prime} C-4$ were most heavily babeled, indicating the hexose was formed by condensation of two triose phosphates.

Reaction:

4 1. Fructose 6-phosphate + glyceraldehyde 3-phosphate $\xrightarrow{\text { transeteloase }}$
triose phosphate toomerase $x y l u l o s e ~ 5-p h o s p h a t e ~+~ e r y t h r o s e ~ 4-p h o s p h a t e ~$
2. Glyceraldehyde 3-phosphate $\xrightarrow{\text { triose phosphate hoomerase }}$ dihydroxyacetone phosphate
3. Erythrose 4-phosphate + dihydroxyacetone phosphate $\xrightarrow{\text { aldolase }}$ sedoheptulose 1,7 -bisphosphate
4. Sedoheptulose 1,7 -bisphosphate $\xrightarrow{\text { sedoheptulose blsphosphatase }}$ sedoheptulose 7-phosphate + inorganic phosphate
5. Sedoheptulose 7-phosphate + glyceraldehyde 3-phosphate $\xrightarrow{\text { transketolase }}$ xylulose 5-phosphate + ribose 5 ,hosphate

7. Ribose 5-phosphate $\xrightarrow{\text { riboob phoophate tromernese }}$ ribulose 5 -phosphate

Light／dark transitions indecate there is a ＂connectivity＂between 3－phosphoglyerate and ribulore 1.5 diphosphate（4）

$\omega_{\text {NAMPA }}$ \＆ATP will decline．

Final evidence for the Calvin Cugcle wame from isolation ξ_{1} characterization of the enzymes acting at each ster．
${ }_{\text {lin implied form }}$

So Ru 1．5－d．P E．3－POA sample two different＇states＇．

Source：Goodwin六Marier Intro Brochem pages $138-139$

LIGHT ACTIVATION OF CALVIN CYCLE.
(thnoredoxin).
enzymes activated by light include
fructose bisphosphatase
sedoheptulose bisphosphatase
NADPt- af yevalclehyde phosphate dehydrogenase
\% phosphoribulokinase.
All are intoinsic to energy utilization.
Their activation is mediated by the redon poise* of the electoon transport chain? specifically fervedoxin (in the ferredorin. NADP dehydrogenase or PSI).
Reduced Cecredoxin, produced in the light, in turn reduces thoredoxin:

* not on lope. but modulated by light intensity.

$$
\begin{gathered}
- \text { cys-gly-pro-cys }- \\
1 \\
\text { SH SH }
\end{gathered}
$$

(oxidized) The higher the light intensity, the higher the
(throredor) red
(Mnoredor) ax
(reduced) ratio.

The thioredoxin in turn reduces disulfide linkages ($-3-3-$) to sulfhydryls (-sH HS-) on the enzymes, activating them.

In addition to carboxylation, Ribulose 1,5-bisphosphate carboxylase catalyzes the fixation of atmospheric oxygen, without net carbohydrate production. Hence, the enzyme is commonly called Ribulose 1,5-bisphosphate carboxylase/oxygenase, or RuBisCO. Oxygen and carbon dioxide are very similar: small, linear molecules with analogous intrinsic dipoles. Thus the RuBisCO active site for carbon dioxide is 'fooled' into binding oygen instead.

Enediol form of ribulose 1,5-bisphosphate

Hypothetical peroxide intermediate

2-Phosphoglycolate

3-Phosphoglycerate

Figure 6.6 Part of the reaction sequence in the oxygenation of RuBP as catalysed by RubisCO. O_{2} probably reacts in a similar way to CO_{2} with the enediol of RuBP and thus forms a peroxide. In the subsequent cleavage of the O_{2} adduct, one atom of the O_{2} molecule is found in the water and the other in the carboxyl group of the 2-phosphoglycolate.

Kinetic Properties:

$\mathrm{K}_{\mathrm{M}}\left[\mathrm{CO}_{2}\right]: \quad 9 \mu \mathrm{~mol} \mathrm{l}^{-1}$
$\mathrm{K}_{\mathrm{M}}\left[\mathrm{O}_{2}\right]: \quad 535 \mu \mathrm{~mol} \mathrm{l}^{-1}$
$\mathrm{K}_{\mathrm{M}}[\mathrm{RuBP}]: \quad 28 \mu \mathrm{~mol} \mathrm{l}^{-1}$
At normal atmospheric conditions $\left(0.035 \%=350 \mathrm{ppm} \mathrm{CO}, 21 \% \mathrm{O}_{2}\right)$, the concentrations in water at $25^{\circ} \mathrm{C}$ are: $\left[\mathrm{CO}_{2}\right], 11 \mu \mathrm{~mol} \mathrm{l}^{-1}$; $\left[\mathrm{O}_{2}\right], 253 \mu \mathrm{~mol} \mathrm{l}^{-1}$.

Source: Heldt, Hans-Walter (1997) Plant Biochemistry and Molecuar Biology. Oxford University Press. page 153-4.

Photorespiration
In addition to the carboxiglation reaction of Rubisco, it also has a biochemically significant oxygenase reaction.
The reaction:
2-phosphogly collate
$H_{z}-C-O P$

$$
H_{2}-C-O(P)
$$

$$
\underset{\substack{1 \\-C-O H}}{\substack{1 \\ \sum_{1} \\ H_{2} O}} \stackrel{{ }^{18} 0}{\infty} \xrightarrow[\left(\mathrm{mg}^{2+}\right)]{ } \quad 0=C-{ }^{18} \mathrm{OH}
$$

$H-C-\Delta H$

$$
\mathrm{H}_{2}-\mathrm{C}-\mathrm{O} P
$$

$$
\begin{gathered}
O=C-O H \\
1 \\
H-C-O H \\
1 \\
H 2-C-O P
\end{gathered}
$$

3-phosphoglyerate
while the 3-phosphoglycerate can enter the Calvin Cycle, the 2 -phosphoglyelate must te "regenerated" in a serves \& reactions in the chloroplast.
peroxisome and mitochondria.
oxygen and carbon dioxide are very different

$$
\begin{array}{ll}
0=0 & \delta^{-} \\
k \longrightarrow C=\delta^{-} \\
0.012 \mathrm{~nm} & k \xrightarrow[0.0232 \mathrm{~nm}]{ }
\end{array}
$$

Furthermore, oxygen reactions normally involve a transition metal (for example Fe) or an e^{-}donating redo group.

So the oxgegnase reaction of RuBisco remains unclear. but probably involves coordination to the Mg ${ }^{2+}$ ion in the active site.

Note that during photosgenthesis the partial pressure of O_{2} will te higher. (respiration will increase CO_{2}) overall, a ratio of about 0.4 oxyffuatire may occur. It is significant.

Because of the significance of the oxygenate reaction, much effort has been exerted on modifying Rubisco specificity.

The specificity maximal cerborytation

Rubisco specificity is signifeeently higher in higher plants compared to algae and cyanobacteria.

Specificity

Rhodospirillum 10 (purple bact. range 10-60) SOurce: Lawlor 2001 Photosignthes is
${ }^{\text {T }}$ That is, $v_{\mathrm{CO}_{2}}=\frac{V_{\text {Max }}^{\mathrm{Co}_{2}} \circ}{R_{\mathrm{Mm}_{2}}^{W_{2}}} p \mathrm{CO}_{2}$ pages 152.153
It is not related dreethu to Michouls Henten $v=\frac{V_{\text {max }}[\text { 's } 7}{k_{m}+[i s]}$ because competione inhibition will exist.

Regeneration of 3 -phosphoglyearale
phosphoglycollic acid
Glygollic acid.

$$
\begin{array}{lll}
\mathrm{H}_{2}-\mathrm{C}-\mathrm{O} \\
\mathrm{O}=\mathrm{C}-\mathrm{OH} & \begin{array}{l}
\text { Phespheglycollate } \\
\text { phosphatase }
\end{array} & \mathrm{H}_{2}-\mathrm{C}-\mathrm{OH} . \\
\mathrm{P}_{1} & \mathrm{O}=\mathrm{C}-\mathrm{OH}
\end{array}
$$

In peroxisome

$$
\begin{gathered}
\mathrm{H}_{2}-\mathrm{C}-N H_{2} \\
1 \\
O=\mathrm{C}-O H
\end{gathered}
$$ glycine.

R is either glutamate or serine
\downarrow transport to mitochondria.

3-phosphoglyeral. regeneration (continued)
(In Mitochondria)
$2 x$
Glycine

$$
\underbrace{H^{\prime}}_{H_{2} C-O H}
$$

methylene

$$
\begin{aligned}
& \text { methylene } H_{2} \mathrm{C}-\mathrm{NH}_{2} \\
& \text { carbon }
\end{aligned}
$$

$$
\begin{align*}
& H-\mathrm{C}-\mathrm{NH} \tag{4}\\
& 1 \\
& \mathrm{O}=\mathrm{C}-\mathrm{OH}
\end{align*}
$$

$$
O=C-O H
$$

sERINE
(1) the conversion of 2 glycines to a serine, plus CO_{2} $\dot{\xi}_{1} \mathrm{NH}_{3}$ (ammonia) involves 2 enzymatic reactions and the intermediate co-bactor tetrahydrofolate (to which the methylene carbon is bound)
(In Peroxisome)

$$
\begin{gathered}
\mathrm{H}_{2}-\mathrm{C}-\mathrm{OH} \\
1 \\
\mathrm{C}=0 \\
1
\end{gathered}
$$

aRG blu $O=C-O H$ hydroxy-α-ketoglutarate (trans- glutamate amination)
3-phosphoglyeerate

Figure 9.11 The photorespiratory cycle. The 2-phosphoglycolate formed in the oxygenation reaction is converted to glycolate, exported from the chloroplast, and is imported into the peroxisome, where it is metabolized into glycine. The glycine is exported from the peroxisome and taken up by the mitochondrion, where two molecules are combined and decarboxylated to form one molecule of serine. The serine is then transported to the peroxisome, where it is converted to glycerate and then reimported into the chloroplast and phosphorylated to form PGA. The individual reactions are given in Table 9.3.

Ch Pathway of (ARBON FIMATION

To overcome the intrinsic problem of oxygenase activity of RuBisco, photosynthetic organisous have evolved
CARBON DIOXIDE CONCENTRATING MELIANISMS.
The "simplest" of these is to actively take up CO_{2} into the cell/chlosoplast to increase [CO_{2}] for Ruisis 10 . This is dome in aquatic organisms, both eukaryotic algae and prokaryotic cyanobacteria.

In terrestrial plants "concentrating mechanisms" involve biochemical fixation of CO_{2} via a different enzegue: phosphoenolpyrurate carboxylase (PE PRase).

an anion,
oxaloacetic acid with O_{2} (3 -phosphoglycarate is C_{3})

Ch Pathways of CARBOD Fixation.
The consequences of C_{4} - carbon fixation:

where CO_{2} fixation matches CO_{2} release
C_{4} plants (for example, maize and sugar cane) have a compensation point of approximately ' 0 ' C_{3} plants (for example, soybean) have a compensation point of -80 ppm .

Time

As would be expected. CH plants' photosynthesis is insensitive to O_{2} levels up to 21% atmospheric.

Ch Mechanisms.
Some of the C_{4} mechanisms are associated with a well defined leaf anatomy (Koans)

The musophyll cells fix CO_{2} with the phosphoenolpyourate carboxylase. The product, oxaloacetate is reduced to malate (or transcimnated to aspartate), which is transported to the bundle sheath chloroplasts, then decarborylated so that the CO_{2} can te ve.fered with RuBisco.

(a) NADP-ME type

Figure 9.2. Photosynthetic metabolism of C4 plants, compounds transferred between mesophyll and bundle sheath decarboxylation with: (a) NADP requiring malic enzyme or 'NADP-ME' type; (b) aspartate-forming and PEP type of C4 metabolism; (c) aspartate-forming and NAD requiring malic enzyme 'NADME'-type of C4 metabolic enzymes listed below: (1) PEP carboxylase; (2) NADP malate dehydrogenase; (3) NADP malic enzyme; (4) pyruvate, P; dikinase; (5) RuBP carboxylase/oxygenase; (6) PEP carboxykinase; (7) alanine aminotransferase; (8) aspartate aminotransferase; (9) NAD malate dehydrogenase; (10) NAD malic enzyme

Ch Brochtemicoth Detalis
To malate... .

PCK
NAD.ME
${ }^{14}$

glutamate
α-Ketoglutarate
NADP ME
once transported to the bundle sheath. the malate is decarboxylated

pyourate- transported back to the mesophyll cells
phosphoendipyrurate
for NAD.ME is PCK, variants, the aspartate is transported to the bundle sheath cell, and oxaloacetate re. formed by transamination

then, in the NAD.ME variant.

pyruvate.

In the PCK pathway, the oxaloacetate procluced by transamination of the aspartate transported from the mesophyll cell...

Energhe Comparson:
$C_{3} \quad 3 A T P$ \& 2 NADPH ReN $C O_{2}$
C_{4} SATP \& ZNADPH Rer cor.

But, one must also consides the lack of. photorespration in C_{4} plauts.

The primasy frenction is presumably concentiation of CO_{2}.

Typically, in a C_{n} plant. PEPCare

(no Oxygenase)

$$
\begin{aligned}
& 20-40 \\
& \mu \mathrm{~mol} / \mathrm{mg}(u) / \mathrm{min} \\
& k_{m}=7 \mu M
\end{aligned}
$$

RubPCore
$V_{\text {max }} \sim 4-10$ umol/machlomin沙 $\sim 15 \mu M$
ambrent CO_{2}.
With concentration. RuBISco orescetes without Oose, thus efficiently

Regulation \& C_{4}
pyruvate, P_{1} dikinaze is light reajuted
The reachou.

$$
\begin{aligned}
& E \cdot h i s+A M P-P-P \cdot P+P \Rightarrow E-h i s-P+A M P+P P \\
& E \text {-his }-P+\text { pyruvate } \Leftrightarrow \beta P B+E \text { his }
\end{aligned}
$$

Light-dart regulation:
\rightarrow nh incoeared itrs in hight wo uld cause Woew decveazen 10 Of

[AMP, ADP, PP, inlubit]
$\underbrace{N^{\prime \prime}-\infty}$ Light-dask modulation or nef Buonell EHatch 1985. leaf pgrwati, P1. diknouse TIBS 10 288. 1985.
C_{4} Pitotosuntitesis: ECOPHYsionob4
C_{4} photosynthesis is less efferent eneragtically, but allows efficient CO_{2} assimilation under conditions of limiting CO_{2}.
These conditions, in general, bunker conditions of water stress when stomates are closed, limiting gas exchange between the leaf and external atmosphere.
Thus, C_{H} is common in semiarid climates. some 44 plants (spartina sp.) are found in salt marshes, where water stress is an issue.

Evrclance for C_{4} photosynthesis, based on carbon isotope ratios, suggest it appeared recently (perhaps 12.5 million gears ago) and 8^{13} C ratios of -10 to 14% (i) appear 7 million years ago with fossils \& known C_{4} grasses.
Monocotyledons one more commonly C_{4}, but it is char form the distribution o C_{4} among diverge families that C_{4} evolved (and is evolving) many times in different groups.
(*) ${ }^{13} \mathrm{C}$ is discriminate agyinst/because in C_{4} substrate in C_{4} photosynthesis. $C_{8} 8^{13}$ ratios $\frac{1}{3}$ go are -22 to -34% because CO_{2} is the substrate. In

Glycine max ${ }^{1}$ uses the \mathbf{C}_{3} Pathway

[^2]http://www.illustratedgarden.org/mobot/rarebooks/page.asp?relation=QK98J3151770V1\&identifier=0250

Panicum maximum ${ }^{1}$ uses the PEP-CK variant of the C_{4} Pathway

[^3]
Zea mays ${ }^{1}$ uses the NADP-ME variant of the C_{4} Pathway

[^4]
Portulaca oleracea ${ }^{1}$ uses the NAD-ME variant of the C_{4} Pathway

[^5]

Figure 7. Evolution of C4 photosynthesis in Flaveria (Asteraceae; Monson 1996). The colors along each branch of the phylogeny represent a hypothesized reconstruction of the evolution of photosynthetic pathways based on phylogenetic parsimony methods (i.e., the reconstruction that requires the fewest evolutionary transitions leading to the observed present-day distribution of photosynthetic types). The hatched bar indicates an uncertain reconstruction. If this branch is inferred to be C3, there are three independent origins of C3-C4 intermediate pathways (including F. angustifolia); alternatively, if this branch is reconstructed as C3-C4 intermediate, there is one origin of C3-C4 and one subsequent reversal to C3. The C4 pathway is inferred to have evolved independently three times, and in at least two of these cases, the C3-C4 type represented an intermediate evolutionary stage. A more recent molecular phylogeny of Flaveria, for 12 of the 20 species shown here, suggests at least two independent origins of C4 photosynthesis (Kopriva et al. 1996). Redrawn with permission from Monson (1996). Bioscience 50(11):979-995.
cariban - Concentrating melanisms
The C_{4} pathway can te considered a mechanism e for concentrating CO_{2}, and appears to be specific to land plants.

There are other mechanisms for concentrating CO_{2} in aquatic organisms: both prokaryotes (cyzansbacterial) and enkeryotes (alger).

There mechanisms are closely allee with the aqueous chemistry of CO_{2} :
CO_{2} solubility
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{CO}_{2(\mathrm{ln} 9)^{2} \rightarrow}^{1.45 \mathrm{kglm}}$
pK $6.1\left\langle\begin{array}{l}\mathrm{CO}_{2}(\text { ll a })+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{H}_{2} \mathrm{CO}_{3} \\ \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftarrows \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}\end{array}\right.$
carbonic acid
$\mathrm{pK} 10.3<\mathrm{HCO}_{3}^{-} \rightleftarrows \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \quad$ carbonate

DIC (dissolved inorganic carbon) accounts for all the inorganic carbon species, and increases markedly with pH. That is, at pit more alkaline then 6.1, $\mathrm{H}_{3} \mathrm{CO}_{3}^{-}$and CO_{3}^{2+} are the majority.

In "dirty" aqueous chemistry Mg^{2+} and Ca^{2+} can complex with the anions to form fairly insoluble salts.

The reaction:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \Longrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}-
$$

is fairly slow. The enzzure carbonic anhygdrase catalyzes the reaction.

Now, in fermis of concentrating mechanisms, CO_{2} is very permeable and passes cuirass cell membranes very quickly.
4 contrast, the anions (HCCO_{3}^{-}at phigsiologically relevant $p(t)$ are Carly imperneant.

So:
cell
membrane
can "trap" DIC inside the call. Most effective if the external pH is acidic compared to the well pH (typically 6.8-7.2).
permeation through the membrane.

Carbonic anthydrase (external isinternal) can speed the 'passive' uptake.

Carbon Species Availability (as a function of aqueous pH)

The relative proportions of the various DIC (dissolved inorganic carbon) species are shown as a function of pH , based upon the equilibria shown in the chemical equation below:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \longleftrightarrow p K_{a}=6.4 \longrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \longleftrightarrow \mathrm{pK}_{b}=10.4 \longrightarrow \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-}
$$

Total [DIC] increases dramatically at alkaline pH , but the predicted concentrations shown do not account for solubility.

A further complication is that the cell will ham an inside -re potential:

So, active uptake requires other mechanisms.

An ATP-dependent pump. Thurs could tee an ABC Family transporter. (reported in cyanobacteria)

A co.transport system $\mathrm{An}_{\mathrm{Na}} \mathrm{Na}^{-\mathrm{HCO}_{3}-\text { symport }}$ in this example. Calso reported in cyansbacterium).

A CO_{2}-ATPase has also been proposed.....

Induction of active $\mathrm{DIC}\left(\mathrm{CO}_{2}\right){ }^{1}$

Time course of change in $K_{0.5}\left[\mathrm{CO}_{2}\right]$ of Eremosphaera viridis at pH 5 when switched to $0.03 \% \mathrm{CO}_{2}$ after growth on $5 \% \mathrm{CO}_{2}$. Cultures of E. viridis were switched from $5 \% \mathrm{CO}_{2}$ to $0.03 \% \mathrm{CO}_{2}$ at pH 5.0 and sampled over a $200-\mathrm{h}$ period.

Active CO_{2} uptake is induced under conditions of low CO_{2}. The uptake can be differentiated from $\mathrm{HCO}_{3}{ }^{-}$uptake because of the acid $\mathrm{pH}(5.0)$, at which CO_{2} is the major DIC species.

[^6]
CO_{2} uptake and O_{2} evolution measured by mass spectrometry. ${ }^{1}$

Measurement of CO_{2} uptake (-) and O_{2} evolution (-----) by mass spectrometry during illumination of Eremosphaera viridis cell suspensions (containing $55-60 \mu \mathrm{~g} \mathrm{Chl}$) in BTP-HC1 buffer (pH 7.5) in the presence of $100 \mu \mathrm{M}$ DIC. Curve \boldsymbol{a}, cells treated with Carbonic Anhydrase (50 WA units ml^{-1}). Curve b, cells pretreated with glycolaldehyde (100 mM) for 5 minutes to inhibit CO_{2} fixation Curve c, untreated cells. Curve d, O_{2} evolution of untreated cells.

The results indicate that CO_{2} uptake precedes O_{2} evolution and is not a consequence of CO_{2} uptake caused bu CO_{2} utilization during carbon fixation.

[^7]
Apparatus for controlling DIC levels during microimpalement. ${ }^{1}$

To control DIC levels during electrical measurements, a brass chamber with an inlaid glass bottom was designed to perfuse cells with a media containing variable concentrations of DIC, while creating a laminar-flow N_{2} shield to prevent any DIC contamination from the atmosphere. The chamber rested on the stage of a light transmission microscope so that, while in the chamber, cells could still be observed and impaled for electrical analysis. Preliminary oxygen-electrode studies indicate that for the conditions used in the electrophysiology, the affinity for CO 2 uptake has a $K_{0.5}$ of approximately $15 \mu \mathrm{M}$.

The apparatus was used to determine if active CO_{2} (or HCO_{3}^{-}) uptake involved electrogenic transport at the plasma membrane.

[^8]
Example of a typical electrophysiological trial in APW (pH 5.0) in the light. ${ }^{1}$

Following impalement, when the potential had reached a stable negative value, input resistance was measured by current injection. The DIC concentration was then changed from high to low, and the input resistance was measured again. Cells remained in each concentration for a minimum of 300 s .

There was no electrical signal during CO_{2} uptake. Therefore, the uptake mechanism is not electrogenic.

[^9]
A CO_{2}-ATPase may be responsible for active CO_{2} uptake. ${ }^{1}$

ATPase activity (percent control) as a function of DIC concentration ($n=5$). The control activity was $2.00 \pm 0.58 \mu \mathrm{~mol} \cdot \mathrm{mg}$ protein ${ }^{-1} \cdot \mathrm{~h}^{-1}$. The curve is a best fit to the Michaelis-Menten equation. The $K_{0.5}[\mathrm{DIC}]$ was $124.6 \mu \mathrm{M}$; equivalent to a $K_{[\mathrm{CO}]}$ of $22.5 \mu \mathrm{M}$.

Activation of ATPase by CO_{2} can be explained as activation by a substrate of the ATPase reaction. The similarity of the half-maximal activating concentration, and affinity for CO_{2} uptake in whole cells supports this explanation. Biochemical isolation and characterization is crucial for confirmation.

[^10]
[^0]: ${ }^{1}$ Michael Hügler, Harald Huber, Karl Otto Stetter and Georg Fuchs 2003. Autotrophic CO_{2} fixation pathways in archaea (Crenarchaeota). Archives of Microbiology 179:160-173.

[^1]: ${ }^{1}$ Source: http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?form=6\&db=t\&Dopt=s\&uid=6150

[^2]: ${ }^{1}$ Source: Hortus botanicus vindobonensis (ca 1773)

[^3]: ${ }^{1}$ Source: http://www.hear.org/pier/species/panicum_maximum.htm

[^4]: ${ }^{1}$ Source: Hitchcock, A.S. (rev. A. Chase). 1950. Manual of the grasses of the United States. USDA Misc. Publ. No. 200. Washington, DC. 1950. Usage Guidelines.
 http://plants.usda.gov/java/profile?symbol=ZEMA\&photoID=zema_001_avd.tif

[^5]: ${ }^{1}$ Source: Britton, N.L., and A. Brown. 1913. Illustrated flora of the northern states and Canada. Vol. 2: 40. http://plants.usda.gov/java/profile?symbol=POOL\&photoID=pool_001_avd.tif

[^6]: ${ }^{1}$ Source: Jason S.T. Deveau, Roger R. Lew, and Brian Colman 1998 Evidence for active CO_{2} uptake by a CO_{2}-ATPase in the acidophilic green alga Eremosphaera viridis. Canadian Journal of Botany 79:1274-1281.

[^7]: ${ }^{1}$ Source: Caterina Rotatore, Roger R. Lew, and Brian Colman 1992 Active uptake of CO_{2} during photosynthesis in the green alga Eremosphaera viridis is mediated by a CO_{2}-ATPase. Planta 188:539-545.

[^8]: ${ }^{1}$ Source: Jason S.T. Deveau, Houman Khosravani, Roger R. Lew, and Brian Colman $1998 \mathrm{CO}_{2}$ uptake mechanism in Eremosphaera viridis. Canadian Journal of Botany 76:1161-1164.

[^9]: ${ }^{1}$ Source: Jason S.T. Deveau, Roger R. Lew, and Brian Colman 1998 Evidence for active CO_{2} uptake by a CO_{2}-ATPase in the acidophilic green alga Eremosphaera viridis. Canadian Journal of Botany 79:1274-1281.

[^10]: ${ }^{1}$ Source: Jason S.T. Deveau, Roger R. Lew, and Brian Colman 1998 Evidence for active CO_{2} uptake by a CO_{2}-ATPase in the acidophilic green alga Eremosphaera viridis. Canadian Journal of Botany 79:1274-1281.

