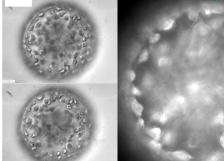

Cells and Chloroplasts

Eremosphaera viridis

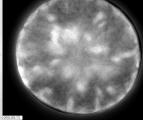
Cells and Chloroplasts



Brightfield

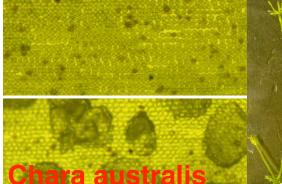
467 nm (blue) (to highlight chloroplasts)

Eremosphaera viridis


Cells and Chloroplasts

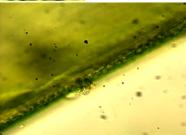
Eremosphaera viridis

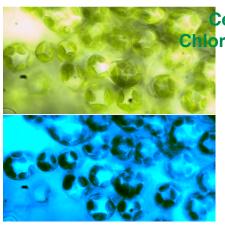
Cells and Chloroplasts



High light intensities cause the chloroplasts to move to the center of the cell to protect the nucleus.

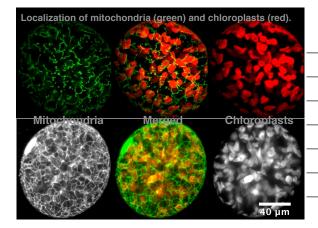
Eremosphaera viridis


Cells and Chloroplasts

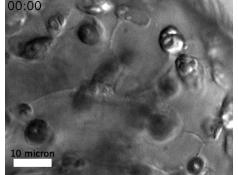



Cytoplasmic movement behind the peripheral sheath of chloroplasts probably serves to move photosynthate products throughout the cell.

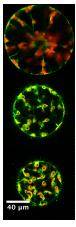
Chara australis



Cells and Chloroplasts

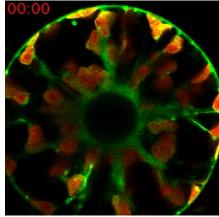


Cells and Chloroplasts



Chloroplasts and Cytoplasmic strands (some containing mitochondria)

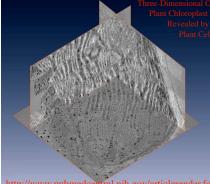
Eremosphaera viridis



Chloroplasts do not exist in isolation within the cell. In *Eremosphaera viridis*, chloroplasts (red) are often closely associated with mitochondria (imaged with MitoFluorGreen).

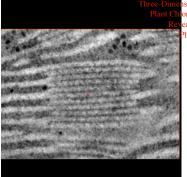
> Mitochondria also exist at unique _ locations: peri-nuclear in the case of *Eremosphaera viridis.* _

Z-sections of *Eremosphaera viridis* from medial (top image) to cortical (bottom image). Note that mitochondria often interconnect chloroplasts.

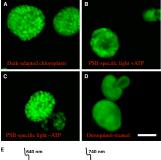


Chloroplasts and mitochondria in *Eremosphaera viridis*.

During high light-induced chloroplast movements to the center of the cell, mitochondria remain at the periphery. So, the two organelles are not colocalized in an obligatory fashion in *Eremospharea* viridis.


The Structure of Chloroplasts

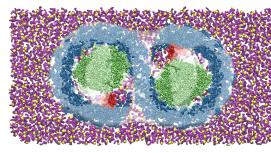
Organization of Higher-Thylakoid Membranes Electron Tomography. 17:2580-2586 (2005)


http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1197436

The Structure of Chloroplasts

mensional Organization of Higher-Choroplast Thylakoid Membranes Revealed by Electron Tomography. Plant Cell 17:2580-2586 (2005)

central.nih.gov/articlerender.fcgi?artid=1197436


The Structure of Chloroplasts

in Aral

ATP	Confocal Microscopy of Structural Alterations in	
	Native Hydrated De-Enveloped Chloroplasts during State Transitions.	
	(A) Dark-adapted chloroplasts.	
	(B) and (C) Dark-adapted chloroplasts subjected to PSII-specific light in the presence (B) or absence (C) of	
	ATP.	
	(D) Dark-adapted chloroplasts treated with 1 mM duroquinol, in the dark, Bar = 5 μ m.	
30 min	(E) Time-lapse series of dark-adapted chloroplasts subjected first to PSII-specific light and then to PSI-	
1	specific light. Thylakoid Membrane Remodeling during State	

http://www.plantcell.org/cgi/content/short/tpc.107.055830v1

Reaction Centers and Light-Harvesting Complexes within the Chloroplast Membrane

Jen Hsin, James Gumbart, Leonardo G. Trabuco, Elizabeth Villa, Pu Qian, C. Neil Hunter, and Klaus Schulten. Protein-induced membrane curvature investigated through molecular dynamics flexible fitting. Biophysical Journal, 97:321-329, 2009. (PMC: 2711417)

