
Chapter 1
Analyzing data

1.1 INTRODUCTION

Imagine being asked to analyze the results of a market survey in which
500 individuals respond to about 40 questions. The questions deal with
personal characteristics of the respondents (age, sex, marital status, level of
education, income, etc.), the respondents� expenditures on selected products
and services, and the number, type, and frequency of purchase of various
newspapers and magazines. The survey results can be visualized as arranged
in the form of a table, the rows of which correspond to respondents and the
columns to the questions. Though such a survey is by no means large, as
market surveys go, clearly it would be very difficult to draw any meaningful
conclusions simply by glancing at the long list of Þgures.

However, by suitable reduction�very much as common sense and the
techniques that follow describe�it is possible to make comparisons, mea-
sure relationships, display graphics, identify trends, and so on. It may be
possible, for example, to form a �proÞle� of the �typical� reader of a sports
magazine, to Þnd out if there is any relationship between age and reader-
ship of newspapers, to measure the relationship between income and travel
expenditures, or to determine trends in magazine readership. This analysis
could be of use not only to publishers, but also to advertisers and Þrms
having to decide in which publications a certain product will be advertised.

Techniques and methods by which large sets of data can be summarized
and analyzed form the subject of this chapter.

1.2 DISTRIBUTIONS

Almost every type of analysis begins with a set of observations on one or
more variables or attributes. This set of observations forms the raw material
for statistical analysis. When the number of observations is large, it may
be difficult to consider them in the raw form in which they were obtained�
hence the need for various measures that reduce the data in a meaningful
way.
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2 Chapter 1: Analyzing data

A Þrst step in the reduction process is usually the classiÞcation of the
observations into a number of classes (categories, intervals), together with
a count of the number (�frequency�) of observations falling into each class.
It will be convenient always to construct these classes so that they form a
mutually exclusive and collectively exhaustive set. A set of classes is called
mutually exclusive if no observation can be classiÞed into more than one
class, and collectively exhaustive if every observation can be classiÞed into
one of the classes.

A list of mutually exclusive and collectively exhaustive classes and of the
corresponding frequencies of observations is called a frequency distribution.
If the frequencies are divided by the total number of observations, a relative
frequency distribution is obtained. The following examples illustrate the
construction of such distributions.

Example 1.1 The supervisor of an assembly department records the day�s
output (measured by the number of product units assembled) of the twenty
workers in the department:

Assembly department, raw data

Worker Out- Worker Out- Worker Out- Worker Out-
No.: put No.: put No.: put No.: put

1 10 7 9 13 9 19 10
2 8 8 10 14 8 20 10
3 9 9 11 15 10
4 10 10 10 16 11
5 10 11 10 17 9
6 11 12 9 18 10

Certain observations occur more than once. Little information is lost if the
department�s output is summarized in the form of a frequency or relative
frequency distribution:

Assembly department, distribution of output

Output Frequency Relative frequency
(1) (2) (3)

8 2 0.10
9 5 0.25
10 10 0.50
11 3 0.15
Total 20 1.00
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Columns (1) and (2) show the frequency distribution of output; columns (1)
and (3) show the relative frequency distribution of output. For example, 2 of
the 20 workers (10% of the number of workers employed in the department)
had an output of 8 units each; 5 workers (25%) had an output of 9 units;
etc.

Example 1.2 Table 1.1 shows the age distribution of drivers insured with
an automobile company. The raw material in this case can be visualized as
a long list showing the age of each of about 18,700 drivers. Needless to say,
such a list, even if it could be reproduced here, would be useless�who, after
all, can grasp the pattern of nearly 19,000 numbers?

Table 1.1
Distribution of insured drivers by age

Age Frequency Relative frequency

Less than 20 2,238 0.1197
20 to 25 2,634 0.1409
25 to 30 2,362 0.1264
30 to 35 2,158 0.1155
35 to 40 1,716 0.0918
40 to 45 1,455 0.0779
45 to 50 1,448 0.0775
50 to 55 1,396 0.0747
55 to 60 1,317 0.0705
60 to 65 1,051 0.0562
65 or more 913 0.0489
Total 18,688 1.0000

A few points concerning the construction of Table 1.1 should be noted.
A person�s age at a given point in time can conceivably be determined to
any degree of accuracy�to the nearest year, month, day, hour, minute, or
second. Age is a continuous variable. In principle, at least, it can take any
value within a speciÞed interval. In Table 1.1, each observation is classiÞed
into one of a number of age intervals. The intervals are mutually exclusive
(an observation cannot be classiÞed into more than one interval) and col-
lectively exhaustive (the intervals cover all possible age values). The width
of all but the Þrst and last intervals is constant and equal to Þve years.
Obviously, the intervals could have been made unequal (for example, 20 to
35, 35 to 45), or, if equal, their width could have been any number of years.
Needless to say, it is for the investigator to choose the format appropriate
for a given situation or problem.
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Example 1.3 The sex distribution of the same group of insured drivers is
shown in Table 1.2.

Table 1.2
Distribution of insured drivers by sex

Sex Frequency Relative frequency

Male 10,331 0.5528
Female 8,357 0.4472
Total 18,688 1.0000

In the Þrst two examples, the observations assumed numerical values
and the categories or intervals into which they were classiÞed were also in
numerical form. In such cases, we speak of distributions of a variable; for
example, we say that age or output is a variable with a certain frequency or
relative frequency distribution. In the third example, however, there is no
natural numerical description of the observations. A person is either male
or female; sex is an attribute. Variables, then, assume numerical values;
attributes have no natural numerical description. For example, age, tem-
perature, distance, weight are variables. Sex (male, female), marital status
(single, married, divorced, other), nationality (German, French, other) are
attributes.

One type of cumulative frequency distribution shows the number of ob-
servations having values less than or equal to the indicated ones. Similarly,
one type of cumulative relative frequency distribution shows the proportion
of observations with values less than or equal to the indicated ones.

Example 1.1 (Continued) Using the distribution of output in the assem-
bly department, we can construct the following cumulative distributions:

Cumulative
Cumulative relative

Output frequency frequency
(1) (2) (3)

8 2 0.10
9 7 0.35
10 17 0.85
11 20 1.00
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Columns (1) and (2) form the cumulative frequency distribution, and columns
(1) and (3) the cumulative relative frequency distribution of output. For ex-
ample, 7 workers (35% of the total number of workers) have output less than
or equal to 9 units; 17 workers (85%) have output less than or equal to 10
units.

Example 1.2 (Continued) The cumulative age distributions of insured
drivers are shown in Table 1.3. For example, 9,392 drivers (50.25% of the
total) are under 35.

Table 1.3
Cumulative age distribution of insured drivers

Cumulative Cumulative
Age interval frequency rel. frequency

To 20 2,238 0.1197
20 to 25 4,872 0.2606
25 to 30 7,234 0.3870
30 to 35 9,392 0.5025
35 to 40 11,108 0.5943
40 to 45 12,563 0.6722
45 to 50 14,011 0.7497
50 to 55 15,407 0.8244
55 to 60 16,724 0.8949
60 to 65 17,775 0.9511
65 or more 18,688 1.0000

In a similar manner, we can construct cumulative distributions showing
the number (or proportion) of observations with values greater than, greater
than or equal to, or less than the indicated ones.

1.3 GRAPHS

The form of a distribution is often better understood with the help of a
graph. Many types of charts are used in books, magazines, and newspapers
to present distributions graphically.

Perhaps the most frequently used type is the bar chart, in which the
frequency or relative frequency of a given value or category equals the height
of the corresponding bar. Figure 1.1 shows the relative frequency distribu-
tion of output of Example 1.1 in the form of a bar chart. The bars in this
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Figure 1.1
Bar chart, Example 1.1

illustration are rather thick, but this is not mandatory; the width of the bar
has no special meaning.

Another popular type of graph is the pie chart, in which the relative size
of the �slice� representing a value or category is made equal to its relative
frequency. Figure 1.2 is a pie chart of the distribution of output in Example
1.1.

A lesser-known variant of the bar chart is the histogram, most commonly
used to display the distribution of a continuous variable. In a histogram, the
frequencies or relative frequencies of the variable are shown as rectangles;
the width of each rectangle equals the width of the interval, and its area the
corresponding frequency or relative frequency.

When all intervals have the same width, a histogram looks identical to
a bar chart with contiguous bars, except for the scale of the vertical axis.
A histogram, however, provides a more sensible display when the intervals
have unequal width.

Example 1.4 Columns (1) and (2) of Table 1.4 show the distribution of
income for families having more than $5,000 and less than $75,000 annual
income. (For example, 9.76% of these families have income between $25,000
and $30,000.)

All income intervals have the same width. Figure 1.3.a is a bar chart
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Figure 1.2
Pie chart, Example 1.1

Table 1.4
Distributions of family income

Income Rel. frequ. Income Rel. frequ. Width Height
($000) (%) ($000) (%) ($000) (4)÷(5)
(1) (2) (3) (4) (5) (6)

5 to 10 4.17 5 to 15 12.73 10 1.27
10 to 15 8.56 15 to 30 28.87 15 1.93
15 to 20 9.76 30 to 75 58.40 45 1.30
20 to 25 9.33 100.00
25 to 30 9.76
30 to 35 10.09
35 to 40 9.76
40 to 45 9.00
45 to 50 7.68
50 to 55 6.69
55 to 60 5.26
60 to 65 4.28
65 to 70 3.07
70 to 75 2.52

100.00
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of this distribution. The bars are contiguous, but this is not necessary�it
is the height of the bar that matters.

Figure 1.3
Distributions of family income

Suppose, however, that only the abridged distribution of income shown
in columns (3) and (4) of Table 1.4 was available. It is consistent with the
detailed distribution, but the intervals are fewer and of unequal width. A
bar chart of the abridged distribution is shown in Figure 1.3.b. Note that
it gives quite a different impression of the form of the income distribution
from that given by Figure 1.3.a.

Consider now the histogram shown in Figure 1.3.c. The relative fre-
quency of each income interval is given by the area (width × height) of the
rectangle. The calculation of the heights is shown in column (6) of Table
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1.4. The vertical axis of Figure 1.3.c is labelled �relative frequency per unit
width,� as a reminder that we are dealing with a histogram. In this case, of
course, the original distribution has been drastically abridged, but, despite
this, it can be seen that the histogram preserves better than the bar chart
the form of the detailed distribution.

A histogram has two properties, which we shall use later on: the area
of the bar equals the frequency or relative frequency; and the total area of
the bars equals 1 (if the histogram depicts relative frequencies) or the total
number of observations (if it shows frequencies).

1.4 MEASURES OF TENDENCY

In addition to�or in place of�a frequency distribution, a cumulative dis-
tribution, or a graph, it is often desirable to further reduce the information
contained in the set of observations to a single number that is, in a certain
sense, a representative measure of the entire distribution of the variable.
Two types of such measures are usually encountered: (a) measures of loca-
tion or tendency; and (b) measures of dispersion, indicating the degree of
variation or dispersion of the observations around a measure of tendency or
location.

Perhaps the most familiar and most widely used measure of location is
the arithmetic average (more simply, the average or mean) of the variable.
If there are n observations with values x1, x2, . . . , xn, their average or mean
(x̄) is deÞned as

x̄ =
1

n
(x1 + x2 + · · ·+ xn)

=
1

n

X
x.

(1.1)

The last expression is a shorthand version of the Þrst; this summation
notation is explained in Appendix 1.

When the observations have been grouped in the form of a frequency or
relative frequency distribution, the calculation of the mean becomes easier.
If a discrete variable takes values x1, x2, . . . , xm with respective frequencies
f(x1), f(x2), . . . , f(xm), the mean, x̄, is

x̄ =
1

n
[x1f(x1) + x2f(x2) + · · ·+ xmf(xm)]

=
1

n

X
xf(x),

(1.2)

where n = f(x1) + f(x2) + · · ·+ f(xm) =
P
f(x).

It should be clear that Equation (1.2) follows from (1.1), since there
are f(x1) observations having the value x1, f(x2) observations having the
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value x2, and so on. Equation (1.2) can also be written in terms of relative
frequencies:

x̄ = x1
f(x1)

n
+ x2

f(x2)

n
+ · · ·+ xm f(xm)

n

= x1r(x1) + x2r(x2) + · · ·+ xmr(xm)
=
X

xr(x),

(1.3)

where r(x) = f(x)/n are the relative frequencies of the variable.

Example 1.1 (Continued) We illustrate the two methods for calculating
the mean using the distribution of output of the assembly department.

Calculation of mean output

x f(x) r(x) xf(x) xr(x)

8 2 0.10 16 0.80
9 5 0.25 45 2.25
10 10 0.50 100 5.00
11 3 0.15 33 1.65

20 1.00 194 9.70

The average output per worker can be calculated using frequencies,

x̄ =
1

n

X
xf(x) =

194

20
= 9.70,

or relative frequencies,

x̄ =
X

xr(x) = 9.70.

The result is the same.

When the observations have been classiÞed into intervals and the raw
data are not available, the exact value of the mean cannot be calculated.
An approximate value can be obtained by treating all observations in the
interval as being equal to the midpoint of the interval; the mean is then
calculated using either Equation (1.2) or Equation (1.3) with x1, x2, . . . ,
xm now denoting the midpoints of the class intervals. It can be shown that
the accuracy of this approximation depends on how close the midpoints are
to the averages of the observations in each interval.
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Table 1.5
Calculation of mean of age distribution of insured drivers

Age Midpoint, Frequency, Rel. frequ.,
interval x f(x) r(x) xf(x) xr(x)

To 20 18.0 2,238 0.1197 40,284.0 2.15460
20 to 25 22.5 2,634 0.1409 59,265.0 3.17025
25 to 30 27.5 2,362 0.1264 64,955.0 3.47600
30 to 35 32.5 2,158 0.1155 70,135.0 3.75375
35 to 40 37.5 1,716 0.0918 64,350.0 3.44250
40 to 45 42.5 1,455 0.0779 61,837.5 3.31075
45 to 50 47.5 1,448 0.0775 68,780.0 3.68125
50 to 55 52.5 1,396 0.0747 73,290.0 3.92175
55 to 60 57.5 1,317 0.0705 75,727.5 4.05375
60 to 65 62.5 1,051 0.0562 65,687.5 3.51250
65+ 68.0 913 0.0489 62,084.0 3.32520

Total 18,688 1.0000 706,395.5 37.80230

Example 1.2 (Continued) The approach is illustrated in calculating the
average age of insured drivers, as shown in Table 1.5.

The Þrst and last intervals are open: 18 and 68 were arbitrarily chosen
as the midpoints of the intervals in the belief that they would be close to
the average age of drivers under 20 and over 65.

The approximate average age can be calculated using either the fre-
quency distribution,

x̄ =
1

n

X
xf(x) = (706, 395.5)/(18, 688) = 37.799,

or the relative frequency distribution,

x̄ =
X

xr(x) = 37.802.

The small discrepancy is due to rounding. We conclude that the average
age of insured drivers is approximately 37.8 years.

Measures of tendency other than the mean are less frequently used.
The mode of a distribution is the most frequently occurring observation
or interval. For example, the mode of the distribution of output in the
assembly department is 10; similarly, the modal Þve-year age interval of the
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drivers� age distribution is 20 to 24. Obviously, a distribution will not have
a unique mode if more than one value or interval are tied as most frequently
occurring.

The median of a distribution is the value of the variable which divides
the distribution into two equal halves. Think of the observations as arranged
in increasing or decreasing order: the median is the value of the observation
in the middle of this list. For example, the median of the distribution
of output in the assembly department is 10; the median age of insured
drivers is in the interval 30 to 35. The values of the variable that divide
the distribution (arranged in order of increasing values of the observations)
into four equal parts are called, respectively, the Þrst quartile, the second
quartile (which is the median), and the third quartile of the distribution.
The values of the variable which divide the distribution into Þve equal parts
are called quintiles; those dividing the distribution into ten equal parts are
called deciles; and so on.

1.5 MEASURES OF DISPERSION

Measures of dispersion variously attempt to describe the �scatter,� �vari-
ation,� or �spread� of the observations around a central value. Almost
invariably, the mean serves as that central value, but any other measure
of tendency, such as the median or the mode of the distribution, can in
principle be used.

Suppose that n (ungrouped) observations x1, x2, . . . , xn are available.
An obvious candidate for a measure of dispersion is the average deviation:

1

n

X
(x− x̄). (1.4)

(x− x̄) measures the difference between an observation and the mean, and
the average deviation is the average of these differences. It is easy to show,
however, that the average deviation is always equal to zero (see next ex-
ample), and is therefore useless as a measure of dispersion. An alternative
measure of dispersion is the average absolute deviation, deÞned as

1

n

X
|x− x̄|. (1.5)

Despite its intuitive appeal, this measure of dispersion is seldom used, pri-
marily because it is not tractable mathematically. The most widely used
measure of dispersion, one very similar to the average absolute deviation, is
the variance, s2:

s2 =
1

n

X
(x− x̄)2. (1.6)

The (positive) square root of the variance is the standard deviation or stan-
dard error, s:

s = +
√
s2. (1.7)



1.5 Measures of dispersion 13

For example, suppose that the starting annual salaries of n = 3 accountants
are 33, 34, and 38 ($000). The three measures of dispersion deÞned above
can be calculated as follows:

x (x− x̄) |x− x̄| (x− x̄)2
33 −2 2 4
34 −1 1 1
38 3 3 9
105 0 6 14

(x̄ = 35)
P
(x− x̄) P |x− x̄| P(x− x̄)2

The average starting salary is 35. The sum of deviations from the mean,P
(x− x̄), equals zero, as is always the case. The average absolute deviation

is 6/3 or 2. The variance equals 14/3 or 4.667. The standard deviation is√
4.667 or 2.16.
Measures of dispersion are used primarily to compare the variation of

two or more sets of observations. From now on, we shall use either the
variance or the standard deviation as such a measure.

To illustrate, suppose we are attempting to compare starting salaries of
accountants and economists. The starting salaries of four economists were
25, 29, 32, 40 ($000) and are shown in Figure 1.4 together with the salaries
of the three accountants.

Figure 1.4
Comparison of starting salaries

It is clear from a visual inspection of Figure 1.4 that accountants, on
the average, earn more than economists; also, that their salaries tend to
vary less around their average salary than do the salaries of economists. We



14 Chapter 1: Analyzing data

would have reached exactly the same conclusions had we compared instead
the means (35 vs. 31.5) and variances (4.667 vs. 30.250) of the two sets of
observations.

Of course, in this small example, visual inspection is convenient and
reliable; however, the value of the summary measure will be appreciated in
cases involving many observations, where the pattern of the observations
cannot be ascertained easily even with the help of a graph.

When the observations have been grouped in the form of a frequency
or relative frequency distribution, the calculation of the variance can be
simpliÞed. If a discrete variable takes values x1, x2, . . . , xm, with frequen-
cies f(x1), f(x2), . . . , f(xm), then the variance of the distribution can be
calculated from the following expression:

s2 =
1

n
[(x1 − x̄)2f(x1) + (x2 − x̄)2f(x2) + · · ·+ (xm − x̄)2f(xm)]

=
1

n

X
(x− x̄)2f(x).

(1.8)

This formula is derived from Equation (1.6). It follows because f(x1) obser-
vations have the value x1 and deviation (x1 − x̄), f(x2) observations have
deviation (x2 − x̄), and so on. The variance can also be calculated using
relative frequencies. Since r(x) = f(x)/n,

s2 =
X
(x− x̄)2 f(x)

n
=
X
(x− x̄)2r(x). (1.9)

Example 1.1 (Continued) The mean of the distribution of output in the
assembly department was found earlier to be 9.70 units. The variance of the
distribution can be calculated using the frequencies in column (2) as shown
in columns (4) to (6).

x f(x) r(x) (x− x̄) (x− x̄)2 (x− x̄)2f(x) (x− x̄)2r(x)
(1) (2) (3) (4) (5) (6) (7)

8 2 0.10 −1.70 2.89 5.78 0.2890
9 5 0.25 −0.70 0.49 2.45 0.1225
10 10 0.50 0.30 0.09 0.90 0.0450
11 3 0.15 1.30 1.69 5.07 0.2535

n = 20 1.00 14.20 0.7100

Thus, the variance is

s2 =
1

n

X
(x− x̄)2f(x) = 1

20
14.20 = 0.71.
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Alternatively, the variance may be calculated using the relative frequencies
of column (3), as shown in column (7):

s2 =
X
(x− x̄)2r(x) = 0.71.

The result is the same.

Just as in raw data, the variance measures the dispersion of the ob-
servations about their mean. The greater the dispersion, the greater the
variance. To illustrate, suppose that the distributions of starting salary of
accountants and economists were as depicted in the histograms of Figure
1.5 (the data are Þctitious). The same scale is used in both panels.

Figure 1.5
Distributions of starting salaries

Accountants� salaries tend to vary less around their average salary than
do economists� salaries; the variance of accountants� salaries will therefore
be smaller than that of economists� salaries.

The variance of a distribution can also be written in a form more con-
venient for hand calculations:

s2 =
1

n

X
x2f(x)− x̄2. (1.10)
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In terms of relative frequencies, this is

s2 =
X

x2r(x)− x̄2. (1.11)

When the observations are grouped into class intervals, the variance of a
distribution can be approximated by using the midpoint as the value of all
the observations in the interval and then applying the above expressions in
a straightforward way.

Example 1.2 (Continued) Table 1.6 illustrates the use of midpoints and
of Equation (1.11) in calculating the variance of the age distribution of
insured drivers.

Table 1.6
Calculation of variance of drivers� age distribution

Midpoint, Rel. frequ.,
Age interval x r(x) x2 x2r(x)

To 20 18.0 0.1197 324.00 38.783
20 to 25 22.5 0.1409 506.25 71.331
25 to 30 27.5 0.1264 756.25 95.590
30 to 35 32.5 0.1155 1,056.25 121.997
35 to 40 37.5 0.0918 1,406.25 129.094
40 to 45 42.5 0.0779 1,806.25 140.707
45 to 50 47.5 0.0775 2,256.25 174.859
50 to 55 52.5 0.0747 2,756.25 205.892
55 to 60 57.5 0.0705 3,306.25 233.091
60 to 65 62.5 0.0562 3,906.25 219.531
65+ 68.0 0.0489 4,624.00 226.114

1.0000 1,656.989

Applying Equation (1.11), and recalling that x̄ = 37.80 from Table 1.5,
we get:

s2 =
X

x2r(x)− x̄2 = (1, 656.989)− (37.80)2 = 228.15.

The standard deviation of the distribution is s = 15.10.

It should always be kept in mind that neither the means nor the vari-
ances of dissimilar distributions can be compared. Obviously, it does not
make sense to compare a distribution of age with a distribution of income,
the mean age with mean income, or the variance of the age distribution with
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the variance of the income distribution. We may, however, compare simi-
lar distributions and their associated summary measures, provided that the
comparison makes sense. For example, it would be appropriate to compare
the mean and variance of the distribution of men�s income with those of
women�s income; or the current distribution of age with that of ten years
ago.

1.6 INDEX NUMBERS

Index numbers are measures designed to indicate the relative changes in the
overall level of such variables as prices, production, wages, or employment.

The simplest type of index expresses a series of measurements on one
particular variable in terms of one member of the series. For example, Table
1.7 shows the price of a �standard� refrigerator during the period 19X7 to
19X9.

Table 1.7
Price and price index of refrigerators,

19X7 to 19X9

Year Price ($) Price index, 19X7 = 100

19X7 600 100
19X8 700 117
19X9 750 125

This price series can be expressed in terms of the 19X7 price by dividing
the price each year by the 19X7 price, and multiplying the result by 100 to
form an index of the price of refrigerators with the year 19X7 serving as
the base of the index. In relation to the 19X7 price, then, the price of
refrigerators in 19X8 was (700/600) × 100 or about 117%, while that in
19X9 was about 125%. Put a different way, the price in 19X8 showed a 17%
increase relative to the 19X7 price; the 19X9 price was 25% greater than
the 19X7 price.

The most usual type of index is the composite index, which summarizes
a number of series into one index series. Let us consider, as an example,
how one may construct an index of appliance prices based on the information
shown in Table 1.8.

Perhaps the simplest way of combining these prices to form a composite
index is to calculate each year the ordinary average price of the appliances,
and to express the terms of this series in relation to the average price in the
base year, as shown in Table 1.9.

The obvious shortcoming of this method is that all the price series are
given the same weight (namely, 1/3) in the calculation of the average price
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Table 1.8
Appliance prices, 19X7 to 19X9

Price of:
Year Stoves Refrigerators Freezers

19X7 $475 $600 $350
19X8 $490 $700 $400
19X9 $510 $750 $440

Table 1.9
Index of appliance prices, 19X7 to 19X9,

based on average of prices

Average price of Index of appliance
Year appliances ($) prices, 19X7=100

19X7 475 100
19X8 530 112
19X9 567 119

and hence in the index. Since the appliances sell in different numbers, it
would seem that a better index could be constructed by assigning different
weights to the individual price series�weights reßecting the relative contri-
butions of the various appliance types in the market.

Suppose that the numbers of appliances sold in 19X7 were as follows:

Appliance Number sold (000) Share

Stoves 600 0.4
Refrigerators 750 0.5
Freezers 150 0.1
Total 1,500 1.0

A weighted average appliance price can be constructed by multiplying the
price of each type by the market share of that appliance type and summing
the products. For example, the weighted average appliance price in 19X7
would be

(0.4)(475) + (0.5)(600) + (0.1)(350) = 525.

An index can then be constructed by dividing the weighted average price
each year by that in the base year and multiplying the result by 100. These
calculations are shown in Table 1.10.

According to this composite index, 19X8 appliance prices increased by
12% and 19X9 prices by 19% over appliance prices in 19X7.



1.7 Bivariate distributions 19

Table 1.10
Index of appliance prices, 19X7 to 19X9,
based on weighted average of prices

Year Weighted ave. price ($) Index, 19X7=100

19X7 525 100
19X8 586 112
19X9 623 119

This simple example illustrates a method that can be used to form any
composite index. Depending on the case and the purpose for which the index
is constructed, a decision must be made regarding the appropriate number
and type of the time series to be incorporated in the index, the period to
serve as the base of the index, and the weights to be used in combining the
individual time series. The weights in particular are usually chosen so as
to reßect the importance of the individual series in forming the composite
index. The base period need not be the same as that of the weights. The
weights, however, must remain constant if the purpose of the index is to
show changes in the component series.

For example, the Consumer Price Index (CPI) in the United States
and Canada is a composite index of prices of commodities and services, with
weights reßecting the shares of these items in consumer expenditures. The
Dow-Jones Industrial Average (DJIA) is a composite index of the prices of
30 selected companies (�representative of Corporate America�) with equal
weights. The New York Stock Exchange (NYSE) Index is a composite index
of the prices of all stocks listed on the Exchange, weighted according to the
total market value of outstanding shares. Other stock exchange indexes�
e.g., the Toronto Stock Exchange (TSE) Index�are calculated in a similar
fashion on the basis of the prices of a sample of stocks traded.

1.7 BIVARIATE DISTRIBUTIONS

Until now, we have assumed that the observations are classiÞed into cat-
egories or classes according to a single variable or attribute. The fre-
quency and relative frequency distributions we have examined may thus
be called univariate frequency or relative frequency distributions. There are
cases, however, where the observations may be classiÞed according to two,
three, or more variables or attributes jointly, yielding bivariate, trivariate,
or in general multivariate frequency and relative frequency distributions�
alternatively, yielding joint distributions of two, three, or more speciÞed
variables or attributes. (The term cross-tabulation is also used to indicate a
bivariate distribution.)
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Example 1.5 The population of insured drivers, classiÞed according to a
single variable�age�yielded the distribution shown in Table 1.1. The same
population, classiÞed according to another single attribute�sex�yielded
the distribution shown in Table 1.2. Still the same population, classiÞed
jointly according to sex and age, yields the joint distribution shown in Table
1.11.

Table 1.11
Age and sex distribution of insured drivers

Relative frequencies (%)
Age interval Male Female Totals

Less than 20 7.68 4.29 11.97
20 to 25 8.29 5.80 14.09
25 to 30 7.29 5.35 12.64
30 to 35 6.61 4.94 11.55
35 to 40 5.06 4.12 9.18
40 to 45 4.14 3.65 7.79
45 to 50 4.12 3.63 7.75
50 to 55 3.87 3.60 4.74
55 to 60 3.53 3.52 7.05
60 to 65 2.59 3.03 5.62
65 or more 2.10 2.79 4.89
Totals 55.28 44.72 100.00

Table 1.11 shows the relative frequencies with which the indicated com-
binations of age and sex occur. For example, of the entire population, 7.68%
were male under 20 years old; 4.29% were female under 20; 8.29% were male
20 to 25 years old; and so on. Note that the sum of the relative frequencies
for each age interval or sex category shown on the margin of the table is
identical to the relative frequency for that age interval or sex category given
by the corresponding univariate relative frequency distributions of age and
sex. For example, since 7.68% of drivers are male under 20 years old and
4.29% are female under 20 years old, the percentage of drivers under 20
years old (regardless of their sex) ought to be equal to 7.68+4.29 = 11.97, a
Þgure which can be obtained directly from the univariate distribution of age
shown in Table 1.1. Similarly, since 7.68% of drivers were male less than 20
years old, 8.29% were male 20 to 25 years old, . . . , and 2.10% were male 65
or more years old, the percentage of male drivers (regardless of age) is the
sum of these relative frequencies (55.28%), which is the Þgure given in the
univariate distribution of sex shown in Table 1.2. This identity always holds
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when the classes or class intervals are mutually exclusive and collectively
exhaustive.

The mean, variance, and other summary measures of a variable may be
calculated in a straightforward way using the values of the variable and the
corresponding frequencies or relative frequencies shown on the margin of a
joint distribution.

A bivariate frequency or relative frequency distribution of a variable
can be shown graphically in the form of a stereogram, which is an extension
of the histogram to the bivariate case (see Figure 1.6). The frequency or
relative frequency of a given pair of intervals is indicated by a pillar, the
volume of which is equal to the frequency or relative frequency, while its
width and depth are equal to the length of the corresponding intervals.
Such a diagram is, of course, difficult to construct, but it can be borne in
mind as an aid in visualizing bivariate distributions.

Figure 1.6
Bivariate distribution

1.8 CONDITIONAL DISTRIBUTIONS

The frequency or relative frequency distribution of one variable or attribute
given that the other variable or attribute has a certain value or falls into
a certain category is called a conditional distribution. There are as many
conditional distributions of one variable or attribute as there are values or
classes of the other.



22 Chapter 1: Analyzing data

Example 1.6 The joint frequency distribution of drivers according to age
and accident involvement during a recent one-year period was as follows (all
Þgures in thousands):

Involved in accident?
Age Yes No Total

Under 25 127 805 932
25 and over 239 3,392 3,631
Total 366 4,197 4,563

Thus, of the 4,563 registered drivers, 127 were 24 years old or younger
and were involved in one or more traffic accidents; 3,392 were 25 years old
or older and were not involved in any traffic accidents; and so on.

The distribution of accident involvement for drivers under 25 can be
determined as follows. Of the 4,563 drivers, 932 were under 25; of these, 127
or about 14% had an accident, while 805 or 86% had no accidents. Therefore,
the conditional relative frequency distribution of accident involvement for
drivers under 25 is:

Drivers under 25

Involved in accident? Rel. frequency

Yes 0.14
No 0.86

1.00

Similarly, the conditional relative frequency distribution of accident involve-
ment for drivers 25 and over is:

Drivers 25 and over

Involved in accident? Rel. frequency

Yes ( 239/3,631=) 0.07
No (3,392/3,631=) 0.93

1.00

These distributions conÞrm a rather well-known fact, namely, that the acci-
dent rate among young drivers is greater than among older drivers, although
the difference in these rates (14% vs. 7%) is not as great as many people
believe.

The same joint frequency distribution can be used to construct two
other conditional distributions. The conditional distribution of age for
drivers involved in an accident is:
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Drivers with accidents

Age Rel. frequency

Under 25 (127/366=) 0.35
25 and over (239/366=) 0.65

1.00

Thus, of the 366 drivers involved in an accident, 127 or 35% were under 25,
while 239 or 65% were 25 and over.

Similarly, the conditional distribution of age for drivers who had no
accidents is:

Drivers without accidents

Age Rel. frequency

Under 25 0.19
25 and over 0.81

1.00

It may be noted that 932 or 20.4% of the 4,563 drivers were under 25; but
among the drivers who had an accident, younger drivers accounted for a
much higher proportion (34.7%).

Conditional relative frequency distributions, therefore, are calculated
by dividing the joint frequencies by the appropriate row or column totals.
Exactly the same method is used to calculate conditional distributions on the
basis of a joint relative frequency distribution, as the following illustrates.

Example 1.6 (Continued) Suppose that only the joint relative frequency
distribution of drivers by age and accident involvement was available:

Involved in accident?
Age Yes No Total

Under 25 0.028 0.176 0.204
25 and over 0.052 0.744 0.796
Total 0.080 0.920 1.000

This distribution, of course, is based on the joint frequency distribution
listed earlier; for example, 127 or 2.8% of the 4,563 drivers were under 25
and were involved in an accident.

To construct the conditional distribution of, say, age, given that a driver
was involved in an accident, we could argue as follows. Out of every 1,000
drivers, 80 were involved in an accident; out of these 80, 28 were under
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25 and 52 were 25 years old or older. Therefore, the proportion of �under
25s� among drivers who had an accident is 28/80 or 35%. Similarly, the
proportion of drivers 25 and over among those drivers who had an accident
is 65%.

Drivers with accidents

Age Rel. frequency

Under 25 (0.028/0.080=) 0.35
25 and over (0.052/0.080=) 0.65

1.00

This is exactly the same conditional distribution as the one calculated using
the joint frequency distribution.

The reader can verify that all the other conditional distributions can
also be obtained by dividing the joint relative frequencies in the appropriate
row and column by that row or column�s marginal relative frequency. The
�appropriate� row or column is the one that corresponds to the �given�
category or value.

Let us write this deÞnition with symbols (doing so may appear pedan-
tic at this point, but will help us better understand similar deÞnitions for
probability distributions in the next chapter). Imagine the joint relative
frequency distribution of two variables or attributes, X and Y , arranged in
the form of a table:

Y
X · · · y · · · Total
· · · · · · · · · · · · · · ·
x · · · r(x, y) · · · r(x)
· · · · · · · · · · · · · · ·
Total · · · r(y) · · · 1.0

The relative frequency of the pair of classes (x, y) is denoted by r(x, y); r(x)
and r(y) are the marginal relative frequencies of classes x and y respectively.
The conditional relative frequency of class y given that the class of attribute
X is x, which we write as r(Y = y|X = x) and abbreviate as r(y|x), is given
by

r(y|x) = r(x, y)

r(x)
. (1.12)

Similarly,

r(x|y) = r(x, y)

r(y)
. (1.13)



1.9 Independence 25

The above imply that

r(x, y) = r(x)r(y|x) = r(y)r(x|y), (1.14)

an expression useful for calculating joint from marginal and conditional rel-
ative frequencies.

1.9 INDEPENDENCE

In business, as in other Þelds, we often want to determine whether or not
two variables or attributes are related to one another, and, if so, to measure
the strength of that relationship. This is particularly true when we wish
to use one variable or attribute to predict the other. Think, for example,
of the relationship between a test for admission to a graduate program and
performance in that program. The test is taken before admission. If the
test is well designed, we expect that it will be related to performance in the
program. In particular, we expect people who do well in the test to do well
in the program also. Conversely, people who do not do well in the test may
be denied admission to the program on the grounds that they are expected
to do poorly if admitted to the program.

Let us begin with a very simple example, and Þrst consider how to
establish whether or not there is any relationship between two attributes.
Once we determine that a relationship exists, we can then consider how to
measure the strength of that relationship.

Suppose that it is possible to classify unambiguously drivers as Good
or Bad. (This is hardly a simple task, but we need not elaborate further.)
Suppose further that 200 drivers were classiÞed according to sex and skill
as shown in Table 1.12.

Table 1.12
Distribution of drivers by skill and sex

Sex
Skill Male Female Total

Good 77 (0.385) 33 (0.165) 110 (0.550)
Bad 63 (0.315) 27 (0.135) 90 (0.450)
Total 140 (0.700) 60 (0.300) 200 (1.000)

The joint relative frequencies are shown in parentheses. The question
is: Is there any relationship between sex and driving skill?

It would be inappropriate, of course, to claim that male drivers are
worse than female drivers because �there are more male bad drivers (63)
than female bad drivers (27)�; there are, after all, more male drivers in
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Table 1.13
Conditional relative frequency distributions

Marginal
Male Female distribution,

Skill drivers drivers all drivers

Good (77/140=) 0.55 (33/60=) 0.55 (110/200=) 0.55
Bad (63/140=) 0.45 (27/60=) 0.45 ( 90/200=) 0.45
Total 1.00 1.00 1.00

total than female drivers. A more appropriate comparison should be based
on the conditional distributions of skill given sex shown in Table 1.13.

We see that 77 of the 140, or 55% of the male drivers are Good, and
45% are Bad; 55% of the female drivers are Good and 45% are Bad. In this
case, the conditional distribution of driving skill is the same regardless of
the sex of the driver. To put it roughly, as far as skill is concerned, it does
not make any difference whether the driver is a man or a woman. We are
justiÞed therefore in claiming that the two attributes, sex and driving skill,
are unrelated to one another. (We would have reached the same conclusion
had we considered instead the conditional distributions of sex given skill, as
the reader can easily verify.)

Two attributes, then, are said to be unrelated to or independent of one
another if all the conditional distributions of one attribute given the other
are identical.

Unrelated attributes have two features which are also illustrated in
this example. First, when two attributes are unrelated, all the conditional
relative frequency distributions of one attribute are the same and are equal
to the marginal relative frequency distribution of the attribute. Note that
the proportions of Good and Bad drivers among all drivers are 55% and
45% respectively�the same as among male or female drivers. Second, when
two attributes are unrelated, all joint relative frequencies are equal to the
product of the corresponding marginal relative frequencies. To see this, refer
to Table 1.12 and note that the relative frequency of Male Good drivers
(0.385) is equal to the product of the marginal relative frequencies of Male
(0.700) and Good (0.550) drivers; similarly, (0.165) = (0.300)(0.550), (0.315)
= (0.700)(0.450), and (0.135) = (0.300)(0.450). (Incidentally, the opposite
is also true: if either of these features is present in a joint distribution, we
may conclude that the attributes are independent.)

This deÞnition of independence applies to variables as well. Suppose
that the Þles of a number of insured drivers are examined, and the number
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Table 1.15
Joint distribution B

Sex
Skill Male Female Total

Good 0 110 110
Bad 90 0 90
Total 90 110 200

of claims they made in two successive years is recorded.

Conditional distributions of claims

Number of Number of claims, 19X5
claims, 19X4 0 1 2 Total

0 0.90 0.08 0.02 1.0
1 0.90 0.08 0.02 1.0
2 0.90 0.08 0.02 1.0

You will note that the conditional distribution of the number of claims in
19X5 is the same regardless of the number of claims in 19X4. In this case,
we can say that the two variables are independent of one another. (This
example is not an accurate reßection of reality. In fact, drivers who make
more claims in a particular year also tend to make more in the next year.)

Independence is an extreme condition. Most relationships arising in
practice vary in strength from very weak to very strong. The next two sec-
tions describe measures of the strength of a relationship between attributes
and between variables.

1.10 MEASURING THE RELATIONSHIP BETWEENATTRIBUTES

The conclusion that sex and driving skill are unrelated derives, of course,
from the Þctitious data presented in Table 1.12. Suppose instead that the
joint distribution of sex and driving skill was as shown in Table 1.14 or 1.15.

Table 1.14
Joint distribution A

Sex
Skill Male Female Total

Good 110 0 110
Bad 0 90 90
Total 110 90 200
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According to Table 1.14, all male drivers are Good and all female drivers
are Bad. According to Table 1.15, all male drivers are Bad and all female
drivers Good. In either case, it is reasonable to claim that the two attributes
are perfectly related, in the sense that knowing one attribute is tantamount
to knowing the other. For example, given Table 1.15, knowing that a driver
is female is knowing that she is a Good driver; knowing that a driver is male
is knowing that he is a Bad driver.

An attribute, X, is said to be perfectly related to another attribute, Y ,
if knowledge of Y implies knowledge of X . A perfect relationship, as deÞned
here, may not be symmetric; it is not difficult to construct examples where
X is perfectly related to Y , but not Y to X.

Real-world relationships usually fall somewhere between the two ex-
tremes of no relationship and perfect relationship. Therefore, we wish to
construct a measure of the �extent� (�degree,� �strength�) of a relationship
between two attributes.

One such measure is the coefficient of association (P ), deÞned as

P =
1

q − 1
XX [r(x, y)− r(x)r(y)]2

r(x)r(y)
. (1.15)

We have in mind a joint distribution of two attributes, X and Y , arranged
in the form of a table. r(x, y) denotes the relative frequency of a pair of
classes (x, y). r(x) and r(y) are the marginal relative frequencies of classes
x and y respectively. q is the smaller of the number of rows (m) and of
columns (k) of the table, that is, q = min(m,k). The double summation
symbol indicates that P is a sum of terms, one for each pair of classes (x, y).

Let us Þrst illustrate the calculation of this coefficient, and then discuss
its properties. Suppose that the joint relative frequency distribution of sex
and skill is as shown in Table 1.16.

Table 1.16
Joint distribution C

Sex
Skill Male Female Total

Good 0.25 0.20 0.45
Bad 0.45 0.10 0.55
Total 0.70 0.30 1.00

There are m = 2 rows and k = 2 columns; hence, q = min(2, 2) = 2,
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and

P =
1

(2− 1)
£ (0.25− 0.45× 0.70)2

0.45× 0.70 +
(0.20− 0.45× 0.30)2

0.45× 0.30 +

+
(0.45− 0.55× 0.70)2

0.55× 0.70 +
(0.10− 0.55× 0.30)2

0.55× 0.30
¤

= 0.0813.

What are the properties of this coefficient? It can be shown of the
coefficient of association that:

(a) it has a value always in the range 0 to 1;

(b) it is equal to 0 when the two attributes are independent, in which case
r(x, y) = r(x)r(y);

(c) it is equal to 1 when one attribute is perfectly related to the other; this
will be the case when each row (if the number of rows is greater than or
equal to the number of columns), or each column (if the number of rows
is less than or equal to the number of columns) of the joint frequency
or relative frequency distribution contains a single non-zero entry; and
Þnally,

(d) the greater the deviations of the actual joint relative frequencies, r(x, y),
from those that would be expected had the two attributes been independent�
in which case, r(x, y) = r(x)r(y)�the greater is the value of the coef-
Þcient.

The P -coefficient, therefore, may be interpreted as a standardized mea-
sure of the degree of association between two attributes.

Example 1.7 In order to investigate the relationship between the price of
ten-speed bicycles purchased and various buyer characteristics, a manufac-
turer mailed the following short questionnaire to 200 bicycle buyers.
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1. What price did you pay for your
bicycle?

$100 to $199
$200 to $299
$300 and over

2. How old are you?
under 18
18 to 30
over 30

3. Are you male? female?
4. What is your family income?

under $20,000
$20,000 to $30,000
over $30,000

5. In what area do you live?
urban
suburban
rural

6. Do you live in a
house?
apartment?
other?

7. Do any of your friends own bicy-
cles?

yes
no

8. How long did you contemplate buy-
ing before making the actual pur-
chase?

less than 1 month
1 to 3 months
over 3 months

It was felt that by knowing if age, sex, family income, etc. were related
to the price of the bicycle purchased, an advertising strategy could be drawn
up that would take advantage of this information.

Of the 200 questionnaries sent out, 84 were returned. Table 1.17 summarizes
the responses to the Þrst two questions. The numbers in parentheses are
relative frequencies. For example, 21 buyers (25% of the 84 who responded)
stated that their age was between 18 and 30, and that the price they paid
for their bicycles was between $200 and $299.

Table 1.17
Survey of bicycle buyers

Age (years)
Price ($) Under 18 18 to 30 Over 30 Total

100 to 199 20 (0.238) 7 (0.083) 1 (0.012) 28 (0.333)
200 to 299 6 (0.071) 21 (0.250) 6 (0.071) 33 (0.393)
300 and more 3 (0.036) 7 (0.083) 13 (0.155) 23 (0.274)

Total 29 (0.345) 35 (0.417) 20 (0.238) 84 (1.000)

The coefficient of association between price and age can be calculated
using Equation (1.15):

P =
1

3− 1
£ (0.238− 0.345× 0.333)2

0.345× 0.333 +· · ·+(0.155− 0.238× 0.274)
2

0.238× 0.274
¤
= 0.230.
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Six other, similar tabulations can be made. In each case, price is one of the
two attributes examined, and the question is whether there is any relation-
ship between price and the other attribute. The results are summarized in
the following table:

Price vs.: P

Age 0.230
Sex 0.014

Family income 0.037
Location of home 0.005
Type of residence 0.047
Friends own bicycles 0.097
Time before purchase 0.054

The attribute most strongly related to price, therefore, is age. To see what
type of relationship exists between price and age, we examine the three
conditional distributions of price given age:

Conditional distributions of price given age

Price ($) Under 18 18 to 30 Over 30

100 to 199 0.69 0.20 0.05
200 to 299 0.21 0.60 0.30
300 and more 0.10 0.20 0.65

1.00 1.00 1.00

For example, of the 35 buyers in the 18 to 30 age group, 7 (20%) paid $100
to $199; 21 (60%) paid $200 to $299; and so on. It is clear that those under
18 tend to buy in the low price range; those in the 18 to 30 age group tend
to buy in the medium price range; and those over 30 tend to buy in the high
price range.

1.11 CORRELATION

We turn now to the measurement of the strength of the relationship between
two variables.

Example 1.8 Figure 1.7 shows the behavior of two indexes of stock prices
over a Þve-year period. The Þrst is an index of the prices of shares of
food companies; the second is an index of the prices of shares of chemical
companies.

It appears that the two time series are closely related, in the sense that
they tend to vary in unison. The relationship is more clearly illustrated
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Figure 1.7
Stock price indexes

in the scatter diagram shown in Figure 1.8. Each point in this diagram
represents one pair of monthly values of the two indexes. For example, the
values of the two indexes in the Þrst three months of 19X4 are shown in the
following table.

Year Month Foods index Chemicals index

19X4 Jan. 143.0 113.3
Feb. 151.1 114.6
Mar. 160.5 122.8
· · · · · · · · ·

These three pairs of values are identiÞed in Figure 1.8.

Figure 1.8 conÞrms the impression that the two indexes tend to move
together. It seems that high values of one index tend to be associated with
high values of the other index, and that low values of one index are associated
with low values of the other. The relationship between the two indexes can
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Figure 1.8
Scatter diagram: foods and chemicals

be described roughly by an upward-sloping line, the �trend� line in Figure
1.8.

Figure 1.9 is a scatter diagram of two other monthly indexes of stock
prices over the same period. The Þrst is an index of the price of shares of
textile and clothing Þrms, and the second is an index of the price of shares
of companies involved in the extraction of primary metals. As in the case
of foods and chemicals, the relationship between the primary metals and
the textile and clothing indexes is such that the greater the value of one
index, the greater tends to be the value of the other index, and vice versa.
However, when we compare the two scatter diagrams (Figures 1.8 and 1.9),
it appears that there is a difference in the �strength� (�extent,� �degree�) of
the relationship between the two pairs of variables: it seems that the foods
and chemicals indexes are more closely related than the primary metals and
textile and clothing indexes; that is, the values of the Þrst two indexes tend
to cluster more closely around the trend line than the values of the other
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Figure 1.9
Scatter diagram: textiles and primary metals

two indexes.

The scatter diagram is a useful tool for obtaining an impression of the
nature and extent of the relationship between two variables. Graphs, how-
ever, also have certain limitations: their construction is time-consuming,
and sometimes appearances may be deceptive. The question then may be
posed: Can the degree of the relationship between two variables be summa-
rized into a single number? With certain qualiÞcations, the answer is yes.
A widely used measure for this purpose is the correlation coefficient, which
we shall now describe.

Suppose there are n pairs (x, y) of values of two variables, X and Y .
The correlation coefficient of X and Y is deÞned as:

r =

P
(x− x̄)(y − ȳ)pP

(x− x̄)2pP(y − ȳ)2 . (1.16)
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We illustrate Þrst the calculation of r and then describe its properties. Sup-
pose we have three pairs of observations for variables X and Y : (1, 1),
(−1, 0), and (0, 2). Then the following are calculated:

x y x− x̄ y − ȳ (x− x̄)(y − ȳ) (x− x̄)2 (y − ȳ)2
1 1 1 0 0 1 0

−1 0 −1 −1 1 1 1
0 2 0 1 0 0 1
0 3 0 0 1 2 2

(x̄ = 0) (ȳ = 1)
P
(x− x̄)(y − ȳ) P

(x− x̄)2 P
(y − ȳ)2

Therefore, the correlation coefficient of X and Y is

r =
1√
2
√
2
= 0.5.

The properties of the correlation coefficient can be best understood with
the help of Figure 1.10, which shows six types of scatter diagrams and the
associated approximate value of the correlation coefficient. These properties
are:
(a) The value of the correlation coefficient is always between −1 and +1.
(b) When all the pairs of values of X and Y lie on a straight line, r is equal

to +1 if the line is upward-sloping (Figure 1.10.a, or to −1 if the line
is downward-sloping (Figure 1.10.d).

(c) When the pairs of (x, y) values tend to cluster along an upward-sloping
line, the value of r will be a positive number between 0 and 1; the closer
the points cluster around the line, the closer r will be to +1 (Figure
1.10.b). Similarly, the closer the points cluster around a downward-
sloping line, the closer will r be to −1 (Figure 1.10.c). Depending
on whether the line is upward- or downward-sloping, we say that the
variables are positively or negatively correlated.

(d) When, as in Figure 1.10.e, there is no apparent linear �trend� in the
relationship between X and Y , r will tend to be near 0. In fact, r = 0
if X and Y are independent. Note, however, that r will be near 0 also
for certain types of curvilinear relationships, as, for example, in Figure
1.10.f.
The correlation coefficient may therefore be described as a standardized

measure of the degree to which two variables are linearly related.
For calculations by hand, it is convenient to write Equation (1.16) in

an alternative form:

r =

P
xy − nx̄ȳpP

x2 − nx̄2pP y2 − nȳ2 . (1.17)



36 Chapter 1: Analyzing data

Figure 1.10
Scatter diagrams and associated correlation coefficients

Example 1.8 (Continued) The calculation of the correlation coefficient
of the foods and chemical stock price indexes is illustrated in Table 1.18.
Available are 60 pairs of observations.

We Þnd, x̄= (8,486.0)/60 = 141.433, and ȳ = (6,402.1)/60 = 106.702;
also, X

x2 − nx̄2 = (1, 205, 825)− (60)(141.433)2 = 5, 627,X
y2 − nȳ2 = (694, 064)− (60)(106.702)2 = 10, 945,X

xy − nx̄ȳ = (911, 340)− (60)(141.433)(106.702) = 5, 869,
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Table 1.18
Calculations, Example 1.8

Index of:
Foods, Chemicals,

Year Month x y x2 y2 xy

19X0 Jan. 146.6 102.8 21,491 10,568 15,070
Feb. 144.7 97.8 20,938 9,584 14,166
Mar. 150.4 98.7 22,620 7,742 14,844
· · · · · · · · · · · · · · · · · ·

19X4 Nov. 127.9 101.3 16,358 10,262 12,956
Dec. 125.4 93.3 15,725 8,705 11,700

8,486.0 6,402.1 1,205,825 694,064 911,340

and

r =
5, 869√

5, 627
√
10, 945

= 0.740.

The correlation coefficient of the primary metals and the textile and clothing
indexes can be shown to be 0.680. The calculated coefficients conÞrm the
visual impression obtained from Figure 1.9, that the relationship between
the metals and clothing indexes is not as strong as that between foods and
chemicals.

As with all other summary measures, the correlation coefficient* does
not convey as much as a diagram does. This disadvantage, however, is often

* Equation (1.16) can also be written as

r =
1
n

P
(x− x̄)(y − ȳ)q

1
n

P
(x− x̄)2

q
1
n

P
(y − ȳ)2

.

The numerator is called the covariance of X and Y , while the denominator
is the product of the standard deviations of X and Y . Thus the correlation
coefficient can also be described as

Cor(X,Y ) =
Cov(X, Y )

Sd(X)Sd(Y )
.

We shall not make use of this relationship in this chapter, and will not
elaborate on the interpretation of the covariance. The reader should keep
in mind that there are several ways of expressing the correlation coefficient.
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compensated by the convenience of being able to deal with only a single
number instead of large sets of observations.

Example 1.8 (Continued) Table 1.19 shows the correlation coefficients
of pairs of the following sub-indexes of industrial stocks: foods (F), textiles
and clothing (T&C), primary metals (PM), metal fabricating (MF), and
chemicals (C). The correlation coefficients are calculated on the basis of 60
monthly observations on all these indexes over the same Þve-year period.

Table 1.19
Correlation coefficients of stock price indexes

F T&C PM MF C

F 1.000 0.686 0.910 0.749 0.740
T&C 1.000 0.680 0.779 0.858
PM 1.000 0.693 0.801
MF 1.000 0.626
C 1.000

We have already examined two of these correlation coefficients, that of
foods and chemicals (0.740), and that of primary metals and textiles and
clothing (0.680). The correlation coefficient of chemicals and foods is, of
course, the same as that of foods and chemicals: the correlation coefficient
refers to a pair of variables, and the order in which the variables are consid-
ered is irrelevant. Table 1.19, therefore, does not show redundant entries.
Note also that the correlation coefficient of a variable with itself is 1.0.

The correlation coefficients of Table 1.19 allow us to tell at a glance
that all pairs of indexes are positively and fairly strongly correlated. The
highest correlation is that between foods and primary metals (0.910), while
the least correlated are the metal fabricating and chemicals indexes (0.626).

When the observations on the variables X and Y have been grouped
in the form of a joint frequency or relative frequency distribution, the cal-
culation of the correlation coefficient can be simpliÞed. Think of a joint
frequency distribution, arranged as usual in the form of a table:

Values of Y
Values of X · · · y · · · Total

· · · · · · · · · · · · · · ·
x · · · f(x, y) · · · f(x)
· · · · · · · · · · · · · · ·
Total · · · f(y) · · · n



1.11 Correlation 39

As shown in the table, the frequency of the pair of values (x, y) is
denoted by f(x, y). Denote the marginal frequency of x by f(x), and the
marginal frequency of y by f(y). The grand total of the frequencies is, of
course, n. The correlation coefficient can now be deÞned as:

r =

PP
(x− x̄)(y − ȳ)f(x, y)pP

(x− x̄)2f(x)pP(y − ȳ)2f(y) . (1.18)

The double summation symbol (
PP

) indicates that the numerator is the
sum of terms (x− x̄)(y − ȳ) for all pairs of values of x and y.

Equation (1.18) is simply a different version of (1.16). It takes ad-
vantage of the fact that there are altogether f(x, y) terms of the form
(x − x̄)(y − ȳ), f(x) terms of the form (x − x̄)2 , and f(y) terms of the
form (y − ȳ)2 .

If we use a similar notation, r(x, y), r(x), r(y), for the joint and marginal
relative frequencies, (1.18) can also be written in the following form:

r =

PP
(x− x̄)(y − ȳ)r(x, y)pP

(x− x̄)2r(x)pP(y − ȳ)2r(y) . (1.19)

It should be realized that Equations (1.18) and (1.19) are identical
expressions: (1.19) is obtained from (1.18) by dividing both numerator and
denominator by n. Further algebraic manipulations produce yet two more
versions, which are more efficient for calculations by hand or by computer:

r =

PP
xyf(x, y)− nx̄ȳpP

x2f(x)− nx̄2pP y2f(y)− nȳ2

=

PP
xyr(x, y)− x̄ȳpP

x2r(x)− x̄2pP y2r(y)− ȳ2 .
(1.20)

The above expressions are frequently used also to approximate the corre-
lation coefficient of a joint frequency or relative frequency distribution in
which the variables are classiÞed jointly into class intervals. In this case,
the midpoints of the intervals are used as representative values of all the
observations in an interval.

Example 1.9 Among the criteria used in judging applications to graduate
business schools at the time of this writing, the candidate�s performance
in the Graduate Management Admission Test (GMAT) usually carries sub-
stantial weight. The GMAT is not, of course, the only criterion used in ad-
missions decisions. Other sources of information regarding the applicant�s
potential are the transcript of undergraduate courses and grades, letters of
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recommendation, interviews, and the application form itself; different grad-
uate schools attach different weights to these inputs in deciding whether an
applicant should be admitted or not. According to its sponsors, the GMAT
is currently used by about 700 institutions in the U.S., Canada, and other
countries, and is required of every applicant by more than 500 schools.

The GMAT yields three scores: verbal, quantitative, and total. A
candidate�s �raw� score is based on the number of correct answers to a large
number of multiple-choice questions, minus a certain fraction of the wrong
answers�an adjustment intended to discourage haphazard guessing. The
total raw scores are converted into scaled scores, so that the mean of the
scaled total scores is equal to 500 and their standard deviation equal to 100.
The same process is applied to verbal and quantitative scores; the mean and
standard deviation of the scaled verbal and quantitative scores are 30 and
8 respectively.

The purpose of the test is to predict a student�s performance in a grad-
uate business program. The questions are so designed and the scores so
calculated that a higher score in the GMAT is taken as an indication of
potentially better performance in the graduate school. Thus, it is quite ap-
propriate to ask how well the test predicts performance and how it compares
with other criteria used in admissions decisions.

It should be borne in mind that an examination of the relationship
between test scores (or any other quantitative measure used in admissions)
and performance in the graduate school is possible only for students who
have already been admitted by the school. It would have been useful to
have an indication of how well a rejected applicant might have performed
had he or she been admitted, but, for obvious reasons, such information is
not available.

Figure 1.11 is a scatter diagram showing the total GMAT score and the
average grade in the Þrst year of the MBA program of 80 full-time students
at a northeastern university.

Using the 80 pairs of observations and a computer program, it is an
easy matter to calculate the exact value of the correlation coefficient, which
can be shown to be equal to 0.517. However, in order to illustrate the ac-
curacy of the approximate method of calculating the correlation coefficient,
let us pretend that neither the original observations nor the scatter diagram
are available. Instead, suppose that we have been furnished with the joint
relative frequency distribution shown in Table 1.20. (This distribution can
be obtained from Figure 1.11 by drawing a �grid� of lines to form the cor-
responding class intervals, counting the number of observations falling into
each grid square, and dividing this frequency by 80 to obtain the relative
frequency of each cell. Observations lying on the boundary of two intervals
were classiÞed into the lower interval.)

Treating the midpoints of the intervals as representative of all observa-
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Figure 1.11
GMAT total scores and Þrst-year average grades

Table 1.20
Joint relative frequency distribution of GMAT total score

and Þrst-year average grade

GMAT total (X) First-year average grade (Y )
Interval: 3 to 4 4 to 5 5 to 6 6 to 7 7 to 8

Midpoint: 3.5 4.5 5.5 6.5 7.5 Total

400 to 500 450 0.025 0.125 0.150 0.012 0.312
500 to 600 550 0.025 0.100 0.212 0.112 0.038 0.487
600 to 700 650 0.025 0.075 0.050 0.038 0.188
700 to 800 750 0.012 0.012

Total 0.050 0.250 0.437 0.174 0.088 1.000
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tions in the interval, we calculate Þrst

x̄ =
X

xr(x) = (450)(0.312) + · · ·+ (750)(0.012) = 539.450,

ȳ =
X

yr(y) = (3.5)(0.050) + · · ·+ (7.5)(0.088) = 5.494,X
x2r(x) = (450)2(0.312) + · · ·+ (750)2(0.012) = 296, 678,X
y2r(y) = (3.5)2(0.050) + · · ·+ (7.5)2(0.088) = 31.196,

andXX
xyr(x, y) = (450)(3.5)(0.025) + · · ·+ (750)(7.5)(0.012) = 2, 988.2.

Therefore, the correlation coefficient is approximately

r =

PP
xyr(x, y)− x̄ȳpP

x2r(x)− x̄2pP y2r(y)− ȳ2

=
2, 998.2− (539.45)(5.494)p

296, 678− (539.45)2p31.196− (5.494)2
=

34.462

(75.311)(1.006)

= 0.45.

The difference between this value and the correct one (0.517) is rather
large in this case. In general, the success of the approximation depends on
the degree to which the midpoints are representative of the observations in
the cells. A glance at Figure 1.11 will show that the midpoints of the outer
cells do not represent well the observations in these cells. The reader should
not forget, however, that an exact value can be calculated only when all the
observations are available; a certain loss in accuracy must be expected when
they are not.

Let us now return to the question: Is the GMAT a good predictor
of student performance in the MBA program? From Figure 1.11 or the
calculated correlation coefficient, it is obvious that the two variables (GMAT
total and Þrst-year average grade) are positively correlated, that is, high
values of one variable tend to be associated with high values of the other
variable, and vice versa; this tendency is roughly described by the trend
line in Figure 1.11 (regression, a method to be discussed later in this text,
was used to determine the plotted line). On the other hand, it is also clear
that the relationship is far from being exact, and thus the reliability of the
GMAT total as a predictor of student performance is not very high.
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1.12 MULTIVARIATE DISTRIBUTIONS

It is, of course, possible to form joint distributions of any number of vari-
ables or attributes. Table 1.21, for example, shows the joint relative fre-
quency distribution of subscribers to a magazine according to sex, duration
of subscription, and place of residence.

Table 1.21
A trivariate distribution

Duration of Place of
Sex subscription residence %

Male Less than 1 yr. Urban 15
Rural 9

1 yr. or more Urban 16
Rural 26

Female Less than 1 yr. Urban 3
Rural 6

1 yr. or more Urban 7
Rural 8

Total 100

From such a distribution we may obtain all the bivariate or univariate
distributions. Joint distributions of more than three variables or attributes
can be formed in like manner. Measures of correlation or association can be
deÞned as extensions of the bivariate measures. We shall not pursue these
topics further, however, as they appear infrequently in business analysis.

1.13 COMPUTER PROGRAMS FOR DATA ANALYSIS

It goes without saying that the processing by hand of raw data of the size
commonly found in business would be very tedious, boring, time-consuming,
and expensive. Fortunately, many special computer programs are available
to perform the calculations and to display the results in a clear and elegant
manner.

Such computer programs range from relatively simple undertakings in
the public domain, to massive, elaborate, all-but-omniscient, and expensive
commercial software. Some are designed for large mainframe computers,
but others Þt the capacity of even a very modest personal computer.

Especially helpful for serious work in business are computing systems
such as BMDP, MINITAB, SAS, and SPSS. Some of these come with sep-
arate mainframe and personal computer versions. Each system has its own
requirements, speciÞcations, commands, and style of output. In general,
however, a system accepts a computer Þle containing the raw data, and
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allows the analyst to create new variables or attributes from the existing
ones, to delete or add observations, to summarize the data not only in the
manner described in this chapter but in other, more ingenious ways, to
display handsome charts and graphs, and to perform further statistical op-
erations. Included in these operations are calculations on special probability
distributions, the solution of complicated decision problems, the design and
selection of samples, the drawing of inferences from samples, and the exe-
cution of simulation, regression, and time series analyses. These statistical
operations are described in the chapters that follow.

1.14 IN SUMMARY

We examined various methods by which large sets of data can be reduced or
summarized in a manner suitable for the problem at hand and the purpose
for which the data were collected. A frequency or relative frequency distribu-
tion shows the number or proportion of observations falling into each class,
interval, or category. The average or mean is the most familiar summary
measure of tendency; among others are the median, the mode, the quartiles,
and the deciles of a distribution. The variation (dispersion) of a distribution
about the mean is usually measured by either the variance or the standard
deviation of the distribution.

Index numbers show the relative change in the level of one or more time
series.

Bivariate frequency or relative frequency distributions show the number
or proportion of the observations falling into classes formed according to two
variables or attributes. The univariate measures of tendency and dispersion
have their counterparts in bivariate distributions as well. The degree to
which two variables are linearly related can be measured by the correlation
coefficient. A similar measure of association between two attributes is the
P -coefficient.

PROBLEMS

1.1 The distribution of the number of cars per household is estimated to be as
follows:

Number of cars Number of households (000)

0 1,665
1 4,138
2 1,443

3 or more 313
Total 7,559

Calculate and interpret the mean, the variance, and the standard deviation of this
distribution. Assume that all households with 3 or more cars have exactly 3 cars.
Construct a graph of the relative frequency distribution of the number of cars per
household.
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1.2 The distributions of families by number of persons in the years 19X1, 19X6,
and 19X8 are given below:

Number of Number of families (000)
persons 19X1 19X6 19X8

2 1,589 2,010 2,088
3 1,042 1,220 1,268
4 1,052 1,289 1,422
5 663 687 696

6 or more 713 521 419
Total 5,059 5,727 5,893

(a) Determine the relative frequency distributions of the number of persons
per family in 19X1, 19X6, and 19X8.

(b) Calculate and interpret the mean and the variance of these distributions.
(c) Compare graphically the three relative frequency distributions.
(d) In the light of the above, comment on the changes in the distribution of

the number of persons per family in the period 19X1 to 19X8.

1.3 Suppose that variable Y is linearly related to variable X as follows:

Y = a+ bX,

where a and b are some constants. The following three problems illustrate such a
case. Suppose that there are n observations on X and Y .

(a) Use Equations (1.1) and (1.6) to show that the mean (ȳ), variance (s2y)
and standard deviation (sy) of the observations on Y are related to the corre-
sponding characteristics of the observations on X as follows:

ȳ = a+ bx̄,

s2y = b
2s2x,

sy = |b|sx.
(b) Same as (a), but using Equations (1.3) and (1.9).

1.4 Use the results of Problem 1.3 to Þnd the mean and standard deviation
of the age distribution of insured drivers of Example 1.2 with age measured in
months. Recall that the mean age in years is 37.8 and the standard deviation of
the age distribution, again expressed in years, is 15.10.

1.5 According to the instructions of a popular almanac, �to convert degrees
Fahrenheit into degrees centigrade, subtract 32, multiply by 5, and divide by 9; to
convert degrees centigrade to degrees Fahrenheit, multiply by 9, divide by 5, and
add 32.�

(a) Express degrees centigrade (C) as a linear function of degrees Fahrenheit
(F ).

(b) Express degrees Fahrenheit (F ) as a linear function of degrees centigrade
(C).

(c) The distribution of the maximum daily temperature in July, based on past
records and expressed in degrees Fahrenheit, has mean 88 and variance 5. Calcu-
late the mean, the variance, and the standard deviation of the same temperature
expressed in degrees centigrade. (Use the results of Problem 1.3.)
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1.6 As was stated in Example 1.9, the GMAT �raw� total scores are converted
into �scaled� total scores in such a way that the mean of the scaled scores is equal
to 500 and their standard deviation equals 100. Let X be the raw and Y the scaled
score of a candidate. Let x̄ and s2x be the mean and variance of all n raw scores.

(a) Show that the scaled scores will have mean 500 and standard deviation
100 if they are calculated as a linear transformation of the raw scores, y = a+ bx,
where b = 100/sx and a = 500− bx̄.

(b) Suppose that the mean and variance of the raw scores are x̄ = 450 and
s2x = 14,884 respectively. Calculate the scaled score of a candidate whose raw
score is 585.

1.7 Investigate and report on the methods used to construct the following in-
dexes: (a) the national consumer price index; (b) the national wholesale price
index; (c) the Dow-Jones averages; (d) the Standard and Poor�s stock price in-
dexes; (e) the indexes of the principal Stock Exchanges in the country.

1.8 (a) Explain how you would combine the prices (or price indexes) of refriger-
ators, ranges, washing machines, dryers, vacuum cleaners, and small appliances to
form an index of the price of household appliances. What weights would you use?

(b) Explain how you would combine the prices (or price indexes) of gasoline,
motor oil, tires, batteries, automobile insurance, automobile repairs, and automo-
bile registration fees to form an index of the cost of automobile operation and
maintenance. What weights would you use?

(c) Explain how you would combine the prices (or price indexes) of men�s
wear, ladies� wear, and children�s wear to form an index of the price of clothing.
What weights would you use in the construction of the index?

(d) Explain how you would combine the prices (or price indexes) of television
sets, audio equipment, movie projectors, and cameras to form an index of the cost
of home entertainment. What weights would you use?

1.9 Consider the data shown in Table 1.22.

Table 1.22
Labor statistics, Problem 1.9

Population
15 years Partici- Unem-

Year/ of age and Labor Em- Unem- pation ployment
month over force1 ployed ployed rate2 rate3

(Thousands of persons) (%) (%)

19X0 Dec. 18,139 11,445 10,635 810 63.1 7.1
19X1 Jan. 18,165 11,407 10,566
19X1 Feb. 18,192 11,511 10,433
19X1 Mar. 18,213 11,609 10,528
19X1 Apr. 18,235 11,585 10,319
19X1 May 18,258 11,880 11,026 854 65.1 7.2

Notes: 1 Number of persons 15 years of age and over who are actively seeking
work. 2 Labor force as a percentage of the population 15 years of age and over.
3 Number unemployed as a percentage of the labor force.
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(a) Fill in the missing entries. For each of the above six series, construct an
index with base January 19X1 = 100.

(b) Construct an index for the number employed with base March 19X1 =
100. Use the original series for the conversion.

(c) Convert the index series for the number unemployed with base January
19X1 = 100 to one with base March 19X1 = 100. In general, how do you change
the base of an index series?

1.10 Construct a consumer price index for the years 19X7, 19X8, and 19X9, with
base 19X7 = 100, using as weights the consumer expenditures in 19X8 shown in
Table 1.23.

Table 1.23
Data for Problem 1.10

Consumer
expenditure Consumer price indexes,

19X8 19X1 = 100
Category ($ million) 19X7 19X8 19X9

Food 3,364 180.1 208.0 235.4
Shelter 3,449 159.3 170.8 180.5

Household operation 819 177.4 194.3 211.6
Furnishings and equipment 847 144.3 150.0 162.0

Clothing 1,353 141.0 146.4 159.9
Personal care 337 157.5 169.4 183.7

Medical and health care 397 151.0 160.9 176.7
Smoking and alcoholic beverages 640 143.8 155.5 166.7

Transportation 2,291 153.3 162.2 178.0
Recreation 955 141.5 146.4 156.3
Reading 122 153.5 159.7 176.4
Education 149 117.2 124.0 129.4

Miscellaneous expenses 435 n.a. n.a. n.a.

1.11 The following table shows the annual income (X) and savings (Y ) of Þve
families:

Income, X Savings, Y
Family No.: ($000) ($000)

1 30 12
2 24 6
3 20 8
4 40 10
5 16 4

(a) Plot the observations in a scatter diagram. Does there appear to be a
relationship between income and savings?

(b) Calculate and interpret the correlation coefficient of income and savings.

1.12 Suppose that the joint relative frequency distribution of family size (Y ) and
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the number of cars owned (X) is as follows:

Number of Family size
cars 2 3 4 Total

0 0.3 0.1 0.4
1 0.1 0.2 0.1 0.4
2 0.1 0.1 0.2

Total 0.4 0.4 0.2 1.0

That is, 30% of the families consist of 2 members and have no car, and so
on. (a) Calculate and interpret the mean and variance of X and Y . (b) Calculate
and interpret the correlation coefficient of X and Y .

1.13 Two variables, X and Y , are transformed linearly to:

X 0 = a+ bX,

Y 0 = c+ dY,

where a, b, c, and d are some constants. Use Equation (1.16) to determine the
correlation coefficient of X 0 and Y 0 as a function of the correlation coefficient of
X and Y .

1.14 Suppose that X and Y are linearly related to the same third variable, Z.
That is, suppose that

X = a+ bZ, Y = c+ dZ,

where a, b, c, and d are some constants. Suppose that n observations are available
on X, Y , and Z.

(a) Using Equation (1.16), show that the correlation coefficient of X and Z
is equal to +1 if b > 0, or to −1 if b < 0.

(b) Again using Equation (1.16), show that the correlation coefficient of X
and Y is equal to +1 if the constants b and d have the same sign, or to −1 if b
and d have opposite signs.

1.15 As a member of a consumer research Þrm, you are asked to formulate a plan
for monitoring supermarket prices on a regular basis. Once a week, investigators
will visit a number of stores in the city and record the prices of items appearing
on a carefully prepared list. Each item will be speciÞed precisely by brand name,
size, quantity, etc. You realize, of course, that it would be impossible to monitor
the prices of all items carried by a supermarket�a typical supermarket carries
between 20,000 and 30,000 different items. Also, the items are not of the same
importance in the consumers� budgets, so their prices must be weighted in some
fashion. You have to consider the possibility that some items on your list are not
carried by all supermarkets, and that there may or may not be a close substitute
offered. Finally, the procedure for monitoring the prices must be fair in the sense
that it should not be unduly inßuenced by a store�s �specials� or �loss leaders.�
As brießy and precisely as possible, explain how you would go about setting up
the monitoring procedure.
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1.16 Five hundred male adults were interviewed concerning their consumption
of beer, other alcoholic beverages, and tobacco. They were classiÞed according
to their level of consumption as Light and Heavy consumers, with the following
results:

Alcoholic
Beer beverage consumption

consumption Light Heavy Total

Light 140 160 300
Heavy 110 90 200
Total 250 250 500

Beer Tobacco consumption
consumption Light Heavy Total

Light 200 100 300
Heavy 40 160 200
Total 240 260 500

Of the two attributes, consumption of other alcoholic beverages and consumption
of tobacco, which is more closely related to beer consumption? Explain and justify
your conclusions.

1.17 Last year�s distribution of drivers by age and accident involvement was as
follows:

Age of driver Licensed drivers Involved in accident(s)
(years) (000) (000)

16 to 19 327 56
20 to 24 605 71
25 to 34 1,188 97
35 to 44 846 57
45 to 54 739 44
55 to 64 518 27
65+ 339 14

Not known or reported 17
Total 4,562 383

(a) �Age and accident involvement are obviously not independent of one
another.� Formally justify this statement.

(b) Calculate the accident rate for 16- to 19-year-old drivers. Calculate the
accident rates for all listed age intervals.

(c) Without actually doing any calculations, but with the help of a diagram,
describe how the above data can be used to estimate the accident rate for any one
year of age (e.g., 19, 21, or 57).

1.18 As we know, the correlation coefficient is a measure of the degree of a linear
relationship between two variables. It is not intended to measure the strength of
a relationship between attributes, since the latter do not have a natural numerical
representation. It is, however, tempting to use numerical codes for the categories
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of the attributes (for example, 0 for �not satisÞed,� 1 for �moderately satisÞed,�
and 2 for �very satisÞed�), and then calculate the correlation coefficient as if the
attributes were variables.

Construct a simple numerical example to show that the value of the correla-
tion coefficient will vary depending on the codes used. Comment on this approach.

1.19 The National Automobile Association conducts annually a survey of its
members. Included in the questionnaire are such questions as: What type of car
do you own? How is it equipped? What distance do you drive annually? How
satisÞed are you with your car? 15,300 car owners responded to the 19X5 survey.

(a) The 19X5 responses to the question �How satisÞed are you with your
car?� tabulated according to the origin of the car, were as follows:

Very Moderately
Origin satisÞed satisÞed UnsatisÞed Total

North American 6,400 2,600 1,000 10,000
Japanese 3,200 500 100 3,800
European 1,000 300 200 1,500
Total 10,600 3,400 1,300 15,300

Would you say that an owner�s satisfaction depends on where the car came
from? Carefully justify your answer.

(b) The same 19X5 responses, tabulated according to the size of the respon-
dents� cars, were as follows:

Size Very Moderately
of car satisÞed satisÞed UnsatisÞed Total

Large 5,500 1,400 800 7,700
Medium 3,150 1,100 350 4,600
Small 1,950 900 150 3,000
Total 10,600 3,400 1,300 15,300

Does an owner�s satisfaction depend on the size of the car? Carefully justify
your answer.

(c) Would you say that an owner�s satisfaction depends more on the size of
the car than on the car�s origin? Carefully justify your answer.

1.20 The annual surveys of consumer Þnances conducted by the Survey Research
Center provide useful information on such aspects of household Þnancing as dis-
tribution of income, ownership of durables, and possession of Þnancial assets. The
survey reported here paid special attention to the increasing usage of credit cards.
2,576 heads of households throughout the country were interviewed during the
months of January, February, April, and May. The questions were identical in all
these interviews and related to the respondents� use of and attitude toward credit
cards, and to characteristics of their households (income, age of the head, etc.).
Of the 2,576 respondents, 1,290 used some type of credit card; 872 used a gasoline
card (issued by oil companies), 414 used a bank card (issued under the names:
Mastercard, Unicard, BankAmericard, etc.), 239 used a travel and entertainment
card (Diners Club, Carte Blanche, American Express), and 913 used a store credit
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Table 1.24
Use of credit cards by type and income

Annual family Percentage of families who use credit cards
income Gas Bank T&E Store Any type

Less than $3,000 8 2 2 11 17
$3,000 to 4,999 14 3 4 12 24
$5,000 to 7,499 24 11 5 23 39
$7,500 to 9,999 32 14 8 36 54
$10,000 to 14,999 45 22 10 50 67
$15,000 to 19,999 65 30 14 56 74
$20,000 to 24,999 68 40 30 66 84
$25,000 and over 67 37 40 61 81
All families 872 414 239 913 1,290

card (issued by major retail Þrms, such as Sears, Macy�s, etc.). Table 1.24 shows
the percentage of households using credit cards in each income interval. (The
information in this and the other table for this problem is presented very much as
it appeared in the original source. Read carefully.)

In one of the questions, �respondents who reported using a credit card were
asked how much they spent and charged on that particular type of credit card
in the previous month. The question was formed in this manner because of sus-
pected decline of recall of transactions further in the past.� Table 1.25 shows the
conditional distributions of the amount charged by income and by age of the head
of the household.

(a) In a diagram, show the relationship between family income, on the one
hand, and, on the other, each of the following variables: the percentage of families
using gasoline, bank, travel and entertainment, and retail store cards, and cards
of all types. Does income affect all these use rates in the same way?

(b) Using the midpoints of the listed income intervals, approximate the mean
and the variance of the distribution of family income for users of credit cards. (Use
$2,000 and $30,000 as the �midpoints� of the Þrst and last income intervals.)

(c) Using the midpoints of the intervals of the amount charged, approximate
the average amount charged in one month on all credit cards. (Use $250 as the
�midpoint� of the last interval; do not include in your calculations families who
did not report the amount charged.)

(d) Indicate how to calculate the correlation coefficients of the amount charged,
on the one hand, and the family income and age of the head of the household on
the other.

(e) Calculate the correlation coefficients of (i) amount charged and family
income, and (ii) amount charged and age of head of household. (You may want
to use a computer program for these calculations.) Which of the two variables
(family income, age of head) is more strongly related to the amount charged?

(f) Calculate and plot the relationship between the average amount charged
and income. Calculate and plot the relationship between average amount charged
and age of head of household.

(g) The respondents were asked to state the amount charged on their cards
in the month previous to the survey. How does the manner in which the survey
was conducted affect the validity of the survey results?
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Table 1.25
Amounts charged on all credit cards
(percentage distribution of families1)

Amount charged on all credit cards during one month
No $1 $15 $30 $50 $75 $100 $150 $200 D.K./ No. of

charges -14 -29 -49 -74 -99 -149 -199 or more N.A.3 families

All families2 21 9 14 13 13 6 9 3 8 4 1,290
Total family income:
Less than $3,000 33 5 23 16 13 3 2 * 2 3 59
$3,000 to 4,999 29 19 22 12 8 2 4 * 3 1 72
$5,000 to 7,499 30 13 18 11 12 5 6 2 2 1 156
$7,500 to 9,999 23 9 19 14 11 5 7 3 4 5 220
$10,000 to 14,999 23 8 15 13 11 6 10 3 7 4 421
$15,000 to 19,999 17 7 9 16 13 9 10 7 6 6 203
$20,000 to 24,999 9 5 5 10 17 5 14 6 21 8 78
$25,000 and over 1 5 2 9 18 8 15 5 31 6 81
Age of head:

Under 25 19 11 23 16 15 1 4 3 5 3 105
25 to 34 22 6 17 14 12 8 8 4 5 4 284
35 to 44 21 8 12 16 13 6 8 4 10 2 275
45 to 54 23 8 12 10 10 5 11 5 11 5 305
55 to 64 18 8 13 15 15 6 11 2 6 6 192

65 and older 27 14 16 8 12 6 8 2 4 3 129

Notes: 1All row totals equal 100%. 2Includes only those families who use credit cards.
3Declined/no answer. ∗Less than 0.5%.
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