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Hierarchical Organization of the Universe

⋆ elementary particles

(neutrinos, electrons, protons, . . . )

⋆ nuclei

⋆ atoms

⋆ molecules (H2, H2O, . . . ) — chemistry

⋆ biomolecules (peptides, DNA, . . . )

⋆ unicellular organisms — life

⋆ plants, animals

⋆ whales, chimps, humans . . . — consciousness

⋆ societies, ecosystems

⋆ www and the “Technological Singularity”?
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Physical chemistry:

observe and explain how atoms interact and

combine to form molecules and

how molecules interact and combine to form

substances (gases, liquids, solids).

Chemists need good models for atoms.
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Atoms are . . .

• Point-like hard spheres — pV = nRT

•Compressible sticky spheres

— van der Waals equation, liquids, solids.

• Spheres with N “hooks” (N = 4 for C)

— molecular formula, Lewis theory

We can do better than that . . .
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Why should a chemist know anything

about quantum mechanics (QM)?

1. We need better models of atoms than “com-

pressible sticky sphere”.

2. Classical mechanics (CM) fails entirely to des-

cribe electrons in atoms and molecules.

3. QM gives a “perfect” description.

4. One must know the fundamentals in order to

be able to innovate or improvise. Chemists need

QM for the same reasons a pilot needs to know

about gravity, acceleration, friction, . . .
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Symmetry:

Molecules having high symmetry are sim-

pler to understand, more important in theory.

Benzene, ferrocene, C60, Cr(CO)6, Ar13, . . .
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Interaction Potentials

H· · ·H

C· · · · · ·O

Ar· · · · · · · · ·Ar

CH4 · · · · · · · · ·CH4

Earth· · · · · · · · · · · · · · ·René
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Gravitational potential, UG:

UG =
−GM1M2

R

G = 6.67× 10−11 (SI units)

M1 = 5.98× 1024 kg

R = 6.37× 106m

M2 ≈ 70 kg

UG = −4.38× 109 J
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Suppose we want to put this person far, far away,

in orbit. We must accelerate him to a KE of pre-

cisely 4.38×109 J to overcome the binding energy.

K =
1

2
mv2

v = (2K/M2)
1/2

= (−2UG/M2)
1/2

= (2GM1/R)1/2

= 1.12× 104m/s

= 40, 287 km/h

This is the escape velocity of objects on Earth.
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How do we calculate the energy needed to sepa-

rate two atoms?

Here’s how a typical atom· · · atom interaction po-

tential U(r) looks like:

• different for every molecule “AB”

• unlike UG, no simple mathematical formula

• very hard to obtain

•De ≈ 1 to 10 eV in most molecules

(1 eV = 1.6× 10−19 J)
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UG for two I atoms in the I2 molecule:

M1 = M2 = 127× 1.66× 10−27 kg

R ≈ Re(I2) = 2.67 Å = 2.67× 10−10m

De(I2) = 1.54 eV = 2.47× 10−19 J

UG = 1.66× 10−40 J

UG is 7× 1022 times smaller than De !

The I· · · I interaction (the bond) is due to a com-

plex combination of many electrostatic interac-

tions between two nuclei with +53 charge, and

106 e− with charge −1.
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Interaction of two point charges Q1 and Q2 sepa-

rated by a distance r:

Uelec. =
Q1Q2

4πǫ0r

In atomic units (a.u.), not to be confused with

atomic mass units (a.m.u.),

me = 1

h = 2π (Planck′s constant)

4πǫ0 = 1

Qe = −1

a.u. of energy = 27.211 eV = 4.360× 10−18 J

a.u. of length= 0.52918 Å = 0.52918× 10−10 m
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In one iodine molecule, if the 2 nuclei and 106 e−

were fixed in space, we would have

U =

i=108
∑

i=2

j=i−1
∑

j=1

QiQj
rij

but . . .

• nuclei and e− move constantly,

• their KE is not zero,

• their positions, speeds, and KE can not be ob-

tained by Newton’s equations (CM)
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Consider two e− 2.67 Å apart:

Uelec. =
(−1)(−1)

2.67÷ 0.529177
= 0.1982 a.u.

= 5.39 eV

Compare I2 to two separated I atoms: we have

532 + 53 + 53 + 1 = 2916 pair interactions that

were zero in the separated atoms. In I2, these

interactions are all on the order of 5 eV. Add to

that changes to 108 KE’s and to 2862 interactions

(2× (54× 53/2) = 2862). These energies all add

up to . . .

. . . 1.5 eV, the De of I2
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The next 2 pages have potential curves that illus-

trate different types of interactions

• covalent (Cl2)

• nonbonded ionic (C+δ · · ·O−δ)
• dispersion (Xe2, neopentane dimer)

• ionic bond (NaCl)
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The next pages have experimentally determined

bond dissociation energies D0, equilibrium bond

lengths Re, and dimer interaction energies.

Memorize them to an accuracy of ± 50% or

±1 eV (whichever is smaller) for energies, and

±0.1 Å for Re.

You don’t have to memorize the following: BN,

BF, CF, FN, FO; LiH, NaH, KH, RbH, LiF,

NaF, KF, RbF; Sc2, Ti2, V2, Cr2, Mn2
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D0 and Re of selected

diatomic molecules

D0 (eV) Re (Å)

H2 4.52(a) 0.7413

Li2 1.05 2.67

Be2 0.103 2.45

B2 3.10 1.59

C2 6.3 1.31

N2 9.79 1.094

O2 5.17 1.207

F2 1.65 1.412

Ne2 0.004 3.09

(a) The dissociation energy of a molecule D0 is

smaller than its De (for, H2 4.52 vs 4.75 eV) for

reasons we’ll see later.
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D0 and Re of selected

diatomic molecules

D0 (eV) Re (Å)

B2 3.10 1.59

C2 6.3 1.242

BN 4.03 1.281

CN 7.81 1.172

N2 9.79 1.094

CO 11.16 1.128

BF 7.85 1.263

NO 6.54 1.151

CF 5.72 —

O2 5.17 1.207

FN 3.56 —

FO 2.30 —

F2 1.65 1.412
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D0 and Re of selected

diatomic molecules

D0 (eV) Re (Å)

H2 4.52 0.7413

Li2 1.05 2.67

Na2 0.74 3.08

K2 0.520 3.92

Rb2 0.495 4.21
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D0 and Re of selected

diatomic molecules

D0 (eV) Re (Å)

LiH 2.47 1.595

NaH 1.92 1.887

KH 1.81 2.244

RbH 1.73 2.367

LiF 5.98 1.564

NaF 5.38 1.926

KF 5.16 2.172

RbF 5.12 2.270
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D0 and Re of selected

diatomic molecules

D0 (eV) Re (Å)

LiCl 4.86 2.02

NaCl 4.27 2.36

KCl 4.49 2.667

RbCl 4.43 2.787

NaBr 3.81 2.50

KBr 3.94 2.821

NaI 3.15 2.71

KI 3.37 3.048
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D0 of selected diatomic molecules, in eV

F2 Cl2 Br2 I2
1.65 2.52 2.00 1.57

Sc2 Ti2 V2 Cr2 Mn2

1.04 1.4 2.75 1.44 0.3

Fe2 Co2 Ni2 Cu2 Zn2

1.15 (1.3) 2.042 2.03 0.3
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Average bond energies (eV)

H—C H—N H—O H—S

4.29 4.03 4.81 3.81

C—C C=C C≡C

3.60 6.33 8.68

N—N N=N N≡N

1.69 4.33 9.80

C—N C=N C≡N

3.16 6.37 9.23

C—O C=O Si—O

3.73 7.63 3.83

N—O N=O O—O O=O

2.30 6.12 1.47 5.16

S—S P—O P=O Si—Si

2.49 3.47 5.64 2.30
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Pairwise interaction energies (kJ/mol)

of selected dimers

Ne2 Ar2 Xe2 (CH4)2 (CCl4)2
0.4 1.1 2.1 1.4 4.5

Linear alkanes, Cn—Cn, with

n=2 n=4 n=5 n=6 n=12 n=18

2.5 3.8 4.9 6.4 12 17

1 eV = 96.5 kJ/mol.

For chemical bonds, 100 / D0 / 1000 kJ/mol

At 298 K, RT = 2.5 kJ/mol.

At 298 K, butane is a gas (Tb = −0.5◦C), pen-

tane is a liquid (Tb = 36◦C) and CCl4 is a liquid

(Tb = 77◦C).



CHEM 2010 28

Notes

Most of the data in these tables are from the CRC

Handbook of Chemistry and Physics 78th Edition

The experimentally determined dissociation ener-

gy of H2 is 4.4780(76) eV, see Phys. Rev. Lett. 68

(1992) 2149. The best quantum mechanical cal-

culation on H2 gives 4.4780(74) eV. That’s what

I meant by “QM is perfect”.

For Be2, see Science 19 June 2009: Vol. 324 no.

5934 pp. 1548-1551

See Inorg Chem 38 (1999) 4696-4699 for data on

heavy alkali dimers
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Calculating U(r) or De

• full blown QM calculation (for experts only)

• physical models, based on CM or QM, to re-

duce complexity

Types of interactions

• covalent bond∗

• ionic bond

• steric repulsion∗

• nonbonded charge-charge (q-q)

• charge-dipole (q-µ)

• dipole-dipole (µ-µ)

• dispersion (µin.-µin.)

∗ there is no good classical model for these inter-

actions, QM is needed
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Classical model of electrostatic interactions

Atoms and molecules have charge distributions

that can be described approximately with . . .

• point charges, q

• electric dipoles, µ

• quadrupoles, octupoles, etc.
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Electric Dipole

2 charges +q and −q separated by a distance d

produce a dipole equal to µ = qd, by definition.

1 a.u. of dipole = 2.5412 Debye

= 2.5412 ×3.336× 10−30 C m

Point dipole of 1 Debye: a fictitious system with

2 charges q = ±(1 Debye ÷ d) that we take to

the limit d→ 0 (q →∞)
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q-q interaction ∝ 1/r

take q1 = −q2 = 1

and r = 2Å ÷ 0.52918 = 3.78 a.u.

Uqq = 0.2646 a.u. = 7.2 eV
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q-µ interaction ∝ 1/r2

take q = +1,

and r = 3.78 a.u., µ = 1 a.u. (2.54 Debye)

Uqµ also depends on the size of the dipole, and

its orientation. Take a dipole having q = ±1

and d = 1 a.u.

• ↑ Uqµ = 0

• → Uqµ = 0.0712 a.u. = 1.93 eV

• ← Uqµ = −1.93 eV
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Here’s one way to show that Uqµ ∝ 1/r2.

Take a point charge of +1 and a 1 a.u. dipole

of size 1, separated by distance r, let r = 4, 8, 16,

and calculate U in each case.

U = −1/3.5 + 1/4.5 = −0.0635

U = −1/7.5 + 1/8.5 = −0.0157

U = −1/15.5 + 1/16.5 = −0.00391

Calculate ratios of U as you halve the distance

between the charge and the dipole.

0.0635/0.0157 = 4.04;

0.0157/0.00391 = 4.02 ≈ 4.
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µ-µ interaction ∝ 1/r3

Take two dipoles µ = 1× 1 = 1 a.u.,

and r = 3.78 a.u., as before.

Uµµ depends on the relative orientation.

→ → Uµµ = −0.0398 a.u.= −1.08 eV

→ ← Uµµ = +1.08 eV

↑ ↓ Uµµ = −0.48 eV

↑ → Uµµ = 0
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Do as before: two dipoles of 1 (q = 1, d = 1)

separated by r = 4, 8, 16, 32

−1/3 + 2(1/4)− 1/5 = −0.03333

−1/7 + 2(1/8)− 1/9 = −0.003968

−1/15 + 2(1/16)− 1/17 = −0.0004902

−1/31 + 2(1/32)− 1/33 = −0.00006109

the ratios are

0.03333/0.003968 = 8.40

0.003968/0.0004902 = 8.09

0.0004902/0.00006109 = 8.023 ≈ 8

so Uµµ ∝ 1/r3
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µin.-µin. interaction, or, dispersion ∝ 1/r6

The “in.” can stand for “instantaneous” or “in-

duced”.

Take a Ar atom. On average, it has no net charge

(q = 0), no net dipole (µ = 0), no quadrupole, no

octupole, etc., because its electronic distribution

has perfect spherical symmetry.

But e− move constantly. Suppose at some time 10

e− are on one side of the Ar atom and 8 e− are on

the other side. The radius of Ar is 1Å or 2 a.u., so a

typical instantaneous dipole would be 2 a.u. Sup-

pose we have a second Ar atom a distance r = 8

a.u. away: its e− will be “pulled” (or “pushed”)

by the dipole on the first atom. The magnitude

of that effect is roughly 0.9 eV (the charge-dipole

potential). By comparison, the intra-atomic forces

are much bigger, they produce a ionization energy
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of 15.8 eV for Ar. So:

(a) on average, the induced dipole µinduced is much

less than 2 a.u., and typically Uµin.µin. is much

smaller than Uµµ (permanent dipoles interaction)

(b) µinduced gets smaller as r increases, so

Uµin.µin. ∝ 1/rn with n > 3. As it turns out,

n = 6.

Note: the binding energy of the Ar dimer is 1.19

kJ/mol, J Phys Chem A 109 (2005) 11015.
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To recap different types of interactions.

• qq ∝ 1/r ≈ 10 eV or less

• qµ ∝ 1/r2 ≈ 3 eV or less

• µµ ∝ 1/r3 ≈ 1 eV or less

• µin.µin. ∝ 1/r6 ≈ 0.005 eV–0.05 eV

it’s never zero!

Dispersion interactions µin.−µin. are always present,

are typically on the order of 1–5 kJ/mol for small

molecules, and that’s why small molecules are nor-

mally gases at 300 K (RT = 2.5 kJ/mol).

Dispersion interactions between two big molecules

are much bigger, and are roughly proportional to

the contact area because all 1/r6 interactions are

negligible except for the smallest r, ie, at the di-

viding surface between the molecules.
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Dispersion energy Uµin.µin.
∝ 1/r6 : why?

We saw already that Uµµ ∝ 1/r3. But that’s for the case of two per-

manent dipoles in a fixed relative orientation.

For the dispersion case, one dipole is induced by the other. The size

of the induced dipole must surely decrease as r increases. The µinduced

is due to a force exerted by the instantaneous dipole of the first atom on

the charges (nucleus and electrons) of the second atom. The potential

felt by charges and due to a dipole is ∝ 1/r2 (see the qµ slides). The

corresponding force is the negative of the derivative of that potentiala:

−d/dr(1/r2) = 2/r3. So, the force between the instantaneous dipole

and the nucleus and electrons of the second atom is ∝ 1/r3, and the

induced dipole is also ∝ 1/r3.

The instantaneous dipole does not depend on the distance between the

two atoms r, it is found even in isolated atoms as a result of fluctuations

in the positions of electrons, so count that as ∝ 1/r0 (no r dependence).

Putting the 3 things together, we find for the dispersion potential

Udispersion ∝
µinstantaneous µinduced

r3

∝ (1/r0)(1/r3)/(1/r3)

Udispersion ∝ 1/r6

aNo matter what kind of interaction it is, the force along x is the negative of the derivative of the potential

with respect to x, always.
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The next few graphs show

U(r) = Ae−a(r−r0)/r0 − Cn/rn

to illustrate how electrostatic interaction energy

curves between atoms and molecules look like.
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Dipoles and geometries of a few small molecules

and “atomic charges” deduced from them:

water: µ = 1.85 Debye = 0.73 a.u.,

ROH = 0.958 Å , θ = 104.5◦

qO = −0.66 qH = +0.33

NaCl: µ = 3.35 a.u., Re = 2.361 Å ,

q = ±0.75

HCl: µ = 0.43 a.u., Re = 1.275 Å ,

q = ±0.18
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Quantum Mechanics (QM) (or wave mechanics,

or matrix mechanics)

• developed in 1900-1930

• it explained

blackbody radiation

photoelectric effect

electron diffraction

hydrogen spectrum

• 2 key ideas:

energy is quantized

waves (e.g., light) sometimes behave like par-

ticles, and particles (e.g., e−) sometimes behave

like waves = wave-particle duality
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Black body radiation

A black body is a solid metal sphere with a small

cavity and small aperture, as shown below.

• heat the black body to temperature T

• light comes out (many frequencies)

• the spectrum of that light, I(ν) looks like this

. . .
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Using the known laws of electromagnetism and

thermodynamics gives a completely different

spectrum than the observed one

In 1900, Planck managed to explain the observed

spectrum I(ν), but only after assuming that light

consists of energy packets

E = hν

Light (a wave) is behaving as if it were made

of particles
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Photoelectric effect

The e− traveling through space from the metal

plate to the detector close the circuit and produce

a current that can be measured.

The applied potential ∆V is set just big enough

to stop the current: this way, we find out the KE

of e− as they left the metal.

current ∝ number of e− emitted, so we

• Input light of intensity I and frequency ν

• detect N e− with kinetic energy K
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The main results can be expressed with 3 plots:

(1) Fix I : N = 0 as long as ν < ν0, and N

does not vary with ν passed the initial jump.

(2) Fix ν (ν > ν0): N ∝ I

(3) Fix I, vary ν (ν > ν0): K ∝ ν
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How can those things be explained?

1. light is made of photons having E = hν

2. when one photon collides with one e−, it trans-

fers all of its energy (hν) to the e−

3. the e− is bound to the metal by W = hν0: if

hν > hν0, the e− acquires enough energy to

escape with kinetic energy K = hν − hν0

4. the energies of several low-energy photons can

not be pooled together to kick out a single e−:

Ne = 0 when ν < ν0 even when I is very large.

The last point is analogous to the situation in

chemical kinetics: termolecular elementary re-

actions are very unlikely because 3-body colli-

sions are very rare.

Light behaves as a collection of particles.
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Electron diffraction

A beam of e− is directed at a plate with two slits

of width a separated by a distance b.

The e− that pass through the slits hit a photo-

graphic plate (a detector).

The pattern formed by the e− is just like what

you would get if a wave had gone through the two

slits! It is a diffraction pattern.

The diffraction pattern is observed even when the

beam intensity is very low, e.g., one electron per

hour!

So . . .

Beams of e−, and even individual e−, behave

as if they were a wave
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Light, a wave, sometimes acts as if it is made

of particles (photons).

Matter, for ex. electrons, sometimes acts as if

it were a wave with wavelength λ.



CHEM 2010 51

DeBroglie Wavelength λ

Energy of a photon: E = hν = hc/λ

Mass-energy relation for a photon: E = m0c
2

Then,

hc/λ = m0c
2

h/λ = m0c = p

Suppose that is also true for a particle,

m0⇒ m , c⇒ v:

λ = h/p = h/mv

h = 6.6262× 10−34 J s = 2π a.u.
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Boltzmann Equation

ni
nj

=
gi
gj

exp[−(ǫi − ǫj)/kT ]

ni: number of molecules having energy ǫi

T : temperature, in Kelvin

k: Boltzmann constant

gi: degeneracy of energy level i
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Quantum Mechanics (QM)

vs Classical Mechanics (CM)

QM is more general: CM can be derived from QM

CM is a lot simpler: use it when you can

CM becomes increasingly accurate as . . .

• . . . the size of objects ր ,

• the mass of objects ր ,

• and temperature ր
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When does CM fail? When do we need QM?

• when λ of a particle is sufficiently large com-

pared to the system or phenomenon we are in-

terested in. This normally happens when light

objects (small m ⇒ big λ) move inside small

systems (typically a few Å)

• when the smallest energy differences (ǫj+1−ǫj)
between the states of an atom or molecule are

not small compared to kBT . The lower T is,

the bigger “quantum effects” are.
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Example:

Take an e− with speed v = c/137 = 1 a.u.

In a.u.: p = mv = 1 a.u. of mass × 1 a.u. of

speed = 1 a.u., and h/2π = ~ = 1. So

λ = h/p = 2π~/1 = 2π a.u.

= 2π × 0.5291771 Å/a.u. = 3.3 Å

This e− in a molecule: we need QM

This e− going through a 1 mm wide slit:

CM works just fine

As v ր, CM becomes better; but as v approaches

c, relativistic effects become important.
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Calculate the DeBroglie wavelength λ for

1) an e− with a KE of 0.1 eV;

2) ” ” ” ” ” ” 10 eV;

3) ” ” ” ” ” ” 1000 eV;

4) a H atom with a KE of 0.12 eV (“H in H2”);

5) H2 molecule with KE of 0.026 eV (“H2 at rt”);

6) H2 at 50 K, with KE of 0.0042 eV;

7) H2 at 2000 K, with KE of 0.172 eV;

8) a N2 molecule with a KE of 0.026 eV;

9) a protein, MW=10000 amu, KE=0.026 eV
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A string is stretched between two points a distance

d apart. If you pluck the string, a standing wave is

quickly established. If we take a snapshot at time

t, we see a sine function with λ = 2d/n, where n

is an integer. Any other type of wave motion in

the string, ie with n not an integer, quickly fades

away due to destructive interference. The wave

equation is a differential equation that describes

the amplitude ψ = ψ(x) of the standing wave

along x

d2ψ

dx2
= −

(

2π

λ

)

ψ
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From λ to Schrödinger’s eqn

E = mv2/2 + V = p2/2m + V

p = [2m(E − V )]1/2

λ = h÷ [2m(E − V )]1/2

d2ψ

dx2
= −

(

2π

λ

)2

ψ(x)

d2ψ(x)

dx2
=

(

−4π2 [2m(E − V )]

h2

)

ψ(x)

−h2

8π2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x)

This is S̈ time-independent equation.
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We will look at solutions to the S̈ equation for two

model systems:

the free particle (FP): V (x) = 0 everywhere

the particle in a box (PIB):

V (x) = 0 for 0 < x < a

V (x) =∞ elsewhere
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Normally, a course in quantum chemistry would

also deal with the S̈ equation for

a particle in a finite-depth box,

V (x) = 0 for 0 < x < a,

V (x) = C > 0 elsewhere

a particle in a ring

V (x, y) = 0, x2 + y2 = a constant

rigid rotor V (θ, φ) = 0 , (θ, φ) on a sphere

a harmonic oscillator V (x) = x2

the H atom, V (x, y, z) = V (r) = 1/r
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Free Particle (FP) in 1D

V (x) = 0 (V is constant)

F = − dV
dx = 0 everywhere

Classical Mechanics:

F = m
d2x

dt2
= 0

Find a function x(t) satisifying that equation.

x(t) = x0 + vt

x0: initial position (a constant)

v: speed (another constant)

x(t) defines a trajectory
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FP, Quantum Mechanics:

V (x) = 0

−~
2

2m

d2ψ

dx2
= Eψ

what function ψ equals its own second derivative

within a constant?

• A sin(kx) and B cos(kx) . . .

• or A+e
ikx and A−e−ikx

These 2 pairs of functions are interchangeable bc

cosx = (eix + e−ix)/2
sinx = (eix − e−ix)/2i

The solutions to the FP S̈ equation are

ψ(x) = A+e
ikx = A+ [cos(kx) + i sin(kx)]

ψ(x) = A−e−ikx = A− [cos(kx)− i sin(kx)]
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You can plot Re(ψ) or Im(ψ), they both look like

sine waves extending to infinity in both directions

with λ = 2π/k.

d2

dx2

(

A+e
ikx
)

= −k2 A+e
ikx

=
−2m

~2
E A+e

ikx

so, the energy is

E = (~k)2/2m

k can be any positive real number. So any energy

is possible: the energy of a FP is a continuous

variable, is it not quantized. The momentum of

a FP, p =
√

2mE, is also a continuous variable.
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What is the meaning of a wavefunction ψ(x), a

solution to the S̈ equation?

Max Born (1926):

ψψ∗dx is the probability of finding the par-

ticle between x− dx/2 and x + dx/2.

The probability of finding the particle somewhere

is 1, so
∫ +∞

−∞
ψψ∗dx = 1

This is called the normalization of the wave-

function.
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For the FP

ψψ∗dx = A+e
ikx A+e

−ikx dx

= (A+)2dx

The FP has a uniform probability distribution,

just as in CM.

Note:

The wavefunction of the FP is a bit special: it can

not be normalized. But if we have a beam of free

particles of intensity I (say, I particles per meter),

we can normalize ψ to reproduce that I .
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Particle in a Box (PIB) in 1D

V (x) = +∞ except for 0 < x < a where

V (x) = 0

ψ(x) must be zero when x < 0 and x > a or else

the energy would be infinite (E = V +K, K > 0).

In the region 0 < x < a we have almost the

same situation as for the FP. In order to solve the

S̈ equation, we are looking for functions ψ(x) that

equal their own second derivative to within a mul-

tiplicative constant:

ψ(x) = − ~
2

2mE

d2

dx2
ψ(x)
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As for the FP, we could use either Ae±ikx, or

A sin(kx) and B cos(kx). As it turns out, the lat-

ter is more convenient. So we write

ψ(x) = A sin(kx) + B cos(kx)

The problem now boils down to figuring out what

A,B, k are. ψ(x) must be a continuous function,

and its first derivative must also be continuous.

Otherwise, d
2ψ
dx2 would be infinite and the kinetic

energy would be infinite. This condition allows to

write:

ψ(0) = 0

B cos(0) = 0 ⇒ B = 0

ψ(a) = 0

A sin(ka) = 0 ⇒ ka = nπ

where n is an integer.
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Now have

ψ(x) = A sin
(nπx

a

)

n = 1, 2, 3, . . .

There is still one unknown: A. To get it, we use

the normalization condition of the wavefunction.

∫ a

0
ψ∗(x)ψ(x) dx = 1

A2
∫ a

0
sin2(nπx/a) dx = 1

The integral can be evaluated by integration by

parts or by looking up a table of integrals: it is

a/2. This gives

A =
√

2/a

ψn(x) =

(

2

a

)1/2

sin(nπx/a) n = 1, 2, 3, . . .
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Look up the S̈ equation: once we know ψ, we can

get the energy by taking the second derivative of

ψ(x), and multiply it by −~
2/2mψ(x). When we

do that (recall ~ = h/2π) we get

E ≡ En =
h2n2

8ma2
n = 1, 2, 3, . . .
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Now we can get physical insight into QM as ap-

plied to the PIB model system by

drawing ψn(x) for n = 1, 2, 3, . . .

drawing (ψn(x))2 for n = 1, 2, 3, . . .

looking at values of En, (En+1 − En) and

(En+1/En), in the limits of small n and large n,

and see what the physical implications are.
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En =
h2n2

8ma2
= n2E1 n = 1, 2, 3, . . .

• the zero-point energy (ZPE) = E1 > 0

• E is quantized bc the particle is confined

• En+1/En goes to 1 when n gets large, and

nր when T ր

• (En+1 − En) is ∝ 1/m and ∝ 1/a2

Correspondence principle: energy quantiza-

tion becomes less apparent, and CM works better,

as mass (m), size (a) and energy (n, or tempera-

ture T ) get larger.
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A thought experiment

(Gedankenexperiment)

• Suppose a free e− has a very small energy

• We measure its position like this:

(a) suddenly create a box of length a at x0;

(b) yes or no: is the e− in the box?

• Suppose we do find the e− in the box.

What can we conclude ? ? ?
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1. position = x0 ± a/2 : uncertainty ∆x = a/2

2. the energy is now at least E = h2/8ma2

3. so the energy changed as a result of mea-

suring the position, by at least h2/8ma2

4. the momentum must have changed, also, by

at least some δp. Let’s estimate δp with the clas-

sical formula:

δp ≈
√

2mE =
√

2mh2/8ma2 = h/2a

5. The product ∆xδp ≥ h/4
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Heisenberg arrived at a similar, but more rigor-

ous, result known as Heisenberg’s principle:

“If we measure x and p simultaneously, the

product of the two uncertainties on those mea-

surements, ∆x∆p , must be greater than or equal

to h/4π”
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The qualitative conclusion of our thought experi-

ment is that there is something about QM that’s

totally different from CM:

with the “simple” act of measuring the position

(x) of a particle, we changed its energy (E), its

momentum (p), its wavefunction (ψ(x)) — we

changed pretty much everything.

If we try to measure position (x) more accurately,

by using a smaller box (smaller a), we produce a

bigger change in energy (E).

Measurements are not simple after all !

Non-interactive measurements are impossible: the

observer and the observed are “intertwined”.
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The PIB model can account qualitatively for two

aspects of chemical interactions:

• short-range repulsion

• covalent bonding
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Short-range repulsion and the PIB model

Take the interaction potentialU(r) of two H atoms

in the H2 molecule at point A (r = 0.75 Å),

and point B (r = 0.50 Å). Why does U increase

so much from A to B? The electrostatic potential

does not change that much:

• Veeր bc of 1 e− pair getting closer

• Vnnր bc of 1 pair of nuclei getting closer

• Venց bc of 2 e− nucleus pairs getting closer

According to the covalent bond model, e− lo-

cate themselves preferentially in between the nu-

clei. That’s like having two dipoles pointing at

each other. So the net (Vee + Vnn + Ven) should

be positive (repulsive), but fairly small. Let’s

make a rough estimate.
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Assume the e− are at 1/3 and 2/3 of the way

between the two nuclei, and calculate the electro-

static interaction of the two dipoles in case B and

case A. In a.u., r = 0.945 and r = 1.417, and

UB,elec. ≈ 1/0.945 + 1/0.315− 2/0.630 = 1.058

UA,elec. ≈ 1/1.417 + 1/0.472− 2/0.945 = 0.706

∆Uelec. ≈ 0.35 a.u. = 9.6 eV

Now consider the kinetic energy (next page).
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We model a H2 molecule with internuclear dis-

tance r as two e− in a box of dimension a = 2r

in state n = 1. The difference in kinetic energy

between B and A is then estimated to be, in a.u.,

∆(KE) ≈ (4π2/8)(1/1.892 − 1/2.8342)

= 0.77 a.u. = 21 eV

This is twice as big as the change in electrostatic

energy. What we conclude from this admittedly

crude model is this:

“The steep short-range repulsion is due mostly

to a sharp increase in kinetic energy of the e−

when molecular size decreases.”
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Covalent bonding and the PIB model

We model two H atoms at infinite separation with

two boxes of size a = 2 (a.u.). We know the equi-

librium bond length of H2 is 0.75 Å or 1.42 a.u.

The appropriate box length to model H2 is slightly

less than twice that, say 2.5 a.u. A PIB has zero

potential energy by definition, but not a zero ki-

netic energy. The difference in KE between H2

and 2H estimated with this PIB model is

∆(KE) ≈ [2(2π)2/8] (1/2.52 − 1/22)

= −0.888 a.u.

The electrostatic interaction can be modeled with

dipoles as earlier: (a) it is zero for two infinitely

separated H atoms; (b) for H2 with e− at 1/3

and 2/3 of the way between nuclei, we saw that

UA,elec. ≈ +0.706 a.u.
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The net binding energy of H2 is then

0.888− 0.706 = 0.182 a.u. or 5 eV

The agreement with the true D0 of H2, 4.5 eV, is

fortuitous. But it does show that the PIB model

is not completely off. The qualitative conclusion

that we can draw from this is that:

“The main driving force for the formation of a

covalent bond is the decrease in kinetic energy

of e− that results from sharing a single large

box instead of having each e− sit in its own

small box.”
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Note.

The important role of kinetic energy pressure

for understanding covalent bonding has been ex-

plained in great detail by Klaus Ruedenberg and

Michael Schmidt, see J. Computational Chemistry

28 (2006) 391-410.

This 2006 paper builds upon an analysis of the

chemical bond in H2 and H+
2 given earlier by

K Ruedenberg, Reviews in Modern Physics 34

(1962) 326.
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Chapter 20

the Hydrogen Atom
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S̈ equation for H-like atoms

• mP ≈ 1836me: assume the nucleus is fixed

• H atom: 1 electron and Z = 1

• Hydrogenlike atom: 1 electron, any Z > 0

• the e− moves in 3D: (x, y, z) or (r, θ, φ)

• e−-nucleus potential = −Z/r.

Write Ĥ = T̂ − Z/r, and solve

Ĥψ = Eψ
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• the wavefunctions depend on 3 QNs: n, ℓ,mℓ

• ⇒ ψn,ℓ,m(r, θ, φ)

• r ↔ n ; (θ, φ)↔ ℓ,mℓ

• energies En depend only on n for H



CHEM 2010 86

En = −CµZ2/n2

C = 1
2 a.u. = 13.606 eV

Z: atomic number

n: 1, 2, 3, 4, . . .

and µ is a dimensionless reduced mass

µ =

(

m1m2

m1 +m2

)

÷me

=
1836 · 1
1836 + 1

= 0.99946

En ∝ 1/n2 unlike the P.I.B. (see Fig. 20.2)
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Wavefunctions ψn,l,mℓ
are indexed by the QNs

(n, l,mℓ):

n = 1: (1,0,0) = 1s

n = 2: (2,0,0) = 2s

(2,1,-1), (2,1,0), (2,1,1) = 2p

n = 3: (3,0,0) = 3s

(3,1,-1), (3,1,0), (3,1,1) = 3p

(3,2,-2), (3,2,-1), (3,2,0), (3,2,1), (3,2,2) = 3d

etc.

n = 1, 2, 3, 4, . . .

ℓ = 0, 1, . . . , (n− 1)

mℓ = −ℓ,−ℓ + 1, . . . , ℓ− 1, ℓ

ℓ = 0 (s), 1 (p), 2 (d), 3 (f ), 4 (g), . . .



CHEM 2010 88

ψn,ℓ,m = Rn,ℓ(r)× Yℓ,m(θ, φ)×Nn,ℓ,m

Rn,ℓ(r) : radial function

Yℓ,m(θ, φ): spherical harmonic, angular function

Nn,ℓ,m: normalization constant
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The wavefunctions of the H atom are normalized

∫

|ψn,ℓ,m(r, θ, φ)|2 = 1

and mutually orthogonal

∫

ψ∗n,ℓ,mψn′,ℓ′,m′ = 0

because of Yℓ,m(θ, φ) when n = n′

because of Rn,ℓ(r) when ℓ = ℓ′ and m = m′

A wavefunction that depends on the coordinates

of only one electron is called an orbital.

The wavefunctions of the H-like atom are atomic

orbitals (AO)
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Isovalue surfaces

To depict a function of 3 variables, ψn,ℓ,m(r, θ, φ):

• Take a specific AO ψn,ℓ,m

• For that AO, take every point (r′, θ′, φ′) in

space that satisfies

|ψn,ℓ,m(r′, θ′, φ′)| = 0.01000000

• The set of all those (r′, θ′, φ′) points makes a

2D surface (a shape) in 3D space: it is the con-

tour of the AO for the value 0.01.

A isovalue surface projected onto a plane gives

a line, a contour. See Fig. 20.7 for contours of 1s,

2p, and 3d AOs.
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Exercise:

Sketch the shape of wavefunctions that have

(n, ℓ) = (1, 0), (2, 0), (2, 1), (3, 1), (3, 2)

Exercise:

Make a sketch where you represent the energy on

vertical axis and indicate the position of energy

levels for all the H atom wavefunctions with n ≤ 4.

On that sketch, indicate the minimum energy we

must supply to detach the e− from the proton;

also indicate the energy range for unbound states.
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Exercise:

Reproduce Fig. 20.6 on page 454 and explain how

the shape of the 1s, 2s, and 3s AOs are consistent

with the fact that these orbitals are mutually or-

thogonal:

∫

ψ∗1,0,0 ψ2,0,0 = 0

∫

ψ∗1,0,0 ψ3,0,0 = 0

∫

ψ∗2,0,0 ψ3,0,0 = 0
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Exercise:

Sketch the shape of a s − type and a p − type

function on the same graph, and use that to ex-

plain how
∫

ψ∗2,0,0 ψ2,1,0 = 0

Same exercise, but this time with a p− type and

a d− type function, to explain how

∫

ψ∗3,1,0 ψ3,2,0 = 0

∫

ψ∗3,1,0 ψ3,2,1 = 0
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ψn,ℓ,m has ℓ angular nodes, (n− ℓ) radial nodes,

and n nodes in total.

As nր, the number of nodesր, and

the energyր
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|ψn,ℓ,m(r, θ, φ)|2 dV : probability of finding the

e− inside volume dV around the point (r, θ, φ).

dV = dr × r sin θdφ× rdθ

[Rn,ℓ(r)]
2: probability density of e−-nucleus dis-

tances.

(See Fig. 20.10, page 459)
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Comments

1. The H atom potential, −1/r, is highly symme-

tric (spherical symmetry). This is what causes

the high degree of degeneracy among AO.

2. The H atom potential → −∞ when r → 0.

This is what causes the restrictions on the QNs

ℓ < n and |mℓ| ≤ ℓ

3. the spacing between energy levelsEn andEn+1

decreases as n increases (unlike the PIB) be-

cause, at higher energies, the e− is effectively

in a bigger box.
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4. The H atom is really a 4D system: x, y, z and

time t. The relativistic S̈ equation (Dirac,

1929) gives 4 QNs: n, ℓ,mℓ and ms

5.ms = −1/2 (↓, α), +1/2 (↑, β):

magnetic QN, or “electron spin”

6. in a magnetic field, atoms having ams = −1/2

e− are deflected differently than atoms having

a ms = +1/2 e− (Stern-Gerlach expt)
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Shell Model of the Atom

Bohr’s model, 1913: e− can move around H+ only

on one of many possible orbits, n = 1, 2, 3 . . .

QM, 1926: e− described by orbitals (n = 1, 2, 3

. . . ; ℓ, m).

Radial distribution function for 1s, 2s, 3s, . . . are

like thick, fuzzy versions of Bohr’s orbits.

See Fig. 20.12
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Fig. 20.10 shows electronic shells.

Orbitals in order of most probable distances:

1s < 2p < 2s < 3d < 3p < 3s < . . .

The 2s is large where the 1s is small;

The 3s is large where the 1s and 2s are small;

The 3p is large where the 2p is small;

etc.
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Helium Atom

Z = 2, two e−. The hamiltonian has a part Ĥ1

that depends only on the coordinates of e− #1,

a part Ĥ2 that depends only on the coordinates

of e− #2, and a inter-electronic repulsion term

(1/r12) that depends on both e−.

Ĥ = Ĥ1 + Ĥ2 + 1/r12

Ĥ1 = −1

2

(

∂2

∂x2
1

+
∂2

∂y2
1

+
∂2

∂z2
1

)

− 2/r1

It is impossible to solve exactly the S̈ equation

with this hamiltonian!
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Independent e− approximation:

Ĥ ≈ ĥ1 + ĥ2

ĥ1 = Ĥ1 + U1,eff (x1, y1, z1)

ĥ2 = Ĥ2 + U2,eff (x2, y2, z2)

U1,eff is a fictitious potential that mimicks the

effect of 1/r12. With this approximation, the so-

lutions to the S̈ equation have the form

ψ = φ1(x1, y1, z1)φ2(x2, y2, z2)

E = E1 + E2

φ1 and φ2 are atomic orbitals (AO) and E1 and

E2 are the orbital energies.
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In particular, if

Ueff (x, y, z) = 0

φ1 and φ2, and E1 and E2, are exactly as for a

hydrogenlike atom with Z = 2 (pages 448-451).
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The independent e− approximation is also called

orbital approximation, or,

one-electron approximation

It is the basis for the method

Linear Combination of Atomic Orbitals-

Molecular Orbital (LCAO-MO)

for studying the electronic structure of atoms and

molecules.
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1s(2): “1s orbital of He+ with the coordinates of

electron 2”.

For the He ground state:

ψ(1, 2) = 1s(1) 1s(2)

E = E1 + E2 = 2 · 22 · (−13.606 eV )

= −108.8 eV

Neglecting 1/r12 is a rough approximation. Esti-

mate the e-e repulsion energy Vee: suppose one e−

is at the nucleus and the other is described by a

H-atom 1s function: then, the e-e potential energy

is exactly equal to minus the e–proton potential

energy of the H atom, that is, 27.2 eV (see pages

452-453). So Vee ≈ 27.2 eV.
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With Vee ≈ 27.2 eV, we get an estimate for the

He ground state energy

E ≈ −108.8 + 27.2 = −81.6 eV

The most precise calculation on He gives

E = −79.01019 eV
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A more accurate estimate of Vee is:

Vee ≈
∫

[1s(1)1s(2)] (1/r12) [1s(1)1s(2)] dτ

= 34.0 eV

Note that evaluating this integral is not easy at

all. With Vee ≈ 34.0, our new energy estimate for

He is

E ≈ −108.8 eV + 34.0 eV

= −74.8 eV

Curiously, this is not as close to the true value

(−79.01019) as the earlier estimate (−81.6).
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There is another way to estimate the ground state

energy of He. Half of the time e−# 1 is closer to

the nucleus than e−# 2: when that happens, e−#

2 sees a net charge of +1. So, on average, e−#

1 sees an effective screened nuclear charge

Zeff ≈ 1.5. The same goes for e−# 2: it sees

a Zeff ≈ 1.5. To take the e-e repulsion into ac-

count, we replace Z = 2 by Zeff = 1.5 in the

hydrogenoid atom energy expression and get

E = E1 + E2 = 2 · (1.5)2 · (−13.606)

= −61.2 eV > −79.0 eV

Since the true energy of He is −79.0 eV, the cor-

rect Zeff must be (79/(13.606× 2))1/2 = 1.70.
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The previous calculation tells us that the electrons

in He see, on average, an effective screened nu-

clear charge of roughly 1.70. We explain that

it is bigger than 1.50 with electron correlation.

Electrons dynamically avoid each other. So when

one e− is on “one side of the He atom”, there is

a higher than 50% chance that the other e− is on

the “other side”. That results in less screening

and Zeff > 1.50.
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Let’s now estimate the energy of the He atom in

its first excited state, configuration 1s12s1. To get

Vee we assume, as before, that the 1s e− is at the

nucleus. The other e− is described by a 2s orbital.

We get Vee as before, as the negative of VeN for

a H atom in a 2s state: 2×(1/4)×13.6 = 6.8 eV.

E(1s2s) ≈ E1s(Z = 2) + E2s(Z = 2) + Vee

≈ −54.4 +−54.4/4 + 6.8

= −61.2 eV

The true energy of He(1s2s) is −59.2 eV.



CHEM 2010 110

Another way to estimate energy of He(1s12s1):

Assign e− #1 to the 1s AO: this e− sees Z1 = 2

and has n1 = 1.

Then e− #2 is in the 2s AO: it sees Z2 = 1 and

it has n2 = 2.

The energy is then

E ≈ −13.6× (Z2
1/n

2
1 + Z2

2/n
2
2)

≈ −13.6× (22/12 + 12/22) = −57.8 eV

Compared to the true value, −59.2 eV, it is in

error by 2%.
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Variational Principle. If φ is an approxima-

tion to the true ground state wavefunction ψ of

an hamiltonian Ĥ , then

E[φ] > E[ψ] = Eexact

E[φ] =

∫

φ∗Ĥφ dτ

E[ψ] =

∫

ψ∗Ĥψ dτ
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Pauli Exclusion Principle

A Law of Nature, or,

another Postulate in QM

The wavefunction of a many e− system must

be antisymmetric, ie, it must change sign

when we interchange two electrons

As a result . . .

. . . In an atom, no 2 e− can have the same 4

quantum numbers n, ℓ,mℓ,ms
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Aufbau Principle

The ground-state electronic configuration of an

atom is obtained by filling atomic orbitals (AOs)

with up to two e− each (one with ms = +1/2, the

other with ms = −1/2) to satisfy Pauli principle.

The order in which orbitals get filled is

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p . . .

Examples:

C (Z = 6): 1s2 2s2 2p2

Fe (Z = 26): 1s2 2s2 2p6 3s2 3p6 4s2 3d6
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Exceptions:

after the normal filling order, transfer one of the

highest energy e− to a d subshell for these:

Cr, Ni, Cu

Nb, Mo, Ru, Rh, Pd, Ag

La, Pt, Au

Ce, Gd

oh! and make that two e− for Pd.
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Zeff : effective nuclear charge experienced

by an e− in an AO.

Example, Li 1s2 2s1:

e− in the 1s AO feel a Zeff ≈ 2.5

e− in the 2s AO feels a Zeff ≈ 1.0
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Once we have the electronic configuration of an

atom, we associate a Zeff

Zeff = Z − s

to each AO. The screening s for an AO is cal-

culated using Slater’s rules (next page).
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Slater’s rules

1. group AOs like this:

(1s) (2s,2p) (3s,3p) (3d) (4s,4p) (4d) (4f) etc.

2. e− in groups to the right do not shield the AO

3. e− in the same group contribute 0.35 to s

4. other contributions to s:

for d and f AOs:

1.00 from e− in groups to the left

for s and p AOs:

0.85 from e− with QN (n− 1) and

1.00 from e− in groups further left
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Going back to the Li 1s2 2s1 example:

For the 1s s = 0.35 Zeff ≈ 3− 0.35 = 2.65

For the 2s s = 0.85× 2 = 1.70

Zeff ≈ 3− 1.70 = 1.30
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The Zeff one gets with these rules are useful.

They allow to estimate electron detachment

energies (EDE) such as

Fe(. . . 4s2 3d6) −→ Fe+(. . . 4s1 3d6)

Fe(. . . 4s2 3d6) −→ Fe+(. . . 4s2 3d5)

s = 0.35 + 14× 0.85 + 10 = 22.25

Zeff = 26− 22.25 = 3.75

EDE ≈ 13.6× (3.75/4)2 = 12.0 eV

s = 5× 0.35 + 18 = 19.75

Zeff = 26− 19.75 = 6.25

EDE ≈ 13.6× (6.25/3)2 = 59 eV

These estimates are very rough, but good enough

to predict that the g.s. of Fe+ is 4s1 3d6.
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Another use of Slater’s Zeff is comparing the size

of different AOs, for example:

Sc: 1s2 2s2 2p6 3s2 3p6 4s2 3d1

Co: 1s2 2s2 2p6 3s2 3p6 4s2 3d7

Rh: 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d7

Sc 4s: s = 18, Zeff = 3.00 and n = 4

Co 4s: s = 23.1, Zeff = 3.90 and n = 4

Rh 5s: s = 41.1, Zeff = 3.90 and n = 5

The Sc 4s AO is bigger than the Co 4s AO bc

its Zeff is smaller;

The Rh 5s AO is bigger than the Co 4s AO bc

its n is bigger.
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Ionization Energy (IE)

Electron Affinity (EA)

A(g) → A+
(g)

+ e− ∆E = IE

A+
(g)
→ A2+

(g)
+ e− ∆E = IE2

A−
(g)
→ A(g) + e− ∆E = EA

IE>0 for all atoms

EA>0 for most atoms.



CHEM 2010 122

Mulliken’s electronegativity χ, also called

“electrons’ chemical potential”

χ =
1

2
(IE + EA)

The stronger an atom holds on to its electrons,

the higher its IE;

The stronger an atom attracts electrons, the higher

its EA;

χ: overall tendency of an atom A to attract elec-

trons, no matter what its formal charge is (A,

A−δ, or A+δ).
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Absolute hardness

η =
1

2
(IE − EA)

η: overall tendency of an atom to stay neutral.

A large η usually indicates a stable chemical species,

for ex., He, Ne, . . . , N2, CH4, . . .

Why? A hard molecule can not easily give or

take electrons from a reaction partner. That

prevents certain types of chemical reactions.
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HSAB Principle (Pearson and Parr)

In Lewis acid-Lewis base reactions . . .

. . . hard acids react faster with hard bases, and

make more stable products;

. . . soft acids react faster with soft bases, and make

more stable products.
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Roughly what is the absolute hardness of the H

atom?

(a) 13.6 eV

(b) 10.2 eV

(c) 6.8 eV

(d) 3.4 eV

(e) 0.0 eV

Ans.: (c) 6.8 eV Expt: 6.43 eV
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Molecular Electronic Structure
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H+
2
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Exercise.

Make a sketch of H+
2 with its e− at ~r, its nuclei at

~Ra and ~Rb, and distances ra, rb, and R.

Then, write the hamiltonian Ĥ for H+
2 (use a.u.

and cartesian coordinates)
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H+
2 is a bit like two protons and one e− inside a

box of dimensions 4× 2× 2 a.u. The PIB model

gives rough estimates of kinetic energies in the

ground state (nx = ny = nz = 1, see Eqn. 15.25)

K ≈ (h2/8m)

(

1

42
+

1

22
+

1

22

)

= (2.8/m) a.u.

m = 1 for the e−, m = 1837 for protons: we get

K(e−)= 76 eV = 1.2× 10−17 J

K(proton)= 0.04 eV= 6.6× 10−21 J

We can estimate the speed of the e− and protons

v = (2K/m)1/2 = (5.6/m2)1/2 = (2.4/m) a.u.

For the e− v ≈ 2.4 a.u. = 0.018 c

for the proton, v ≈ 0.0013 a.u. = 0.00001 c
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In molecules, protons move roughly

2000 times slower than electrons
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Born-Oppenheimer Approximation

From the viewpoint of electrons, nuclei appear

to be fixed

From the viewpoint of nuclei, electrons appear

smeared out, like a cloud of electrons

electron’s viewpoint:

⋆ Fix the nuclei a distance R apart

⋆ Solve the S̈ equation for electron(s)⇒ E

⋆ Repeat for several R⇒ E(R):

E(R) is a potential energy curve
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As R→∞ we get H+ and H, the energy is

Eel = −13.6 eV (electronic energy)

or

E = 0 (conventional)
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At R, we approximate ψ(~r) by a LCAO:

ψ(~r;R) =
(

cae
−ra + cbe

−rb) /
√
π

e−ra/
√
π is a 1s AO centered around nucleus “a”.

We represent it by 1sa(~r).

The e− density must be the same on both sides of

the molecule, so

c2a = c2b ; ca = ±cb by symmetry

This gives only 2 possibilities

ψg = Ng [1sa(~r) + 1sb(~r)]

ψu = Nu [1sa(~r)− 1sb(~r)]

Ng, Nu: normalization factors
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Define S (overlap), α and β:

S = Sab =

∫

1sa(~r)
∗ 1sb(~r) d~r

α = Haa =

∫

1sa(~r)
∗ Ĥ 1sa(~r) d~r

β = Hab =

∫

1sa(~r)
∗ Ĥ 1sb(~r) d~r

Then

Ng = [2(1 + S)]−1/2

Nu = [2(1− S)]−1/2

Eg = α +

(

β − Sα
1 + S

)

Eu = α−
(

β − Sα
1− S

)
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Which of these look like reasonable values (in eV)

for the α and β integrals of the H+
2 molecule?

(a) α = −20 ; β = +10

(b) α = −20 ; β = −10

(c) α = −10 ; β = −10

(d) α = −10 ; β = −20

(e) α = −20 ; β = −20

Ans.: (b)
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α : energy of an e− in a 1s AO in the presence of

a second proton (must be < −13.6 eV)

β : energy of a fraction of e− (≈ half an e−)

located in the region between the two nuclei

In general, the overlap S of two AO is a num-

ber between −1 and +1.

In our H+
2 example, 0 < S < 1.

When H+
2 is near its equilibrium distance, 2.0 a.u.,

we have

α ≈ −25 eV

β ≈ −18 eV

S ≈ 0.46
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Eg ≈ −25 +
−18− 0.46(−25)

1.46
= −29.5 eV

Eu ≈ −25− −18− 0.46(−25)

0.54
= −13.0 eV

For the g.s. of H+
2 Eel. = −29.5 eV and

E = −29.5 + Vnn

= −29.5 + (1/2.00)(27.2) = −15.9 eV

The dissociation energy of H+
2 is

≈ −13.6− (−15.9) = 2.3 eV

The ionization energy of H+
2 is

≈ 29.5 eV

The excitation energy for H+
2 is

≈ −13.0− (−29.5) = 16.5 eV
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Energy diagram of H+
2 :

φg: bonding MO; “g” for “gerade” (even)

φu: antibonding MO; “u” for “ungerade” (odd)
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• combining 2 AOs gave 2 MOs

• 1
2(Eg + Eu) − E1s > 0 ; and the bigger S

is, the larger it is . . .

• . . . in general: the average energy of the MOs

obtained by mixing n AOs is higher than the

average energy of the AOs.

• If S = 0.46: Ng = 0.59 and Nu = 0.96.

The antibonding MO is more diffuse.

• ψg has 0 node, ψu has 1 node.
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H+
2 (R = 2a0) ⇒ H2+

2 (R = 2a0) + e− ∆E =?

Which of these is closest to ∆E in eV?

(a) 3 (d) 26

(b) 11 (e) 30

(c) 17

Ans.: (e) 30
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Minimal Basis LCAO-MO

for H2, He2

• Construct ψ by mixing 1sa(~r) and 1sb(~r)

• Ignore the 2s, 2p, 3s, 3p, 3d, . . . AOs

• Using Slater determinants ensures that ψ is an-

tisymmetric, ie, that it satisfies Pauli principle.
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Lower MO, 1σg : bonding

Upper MO, 1σu : antibonding

H2 (1σg)
2

He+
2 (1σg)

2 (1σu)
1

He2 (1σg)
2 (1σu)

2

bond order B = (Nb −Na)/2

Expt bond energy De in eV:

H2 He+
2 He2

B 1.0 0.5 0

De 4.75 2.5 0.0
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Two problems with a minimal basis:

(1) Probability of H2 H− +H+ = 0.5

In fact, it should be ≈ 0.063 at R = Re

(2) Energy is inaccurate.

predicted De(H2) = 2.64 eV

expt: De(H2) = 4.75 eV

Make progressively better ψ by

• mixing 1sa and 1sb ; and 2sa, 2sb ;

and 2pza, 2pzb . . .

• describing electron correlation,

to get it right in (1)
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Better ψel. for H2

• 1σg and 1σu are mixtures of

1s, 2s, 2pz, 3s, 3pz, 3dz2, 4s, . . . AOs

• If we mix 7× 2 = 14 AOs ⇒ 14 MOs:

1σg, 1σu, 2σg, . . . , 7σg, 7σu

•We can make 28× 27/2 = 378 different Slater

determinants

• ψel: apply the variational principle to get the

best mixture of those 378

⇒ 1 ground-state and 377 excited states
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Rules of AO mixing

AOs “a” and “b” mix to form MOs if:

• |Sab| is appreciable, |Sab| > 0.1 roughly

• their energies are comparable,

|Ea − Eb| < 10 eV roughly

• the larger |Sab| is, the more AOs mix

• the smaller |Ea − Eb| is, the more AOs mix

When 2 AOs have

different symmetry: Sab = 0
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AO interactions in diatomics

Interactions of d-type AOs give:

3dz2 : σg and σu
3dxz, 3dyz : πg and πu
3dx2−y2, 3dxy : δg and δu
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MOs by mixing two AOs “a” and “b”

(1) small Sab, small ∆Eab

(2) big Sab, small ∆Eab

(3) big Sab, big ∆Eab
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Exercise. Assume Ea < Eb for AOs in every

case. Suppose you start with Na e− in AO “a”

and Nb e− in AO “b” and you form MOs as in

the 3 cases of the previous page.

How strong and how ionic will the bond be in the

15 cases described below?

a) Na = 1, Nb = 0 ; all 3 cases

b) Na = 1, Nb = 1 ; all 3 cases

c) Na = 2, Nb = 0 ; all 3 cases

d) Na = 2, Nb = 1 ; all 3 cases

e) Na = 2, Nb = 2 ; all 3 cases
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MO diagram for O2

Energy ordering: · · · 1πu 3σg · · · for Li2 to N2

· · · 3σg 1πu · · · for O2 to Ne2
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The bond orders

H2 He2 Li2 Be2 B2

1 0 1 0 1

C2 N2 O2 F2 Ne2

2 3 2 1 0

explain trends in

• bond lengths Re (microwave spectra),

• bond strengths De (equilibrium constants),

• and bond stiffness ωe (infrared spectra).

see Fig. 23.19
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Lewis Structure Theory

A method to assign positions to e− in molecules.

It gives formal atomic charges and bond orders,

and an overall description of electron distribution

and bonding.
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Empirical observation: Rare gas atoms are chemi-

cally inert (stable) and have electronic configura-

tions ending with either

• 2 e− : 1s2 (He)

• 8 e− : ns2 np6 (Ne, Ar)

• 18 e− : (n-1)d10 ns2 np6 (Kr, Xe)

• 32 e− : (n-2)f14 (n-1)d10 ns2 np6 (Rn)
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Basic Principles of Lewis Theory

1. Only the valence e− of atoms rearrange them-

selves upon the formation of a molecule.

2. The e− normally distribute themselves in a way

that reproduces the configuration of a rare gas

around each of the atom-in-molecule (AIM),

with 0, 2, 8, 18, or 32 e− around each AIM.

3. +/− charge separation comes at an energy cost,

therefore, e− normally arrange themselves in a

way that minimizes charges on AIMs.
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For main group elements, put N dots around the

symbol of an element to depict its N valence e−:

Group I: H Na K Rb

Group II: Be Mg Ca

Group III-VII: Al Si P S Cl

Depending on how e− redistribute, we may have

covalent, ionic, or polar bonds:

N2

NaF

HCl
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Molecules with more than 2 atoms

We start by determining which atoms are central

and which ones are terminal.

Atoms of elements nearest Group IV are normally

central atoms.

then . . .
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1. V : number of valence e− in the molecule.

2. In steps 3 to 6, subtract from V every time e−

are assigned a position in the molecule.

3. assume one or more central atom(s) and write

a skeleton structure using single bonds only.

4. complete octets on terminal atoms.

5. complete octets on central atoms.

6. if a central atom lacks an octet, convert lone

pairs on terminal atoms into bond pairs. That

gives rise to multiple bonds.



CHEM 2010 157

Sometimes one can write many different Lewis

structures for a molecule. Two criteria to decide

which is “best”:

(1) Minimize
∑

j Q
2
j , where Qj is the formal

charge on atom j.

Qj = Vj − Uj −Bj

Vj is the valence. Uj is the number of unpaired

e−, andBj the number of bonds, around atom j.

(2) For the same
∑

j(Qj)
2 , the best structure is

the one with negative formal charges on the most

electronegative elements.

Note:
∑

j Qj = true net charge on the molecule.
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Exercise

Write 6 different Lewis structures for NOCl that

satisfy the octet rule. Calculate the formal charges

for each, and identify the best of those 6 Lewis

structures.
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Resonance

Sometimes one can write many different and equally

good Lewis structures for a molecule. The best

Lewis structure is then an “average” of those, called

a resonance hybrid.

Exercise

Write 3 Lewis structures for SO3 that are equiv-

alent by symmetry, and depict the resonance hy-

brid.
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Electron deficient species

An example of that is BeCl2. You can write two

Lewis structures.

One satisfies the octet rule, but has very bad

formal charges Qj.

The other has all Qj = 0 but violates the

octet rule: it is the better structure, with a elec-

tron deficient Be.
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Electron rich species (expanded octet)

Exercise

Write two Lewis structures for (SO4)
2−: one with

octets everywhere but a big
∑

j(Qj)
2 , and the

other with a small
∑

j(Qj)
2 but 12 e− around

the central S atom. The latter is the better Lewis

structure.
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Odd-electron species

When V is a odd number, it is impossible to sa-

tisfy the octet rule. We can use this method to

write the Lewis structure:

(1) write a structure with 1 more (or 1 less) e−

(2) remove (or add) 1 e− so as to make the formal

charges zero, or as small as possible.

Exercise Do that for NO
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Bond orders

In Lewis theory, bond orders are the number of

e− pairs shared by two atoms. Write Lewis struc-

tures, and get the bond order, for HCl, Cl2, N2,

CO2.
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Bonding in the water molecule

We will use H2O to illustrate how different models

work for a simple polyatomic molecule.

From experiment, we know that H2O has:

• two equal O-H bond lengths, 0.9575 Å, and

a bond angle θ =104.51◦

• electron removal energies of 13.0, 14.7, 18.6,

and 38.0 eV.
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(1) Lewis theory

It tells us that the connectivity is H—O—H, but

says nothing about geometry or electron removal

energies.

(2) Lewis + VSEPR

e− pairs repel, they stay as far as possible from

each other. This predicts θ = 109.5◦

(3) Lewis + VSEPR + . . .

a lone pair occupies more space than a ligand.

That only tells us θ < 109.5◦
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(4) Valence Bond theory

Draw the valence AOs around each atom, and as-

sign a geometry and e− in AOs in such a way that

singly occupied AOs overlap as much as possi-

ble. Simple VB theory predicts θ = 90◦
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(5) VB theory + electrostatics

OH bonds are polar and H atoms carry charges

+q. TheH+q · · ·H+q electrostatic repulsion should

force the angle to open up a bit, θ > 90◦.

If we know q and the strength of a OH bond, we

can estimate θ.

Take q = 0.46 and D0(OH) = 4.8 eV. As we

go from θ = 90◦ to θ = 180◦, one OH bond is

lost, so the energy increases by 4.8 eV. But at

the same time, the H+q · · ·H+q repulsion energy

goes down by 0.66 eV:

∆Urep = (0.46)2 · 27.211 · (1/2.559− 1/3.619)

= 0.66 eV
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The two opposing effects (OH bond loss, and de-

crease in coulombic repulsion) tell us the equili-

brium angle θ will be somewhere between 90◦ and

180◦, and the relative magnitude of these two ef-

fects (4.8 eV vs 0.66 eV) suggest a θ of roughly

θ ≈ 90 +

(

0.66

4.8 + 0.66

)

(180− 90)

= 101◦
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(6) Qualitative Molecular Orbital Theory

For small polyatomic molecules we can construct

a MO energy diagram, like we do for diatomic

molecules, by putting the AO energy levels of the

central atom on one side, the AO energy levels

of the peripheral atoms on the other side, and

the resulting MO energy levels in the middle.

We need to assume a geometry in order to estimate

AO overlaps and get reasonable MO energies. For

H2O, we assume θ between 90 and 120 degrees and

these AO energies (eV): −13.6 for H(1s), −13.6

(the IE of O) for O(2p), and −32.4 for O(2s).

The MO diagram below predicts H2O electron re-

moval energies (roughly 14, 15, 17, and 33 eV)

which are close to the observed ones (13.0, 14.7,

18.6, and 38.0 eV).
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(6) Qualitative MO Theory (continued)

H2O has two identical OH bonds. But the two correspon-

ding MO energies are different, −15 and −17 eV. There is

no contradiction there. Each OH bond is made of contri-

butions from two MOs. Conversely, each MO is delocalized

over the two OH bonds. When an e− is removed from one

of the bonding MOs, both OH bonds are weakened.

Same goes for the lone pairs. They are identical. Howe-

ver, the two MOs that describe them (−14 eV and −33 eV)

are different, and each of those two MOs contribute to both

lone pairs.

In general, bonds and lone pairs have a definite position

in space but do not have (or, do not always have) a definite

energy. MOs are delocalized but have a definite energy.

All that is related to Heisenberg’s principle: if you know

the position “(x, y, z)” of an e− very accurately, you know

very little about its momentum “(px, py, pz)” and energy.

You can define the position of e− (bonds, lone pairs, etc.),

or the energy of e− (orbitals, electronic states), but you can

not define both of those things simultaneously.
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Symmetry
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Why study symmetry?

• often,
∫

ψ1Ôψ2 dτ = 0 by symmetry

⇒ spectra (IR, Raman, UV-vis, . . . ),

overlap and bonding

• symmetric molecules are simpler:

atoms⇒ small or symmetric molecules⇒ . . .

• big molecules contain small symmetric groups

–CH2, –CH3, phenyl, . . .

• symmetry arises naturally because what’s good

for one C atom is good for all C atoms

⇒ C60; also Ar13, fcc crystals, . . .
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Symmetry operation: a geometric operation

that moves every point ~r of 3D space to a new

point ~r ′, but leaves every nucleus unmoved or in-

terchanges its position with that of an identical

nucleus.

Symmetry element: a point, line, or plane

that does not move under a given symmetry ope-

ration.
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Examples

# 1: ethylene, C2H4: E, i, σ (3), C2 (3)
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The 8 sym. operations of C2H4 divide space into

8 sym. equivalent portions:

the electron density ρ = |ψ|2 is identical at each

point that is equivalent by symmetry to a given

point ~r1.

ρ(~rj) = ρ(~r1) j = 1, 8

Integrands of QM integrals:

ψ(~rj) Ô ψ(~rj) = ±ψ(~r1) Ô ψ(~r1) j = 1, 8

The integral is exactly zero for certain combina-

tions of symmetry and integrand.
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# 2: staggered ethane, C2H6: C3, S6, . . .

Sn: rotation by 2π/n followed by reflection across

a plane perpendicular to the rotation axis.
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The product of 2 sym. operations of a molecule

is always a sym. operation of that molecule.

Successive applications of symmetry operations are

(generally) non-commutative:

ai aj 6= aj ai
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σh: reflection through a plane ⊥ to the main ro-

tation axis Cn

σv: reflection through a plane that contains the

main rotation axis Cn

σd: like σv except the plane of σd contains fewer

atoms.

Notes about Sn:

S1 is a σ ; S2 = i

(Sn)
2, (Sn)4, . . . are C2

n, C
4
n . . .

Ex.: S8 → S8, (S8)
3, (S8)

5, (S8)
7 (and pure ro-

tations)
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The set of all sym. operations “aj” of a finite ob-

ject constitutes a symmetry point group “G”.

1. multiplication law:

∀ aj, ai ∈ G : aj · ai = ak ∈ G

2. associativity:

∀ ai, aj, ak : (ai · aj) · ak = ai · (aj · ak)

3. identity element:

∃ a1 ∈ G | ∀ aj : a1 · aj = aj · a1 = aj

4. inverse:

∀ aj ∃ ak = (aj)
−1 | aj · ak = ak · aj = a1

∀: for every ∃: there is a ∈: in |: such that
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Symmetry Point Groups

of Molecules

Follow the Flow Chart of Fig. 28.2 and show that

CH4: Td ; CH3Cl: C3v ; CH2Cl2: C2v

eclipsed C2H6: D3h ; staggered C2H6: D3d

3 isomers of C2H2Cl2: C2v, C2v, C2h

3 isomers of C6H4Cl2: C2v, C2v, D2h

CO: C∞v ; CO2: D∞h

octahedron: Oh

distorted octahedra: D4h, D2h, D3d, C3v, . . .
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Molecules with nonzero dipole moments must

belong to a Cs, Cn (including C1), or Cnv group.

A molecule with any Sn sym. operation (S1 = σ,

S2 = i, or other Sn) can not be optically ac-

tive

A n-atom molecule has (3n−6) vibrational modes

of motion: each one of those has the symmetry

properties of one of the irreducible represen-

tations of the point group (appendix C)

Spectroscopy: some optical transitions between

energy levels are forbidden by symmetry

Reactivity: some reactions are forbidden on ac-

count of orbital symmetry
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Characters and

Irreducible Representations (“irreps”)

The sym. operations of a molecule leave the nu-

clear framework unchanged.

But some things, such as velocity vectors and

AOs, may change under sym. operations.

The irreps and characters of a point group (Ap-

pendix C) give us the different ways in which

those things can change.
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Atoms’ velocities in H2O

and the C2v irreps

Arrows represent the x, y, z velocity components

of the H2O molecule.

Γred: Effect of C2v sym. operations on vx, vy, vz.

E C2 σxz σyz
Γred 3 −1 +1 +1

Γred is a sum of 3 irreps: take the scalar product

of Γred with each of the irrep . . .
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A1 : (3,−1, 1, 1) · (1, 1, 1, 1)÷ 4 = 1

A2 : (3,−1, 1, 1) · (1, 1,−1,−1)÷ 4 = 0

B1 : (3,−1, 1, 1) · (1,−1, 1,−1)÷ 4 = 1

B2 : (3,−1, 1, 1) · (1,−1,−1, 1)÷ 4 = 1

Γred = A1 +B1 +B2
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Properties of irreps (see section 27.4, 27.5, and

Appendix C)

• Let the no. of sym. operations = n.

n is called the order of the group.

• There are n irreps in a group.

• Each irrep is like a vector with n components,

one for each sym. operation.

• The irreps are orthonormal.

• Every Γred can be decomposed as a sum of

irreps.
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Γ: a reducible symmetry representation of G

Γi: i’th character of Γ

χj: one of the irreps of G

χ
j
i : the i’th character of irrep j

Γ = cj χ
j

cj =
1

n

∑

i

Γi · χji
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Allowed Transitions in

Infrared and Raman Spectra

• CH2O , C2v

• C2H4 , D2h

• C2H4 : CC stretch

• C2H4 : CH stretches

• C2H4 : out-of-plane deformations

• NH3 , C3v
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Γred for nuclear motions

1. identify the point group

2. apply the sym. operations, one at a time

3. Get Γred : for each unmoved atom, count

• +3 for E

• −3 for i

• +1 for a σ

• −1 for C2 ; 0 for C3 ; +1 for C4

4. take scalar products of Γred with irreps

5. look up the character table

• x, y, z: (a) translation of molecule, and

(b) IR allowed

• Rx, Ry, Rz: rotations of the molecule

• xy, xz, . . . z2: Raman allowed
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How do we get the correct “count” for each un-

moved atom (+3 for E, −3 for i, +1 for a σ, etc.)

for a given symmetry operation?

Here’s the general method (see next page)
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(1) Imagine an atom positioned somewhere on

the symmetry element (plane, line, or point) asso-

ciated with the symmetry operation

(2) Imagine 3 unit-length vectors at right angles,

~x, ~y, ~z, centered on that atom

(3) Apply the symmetry operation to this rigid

set of 3 vectors: after the symmetry operation,

you get 3 new vectors ~x′, ~y′, and ~z′.

(4) Calculate the sum of the 3 scalar products:

c = ~x · ~x′ + ~y · ~y′ + ~z · ~z′

The result, c, is the count you must use for that

symmetry operation (c = 3 for the E operation,

c = −1 for a mirror plane operation, etc.)
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Symmetry-Adapted Linear Combinations

(SALC) of Atomic Orbitals

• H2O (C2v)

• NH3 (C3v)

• HCN (C∞v → C4v)

• the π MOs of pyrazine (D2h)
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1. find the point group

2. divide molecule into “central atom” + “the rest”

3. divide AOs into similar groups

and get Γred for each of those groups

4. Decompose each Γred into irreps

5. Mix AOs that satisfy 3 conditions:

• are in the same irrep

• are in close proximity (overlap)

• have similar energies


