Beer's law

A beam of light of intensity I_0 goes through a homogeneous dilute solution of absorbers "A" with concentration [A]. The light gets attenuated as it goes through the cell of length ℓ and exits with intensity $I < I_0$. We want to calculate I or $I_{abs} = I_0 - I$.

Let's say the light travels along x, with x = 0 at the entry point into the solution, and $x = \ell$ at the exit point: ℓ is the path length. At x = 0, $I = I_0$. The probability that a photon of the beam gets absorbed between x = 0 and x = dx is $\operatorname{Prob} (A) dx$ or $\operatorname{Prob} (\epsilon A) dx$, where ϵ is the proportionality factor which depends on the molecule "A" absorbing light and the wavelength λ . The attenuation factor between x = 0 and x = dx is $(1 - \epsilon A) dx$, and the intensity of light at x = dxis

$$I(dx) = I_0(1 - \epsilon[A]dx)$$

The attenuation factor is also $(1 - \epsilon[A]dx)$ for x = dx to x = 2dx, and for x = 2dx to x = 3dx, and so on. So

$$I(2dx) = I_0(1 - \epsilon[A]dx)^2$$
$$I(3dx) = I_0(1 - \epsilon[A]dx)^3$$

. . .

Then,
$$I(\ell) \equiv I = I_0(1 - \epsilon[A]dx)^n$$
, or
 $I_0/I = (1 - \epsilon[A]dx)^{-n}$

$$\ln(I_0/I) = -n\ln(1-\epsilon[A]dx)$$

$$= -n(-\epsilon[A]dx - (\epsilon[A]dx)^2 - \dots)$$

In the limit $dx \to 0$ we have

$$\ln(I_0/I) = n\epsilon[A]dx$$

Since $n = \ell/dx$,

$$\ln(I_0/I) = \epsilon \ell[A]$$

Instead of I_0/I or $I_{abs} = I_0 - I$, people sometimes write Beer's law in term of the transmittance $T = I/I_0$:

$$I/I_0 \equiv T = e^{-\epsilon \ell [A]}$$

Instead of natural logarithms, people sometimes use base-10 log, and a ϵ that is 2.303 times smaller:

$$T = 10^{-\epsilon\ell[A]} \equiv 10^{-A}$$
$$A = \epsilon\ell[A]$$

A is called the *absorbance*. The derivation of Beer's law depends on the assumption that [A] is sufficiently small (dilute solution). If [A] is large, we could have A—A interactions and cooperative effects. If [A] is small enough, we can further simplify Beer's law:

$$I_0/I = e^{\epsilon \ell[A]}$$

= $1 + \epsilon \ell[A] + \frac{1}{2} (\epsilon \ell[A])^2 + \dots$

Keeping only the first two terms,

$$I_0/I \approx I/I + \epsilon \ell[A]$$
$$I_0 - I \approx I \epsilon \ell[A]$$

When [A] is very small, we normally have $I/I_0 \approx 1$ and we can write $I_{abs} = I_0 - I$ like this

$$I_0 - I \equiv I_{abs} \approx I_0 \epsilon \ell[A]$$

or, if we use the \log_{10} convention instead,

$$I_{abs} \approx 2.303 \times I_0 \epsilon \ell[A]$$

with ϵ smaller by a factor 2.303.