Beer's law

A beam of light of intensity I_{0} goes through a homogeneous dilute solution of absorbers "A" with concentration $[A]$. The light gets attenuated as it goes through the cell of length ℓ and exits with intensity $I<I_{0}$. We want to calculate I or $I_{a b s}=I_{0}-I$.

Let's say the light travels along x, with $x=0$ at the entry point into the solution, and $x=\ell$ at the exit point: ℓ is the path length. At $x=0, I=I_{0}$. The probability that a photon of the beam gets absorbed between $x=0$ and $x=d x$ is Prob $\propto[A] d x$ or Prob $=\epsilon[A] d x$, where ϵ is the proportionality factor which depends on the molecule "A" absorbing light and the wavelength λ. The attenuation factor between $x=0$ and $x=d x$ is $(1-\epsilon[A] d x)$, and the intensity of light at $x=d x$ is

$$
I(d x)=I_{0}(1-\epsilon[A] d x)
$$

The attenuation factor is also $(1-\epsilon[A] d x)$ for $x=d x$ to $x=2 d x$, and for $x=2 d x$ to $x=3 d x$, and so on. So

$$
\begin{aligned}
& I(2 d x)=I_{0}(1-\epsilon[A] d x)^{2} \\
& I(3 d x)=I_{0}(1-\epsilon[A] d x)^{3}
\end{aligned}
$$

Then, $I(\ell) \equiv I=I_{0}(1-\epsilon[A] d x)^{n}$, or

$$
\begin{aligned}
I_{0} / I & =(1-\epsilon[A] d x)^{-n} \\
\ln \left(I_{0} / I\right) & =-n \ln (1-\epsilon[A] d x) \\
& =-n\left(-\epsilon[A] d x-(\epsilon[A] d x)^{2}-\ldots\right)
\end{aligned}
$$

In the limit $d x \rightarrow 0$ we have

$$
\ln \left(I_{0} / I\right)=n \epsilon[A] d x
$$

Since $n=\ell / d x$,

$$
\ln \left(I_{0} / I\right)=\epsilon \ell[A]
$$

Instead of I_{0} / I or $I_{a b s}=I_{0}-I$, people sometimes write Beer's law in term of the transmittance $T=I / I_{0}$:

$$
I / I_{0} \equiv T=e^{-\epsilon[A]}
$$

Instead of natural logarithms, people sometimes use base-10 log, and a ϵ that is 2.303 times smaller:

$$
\begin{aligned}
& T=10^{-\epsilon[A]} \equiv 10^{-A} \\
& A=\epsilon \ell[A]
\end{aligned}
$$

A is called the absorbance. The derivation of Beer's law depends on the assumption that $[A]$ is sufficiently small (dilute solution). If $[A]$ is large, we could have A-A interactions and cooperative effects. If $[A]$ is small enough, we can further simplify Beer's law:

$$
\begin{aligned}
I_{0} / I & =e^{\epsilon \ell[A]} \\
& =1+\epsilon \ell[A]+\frac{1}{2}(\epsilon \ell[A])^{2}+\ldots
\end{aligned}
$$

Keeping only the first two terms,

$$
\begin{aligned}
I_{0} / I & \approx I / I+\epsilon \ell[A] \\
I_{0}-I & \approx I \epsilon \ell[A]
\end{aligned}
$$

When $[A]$ is very small, we normally have $I / I_{0} \approx 1$ and we can write $I_{a b s}=I_{0}-I$ like this

$$
I_{0}-I \equiv I_{a b s} \approx I_{0} \epsilon \ell[A]
$$

or, if we use the $\log _{10}$ convention instead,

$$
I_{a b s} \approx 2.303 \times I_{0} \epsilon \ell[A]
$$

with ϵ smaller by a factor 2.303 .

