CHEM 3011: Physical Chemistry
 Chemical Kinetics, Fall 2015
 Assignments

Here is a list of conceptual problems ("Q") and numerical problems ("P") from end-of-chapter in Engel and Reid "Thermodynamics, Statistical Thermodynamics \mathcal{E} Kinetics" (TSK), 3rd Edition. (Chapters 18 and 19 of TSK are the same as chapters 35 and 36 of Engel and Reid "Physical Chemistry", 3rd Edition.) I suggest that you do these problems. They are a good practice for the tests and exam.

You should also review chapter 14 (Chemical Kinetics) in General Chemistry, 10th Edition, by Petrucci, Herring, Madura and Bissonnette.

Assignment \#1: Q18.4, Q18.9
P18.2a), P18.4 (part c) is difficult), P18.7, P18.11, P18.12, P18.14, and P18.26
Assignment \#2: Q18.10, Q18.11, Q18.12
P18.27a, P18.28, P18.39
Assignment \#3: Q18.16, Q18.17, Q18.19
P18.38, P18.42, P18.45, P18.48, P18.50
Assignment \#4: Q18.14, Q18.15, Q18.18
P18.8, P18.13, P18.29, P18.31, P18.35, P18.37 (take $E_{a}=50.0 \mathrm{~kJ} / \mathrm{mol}$, not $E_{a}=50.0 \mathrm{~J} / \mathrm{mol}$)
Assignment \#5: Q19.3, Q19.4, Q19.6, Q19.7
P19.2, P19.3, P19.9, P19.10
Assignment \#6: Q19.8, Q19.10, Q19.11
P19.10, P19.13, P19.14, P19.15, P19.16, P19.17, P19.19
Assignment \#7: Q19.12, Q19.16, Q19.17
P19.23, P19.24, P19.27, P19.28, P19.30, P19.32

Assignment \#8: Q19.19, Q19.20
P19.35, P19.37, P19.38, P19.39, P19.41
Assignment \#9:
P19.42 (tough), P19.45, P19.46, P19.49a), P19.50a)

Answers and hints to some of the questions.
P18.35 ans.: $1.5,57,18100$
P18.37 take $k_{2} / k_{1}=\exp \left(\left(-E_{a} / R\right)\left(1 / T_{2}-1 / T_{1}\right)\right)$
P19.2 a) no, b) yes, c) use the preequilibrium approximation (PEA) for step 1, and the steadystate approximation (SSA) for $\mathrm{N}_{2} \mathrm{O}$.
P19.10 $R=k_{2}[A][B]$ and use the PEA in step 1 to get $[A]$.
P19.13 a) make the SSA for $\left.A^{*}: R=k_{3}\left[A^{*}\right] ; \mathrm{b}\right)$ set $[M]=0$ and compare to equation (19.28).
P19.14 use equation (19.35), plot or tabulate $1 / k_{\text {uni }}$ vs $1 /[A]$.
P19.15 it is identical to the Lindemann mechanism, see the section from equation (19.23) to (19.28).

P19.17 Tabulate $1 / R_{0}$ vs $1 /[S]_{0}$ (Lineweaver-Burke); the slope is $K_{m} / R_{\max }$, intercept is $1 / R_{\max }$, and $k_{2}=R_{\max } /[E]_{0}$.

