$$i = \sqrt{-1} \tag{1}$$

$$i^2 = -1$$

By extension

$$\sqrt{-9} = \sqrt{9} \times \sqrt{-1} = 3i$$

A complex number, z, has a real part and an imaginary part: z = a + bi, where a and b are real, and $i = \sqrt{-1}$.

Sum of two complex numbers:

$$(a+ib) + (c+id) = (a+c) + (b+d)i$$

Product of two complex numbers:

$$(a+ib)\cdot(c+id) = ac+i(ad+bc)+i^2(bd)$$

$$= (ac - bd) + (ad + bc)i$$

Why do we need i? Try finding what x might be in the equation

$$x^2 + x + 1 = 0 (2)$$

Here's how NOT to do it:

Eqn 2:
$$\Rightarrow x+1=-x^2$$
 (3)

Eqn 2:
$$\Rightarrow x(x+1) + 1 = 0$$
 (4)

Sub (3) in (4):
$$\Rightarrow -x^3 + 1 = 0$$
 (5)

$$\Rightarrow \quad x = 1 \tag{6}$$

Verify by substituting Eqn (6) into Eqn (2):

$$1^2 + 1 + 1 = 0$$

 $3 = 0$ oooops ...

Here's something better:

$$x^2 + x + 1 = 0$$

$$x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot (1) \cdot (1)}}{2}$$
$$= \frac{-1 \pm i\sqrt{3}}{2}$$

For the first root, $(\frac{-1}{2} + i\frac{\sqrt{3}}{2})$, we have:

$$x^{2} = \left(\frac{-1}{2} + i\frac{\sqrt{3}}{2}\right) \cdot \left(\frac{-1}{2} + i\frac{\sqrt{3}}{2}\right)$$

$$= \left(\frac{1}{4} + \frac{-3}{4}\right) + i\left(\frac{-\sqrt{3}}{4} + \frac{-\sqrt{3}}{4}\right)$$

$$= \frac{-1}{2} - i\frac{\sqrt{3}}{2}$$

Verify:

$$x^{2} + x + 1 = \left(\frac{-1}{2} - i\frac{\sqrt{3}}{2}\right) + \left(\frac{-1}{2} + i\frac{\sqrt{3}}{2}\right) + 1$$
$$= 0$$

Complex numbers can be represented as vectors (or points) in the "complex plane". By convention, the x axis is real, the y axis is imaginary.

Ex.:
$$z_1 = (2+i)$$
 , $z_2 = (-1+3i)$, $z_3 = (3-3i)$, ...

 $z_1 + z_2 = 1 + 4i$: there's a simple geometrical relation between the vectors representing z_1 , z_2 , and $z_1 + z_2$.

By definition, the complex conjugate of a complex number z=a+ib, denoted by z^* , is equal to

$$z^* = a - ib$$

that is, we just change the sign of the imaginary part.

Note that $z \cdot z^*$ is *always* a positive real number:

$$z \cdot z^* = (a+ib)(a-ib)$$
$$= a^2 - abi + abi - i^2b^2$$
$$= a^2 + b^2$$

Euler's Formula

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{7}$$

Special case:

$$e^{i\pi} = -1$$

Related formulas:

$$\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

$$\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

Physical quantities like mass, energy, time, temperature, electric field, magnetic field, . . . are always real.

However, in writing mathematical relationships between physical quantities, it is often convenient to introduce complex variables.

Sometimes, the real part of a complex variable, Re(a + ib) = a, has a physical meaning;

Sometimes, the imaginary part of a complex variable, Im(a+ib) = b, has a physical meaning;

Sometimes, the square of a complex variable, $zz^* = (a+ib)(a-ib) = a^2 + b^2$, has a physical meaning.

etc.

In these instances, a, b, and $a^2 + b^2$ are real numbers!