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Classification images have recently become a widely used tool in visual psychophysics. Here, I review the development of
classification image methods over the past fifteen years. I provide some historical background, describing how classification
images and related methods grew out of established statistical and mathematical frameworks and became common tools
for studying biological systems. I describe key developments in classification image methods: use of optimal weighted sums
based on the linear observer model, formulation of classification images in terms of the generalized linear model, development
of statistical tests, use of priors to reduce dimensionality, methods for experiments with more than two response alternatives,
a variant using multiplicative noise, and related methods for examining nonlinearities in visual processing, including second-
order Volterra kernels and principal component analysis. I conclude with a selective review of how classification image
methods have led to substantive findings in three representative areas of vision research, namely, spatial vision, perceptual
organization, and visual search.
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Introduction

Visual psychophysics has the goal of using measures of
behavior to develop and test theories of visual processing.
These theories may be informed by physiological findings
and computational insights, but the hallmark of visual
psychophysics is that, experimentally, it is the observer’s
behavioral responses to visual stimuli that are used to test
and constrain theories. Historically, psychophysicists have
used a variety of behavioral measures, including appear-
ance matches, response times, and proportion of correct
responses. Fifteen years ago, a new experimental tool, the
classification image, was introduced into visual psycho-
physics (Ahumada, 1996). Since then, it has undergone
rapid development, and it has been used to examine visual
processing in new ways across the full range of vision
science, from simple detection tasks to object recognition.
Given the recent progress and increasingly widespread

application of classification image methods, a survey of the
field may be useful. Here, I review the origins and recent
development of classification image methods. I begin with
a brief description of the most frequently used method of
calculating classification images. I then provide some his-
torical background, describing how classification images
and related methods grew out of established statistical and
mathematical frameworks and became increasingly com-
mon tools for studying biological systems. The next and
largest part of this review is an exploration of recent
innovations in ways of using and understanding classi-
fication images. I then make a selective review of how
classification images have led to substantive findings in
a few representative areas of vision research, namely,
spatial vision, perceptual organization, and visual search.

I conclude with some observations on what we have
learned about classification image methods and some sug-
gestions on avenues for future research.

The classification image

In a typical classification image experiment, the stimu-
lus on each trial is one of two possible signals, randomly
chosen, in a Gaussian noise field that varies from trial to
trial (Figure 1). The observer tries to say which signal was
shown. Ahumada (1996) introduced the following method
of calculating classification images in such experiments:

c ¼ ðn�12 þ n�22Þj ðn�11 þ n�21Þ: ð1Þ

Here, n�SR is the sample average of noise fields in a
stimulus–response class of trials, e.g., n�12 is the average
of the noise fields over all trials where the stimulus
contained signal 1 but the observer identified it as signal 2.
Appendix A gives a summary of the notation used through-
out the article.
What intuition can we give for the calculation in

Equation 1? What do we expect the classification image
to reveal about how the observer decides which signal was
shown? In a task performed at threshold, the observer
sometimes responds correctly and sometimes responds
incorrectly. The stimulus noise influences the observer’s
responses: on some trials, by chance, the noise has fea-
tures similar to one of the signals, making the observer
more likely to identify the stimulus as containing that
signal. It seems plausible that n�11 and n�21 will show what
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features the observer took to be similar to signal 1 and
dissimilar to signal 2, since they are averages of noise
fields over trials where the observer identified the stimu-
lus as signal 1. If we expect these two images to be simi-
lar, then we can sum them to reduce sampling noise. For
the same reasons, we might expect n�12 and n�22 to show
what features the observer took to be similar to signal 2
and dissimilar to signal 1, and we could sum them as well.
If we believe that these two summed images, n�11 + n�21

and n�12 + n�22, are on average photographic negatives of
one another, since they are based on noise fields that led to
opposite responses, then we can reduce sampling noise
further by adding one to the negative of the other. This
sequence of averages, sums, and differences leads to
Equation 1.
Another, more immediate way of understanding the

classification image is as a correlation map. An image
showing the correlation between intensity fluctuations at
each stimulus location and the observer’s responses would
clearly be useful for understanding the observer’s decision
mechanism. High positive or negative correlations would
occur at locations that strongly influenced the observer’s
responses, and zero correlations would occur at locations
that apparently had no influence on the observer’s responses.
The pixelwise correlation between the noise field n and
the observer’s responses r (a random variable where r = 1
or r = 2 on each trial) is

corr n; r½ � ¼ E½ðnjE½n�Þðrj E½r�Þ�
AnAr

: ð2Þ

Here, An is the pixelwise standard deviation of the noise
field n and Ar is the standard deviation of r. With zero-
mean noise (E[n] = 0) and an unbiased observer (E[r] = 1.5,
since an unbiased observer gives responses 1 and 2 equally
often), Equation 2 becomes

¼ E½nðrj1:5Þ�
AnAr

; ð3Þ

¼ E½nðrj1:5Þkr ¼ 1�Pðr ¼ 1Þ þ E½nðrj1:5Þkr ¼ 2�Pðr ¼ 2Þ
AnAr

;

ð4Þ

¼ E½nkr ¼ 2�j E½nkr ¼ 1�
4AnAr

: ð5Þ

Multiplying by 4AnAr to eliminate the scale factor leads
to

E½nkr ¼ 2�j E½nkr ¼ 1�: ð6Þ

The corresponding sample average over a finite number
of trials, in a notation like the one used in Equation 1, is

ccorr ¼ n��2j n��1
: ð7Þ

Here, n�*R is the sample average of the noise fields over all
trials where the observer gave response R. Thus, ccorr is
the average of the noise fields over all trials where the
observer responded r = 2, minus the average over all trials
where the observer responded r = 1, regardless of which
signal was shown. Equations 1 and 7 are both weighted
sums in which noise fields from trials where the observer
responded r = 2 are weighted positively, and noise fields
from trials where the observer responded r = 1 are
weighted negatively. Thus, a classification image calcu-
lated using the standard method in Equation 1 is, loosely
speaking, similar to a map showing the correlations
between stimulus fluctuations at each pixel and the
observer’s responses.1

These are intuitive motivations for the classification
image method. Later, we will look at these rationales more
closely and see what assumptions about visual processing
they rely on (see The linear observer model section).

Background

To provide context for later developments, I will review
the origins of classification images and related methods.

Figure 1. The standard method of calculating a classification
image. (a) The experiment: on each trial, a signal and a noise
image are summed to produce the stimulus, and the observer
generates a response. (b) The analysis: the noise fields from each
signal-response category of trials are averaged together, and the
averages are combined according to Equation 1 to produce the
classification image.
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Volterra and Wiener kernel analysis

Consider a system that has a time-varying input x(t) and
a time-varying output y(t), such as a photoreceptor whose
input is the luminance at a retinal location and whose output
is a membrane potential. The system may be internally
complex and may have an intricate relationship between
input and output, for example, showing temporal inhib-
ition, gain control, and so on. Volterra (1930) and Wiener
(1958) showed that under certain broad conditions (e.g., the
system must be time-invariant and have finite memory),
such a system can be approximated as a sum of simple sub-
systems: a zero-order subsystem, plus a first-order subsys-
tem, plus a second-order subsystem, etc. Each subsystem
responds to the input in a straightforward way. In Volterra’s
framework, the output of the zero-order subsystem is a
constant H0, independent of the input. The output H1(t) of
the first-order subsystem is a weighted sum of past inputs,
weighted according to a function h1(t1) called the first-order
kernel:

H1ðtÞ ¼
ZV
0

h1ðt1Þxðtj t1Þdt1: ð8Þ

The output H2(t) of the second-order subsystem is a
weighted sum of pairwise products of past inputs, weighted
according to the second-order kernel h2(t1, t2):

H2ðtÞ ¼
ZV
0

ZV
0

h2ðt1; t2Þxðtj t1Þxðtj t2Þdt1dt2: ð9Þ

The output of the nth-order subsystem is a weighted sum
of n-wise products of past inputs, weighted according to
the nth-order kernel hn(t1, t2, I, tn):

HnðtÞ ¼
ZV
0

ZV
0

>
ZV
0

hnðt1; t2;I; tnÞxðtj t1Þxðtj t2Þ

> xðtj tnÞdt1dt2 > dtn: ð10Þ

(Note that each subsystem is just an n-dimensional con-
volution.) The output of the system is approximated as the
sum of the outputs of the subsystems:

yðtÞÊH0 þ H1ðtÞ þ H2ðtÞ þI: ð11Þ

Thus, a complex system is described as a sum of simple sub-
systems. This is similar to a Taylor series expansion, where a

function of one variable is expressed as a weighted sum of
simple polynomial terms, (x j x0), (x j x0)2, (x j x0)3,
etc. In fact, the Volterra series has been called a “Taylor
series with memory” (Schetzen, 1980, p. 200), as it allows
the estimate of y(t) to depend not only on powers of x(t)
at time t, but also on powers and products of past values
x(t j t1).
Wiener’s framework is similar to that of Volterra and

expresses the system as a sum of subsystems Gi based on
kernels gi. The relationship between Gi and gi is similar to
the relationship between Hi and hi, but Wiener introduced
some refinements that make Gi easier to use for modeling
physical systems. For a thorough account of Volterra and
Wiener kernel methods, see Schetzen (1980).
To describe a specific system in this framework, we

need to find the system’s kernels. Lee and Schetzen (1965)
showed that we can estimate a system’s Wiener kernels gi
simply by giving it a white noise input and measuring
correlations between its input and its output. They showed
that the zero-, first-, and second-order Wiener kernels can
be measured as

ĝ0 ¼ E½yðtÞ�; ð12Þ

ĝ1 t1ð Þ ¼ 1

K
E x tj t1ð Þy tð Þ½ �; ð13Þ

ĝ2 t1; t2ð Þ ¼ 1

2K2
E x tj t1ð Þx tj t2ð Þ y tð Þj ĝ0

� �� �
:

ð14Þ

Here, x(t) is the zero-mean white noise input and K =
E[x(t)2] is its power spectral density. We can find these
expected values by averaging over time (i.e., we assume
ergodicity): we give the system a white noise input, and
over many values of time t, we find the averages of y(t),
x(t j t1)y(t), and x(t j t1)x(t j t2)(y(t) j ĝ0). The dis-
covery that Wiener kernels can be estimated this way held
out the possibility of using simple physical measurements
to completely characterize the input–output patterns of
complex systems.
For our purpose, the important points are that the first-

order kernel estimate is similar to a classification image
measured using the correlation between a white noise input
and the system’s output (recall Equation 7) and that higher
order kernels provide a way of extending the first-order,
linear description of the system. There are some super-
ficial differences between classification images and kernel
methods as presented here: on each trial, the observer in a
classification image experiment gives a single discrete
response, whereas in the kernel framework the output is
a continuous variable over time; and in a classification
image experiment, we examine the influence of discrete
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pixels, usually distributed over two-dimensional space, on
the observer’s responses, whereas in the kernel framework
we examine the influence of a single continuous input dis-
tributed over time. Later, we will reformulate the kernel
framework in a way that is more suitable for psychophysics
(see Second-order kernels section).
Lee and Schetzen’s methods were applied to biological

systems almost immediately (de Boer & Kuyper, 1968;
Stark, 1969). In an influential early application, Marmarelis
and Naka (1972) used these methods to examine a three-
neuron chain in the catfish retina. They injected a white
noise current into a horizontal cell, which stimulated a
bipolar cell that stimulated a ganglion cell whose spike
responses were recorded. They repeated a single white
noise stimulus several times in order to find the instanta-
neous spike rate of the system over time in response to the
stimulus. They used Equations 13 and 14 to calculate the
system’s first- and second-order Wiener kernels from
these data. They validated their results by calculating the
response of the first- and second-order kernels to the white
noise stimulus and found that the first-order kernel
responded somewhat like the three-neuron chain, but that
the first- and second-order kernels together gave a much
better characterization. (In this pioneering work, issues of
overfitting and generalization beyond the training data were
naturally not addressed (Duda, Hart, & Stork, 2000).)
Marmarelis and Naka, like later investigators (e.g., Rieke,
Warland, de Ruyter van Steveninck, & Bialek, 1997), found
that usually only enough data to estimate the zero-, first-,
and second-order kernels can be collected from biological
systems, since the number of correlations that need to be
measured increases exponentially with the order of the
kernel. This study initiated a vast amount of research
using similar methods, which continues to the present day
(Marmarelis & Marmarelis, 1977; Pinter & Nabet, 1992;
Sakai, 1992; Wu, David, & Gallant, 2006).

Auditory psychophysics

Around the time of Marmarelis and Naka’s work,
Ahumada and Lovell (1971) independently developed a
similar method for auditory psychophysics. The roots of
Ahumada and Lovell’s work were quite different, and they
presented their method as an application of multiple linear
regression, not Wiener kernel analysis. They investigated
what stimulus features observers used to detect a narrow-
band auditory signal in noise. Their stimuli contained a
sinusoidal signal at a fixed frequency, present on half the
trials, and noise at that frequency and at nearby frequen-
cies on all trials. Observers used a four-point rating scale
to report their confidence that the target was present.
Ahumada and Lovell made a least-squares regression of
observers’ rating responses against the stimulus energy
at each frequency. They interpreted the regression coef-
ficients as weights that observers assigned to various

frequencies when judging the presence of the signal. This
work introduced several themes that are still active topics
of research, including how to validate classification images,
how to use differences between signal-present and signal-
absent classification images to detect processing nonlinear-
ities, and how to smooth classification images and express
them as sums of simple basis functions. Ahumada, Marken,
and Sandusky (1975) continued this line of investigation.
Ahumada and his colleagues’ work was influential in

auditory psychophysics, and auditory researchers solved
several problems related to classification images that were
later addressed again by visual psychophysicists. Auditory
researchers first examined the relationship between classi-
fication images, ideal observers, and efficiency (Berg,
1990) and investigated how classification images depend
on the template and internal noise power of linear observers
(Richards & Zhu, 1994). (Auditory researchers do not use
the term “classification image” and typically refer to
“weights” or “combination weights.”)

Visual psychophysics

Abel and Quick (1978) were the first to use Wiener kernel
methods in visual psychophysics. They were apparently
unaware of Ahumada’s work and described their experi-
ments as an extension of Marmarelis and Naka’s (1972)
physiological studies. Their experiment was broadly simi-
lar to that of Ahumada and Lovell (1971). Their stimuli
were sums of ten randomly scaled sinusoidal luminance
patterns, and observers judged the stimulus contrast by
adjusting the contrast of a nearby sinusoid until it appeared
to match the stimulus. Abel and Quick used Lee and
Schetzen’s method to measure the first- and second-order
Wiener kernels of the mapping from the ten spatial fre-
quency amplitudes to observers’ responses. Despite its
similarity to later visual classification image studies, this
work had little impact and has been cited only once in
the ensuing 33 years (Logvinenko, 1990). This may be
because the results from human observers were described
only very briefly and perhaps did not convey the method’s
potential.
Ahumada and Beard developed the standard classification

image method used in visual psychophysics (Equation 1)
and used it to test models of human performance in Vernier
discrimination tasks (Ahumada, 1996; Beard & Ahumada,
1997, 1998). They calculated classification images in a
task where observers judged whether a line segment was
aligned or offset relative to another line segment at a
fixed position. They found that even though observers
often show hyperacuity performance levels in Vernier
tasks (Westheimer, 1979), their strategies are nevertheless
suboptimal in several ways, e.g., they rely heavily on the
line segment that has the same position in both signals and
so conveys no information about the correct response. (This
probably reflects observers’ intrinsic spatial uncertainty
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(Zeevi & Mangoubi, 1984).) These studies have been
highly influential, and they led to the widespread use of
classification images in visual psychophysics over the past
fifteen years.

Developments: Methods

The linear observer model

When is a classification image a reasonable way of
characterizing how observers identify stimuli? Several
early papers addressed this question and concluded that the
linear observer model is the natural starting point for under-
standing classification image methods (Abbey, Eckstein,
& Bochud, 1999; Ahumada, 2002; Murray, Bennett, &
Sekuler, 2002; Solomon, 2002).
The linear observer model is a useful tool for under-

standing human performance in perceptual tasks (Burgess,
Wagner, Jennings, & Barlow, 1981; Green & Swets, 1966/
1974; Peterson, Birdsall, & Fox, 1954). Consider a yes–no
experiment where there are two signals, s1 and s2, shown
in a noise field n that varies from trial to trial. We will
let the random variable k be the signal number (1 or 2) on
any given trial, so the stimulus is g = sk + n, where the
components of vectors g, sk, and n encode the stimulus
contrast at each pixel. We will represent g, sk, and n as
n � 1 column vectors, even when the stimuli are shown as
two-dimensional images in the experiment. The linear
observer model assumes that the observer has two tem-
plates, t1 and t2, that are internal representations of the
signals; we also represent these as n � 1 column vectors.
The observer computes decision variables d1 and d2 by
taking the dot product of the two templates with the
stimulus. The observer may also add samples from inde-
pendent, equal-variance internal noise sources, z1 and z2,
to the dot products. That is, the decision variables are

d1 ¼ t1Tðsk þ nÞ þ z1; ð15Þ

d2 ¼ t2Tðsk þ nÞ þ z2: ð16Þ

Here, T is the matrix transpose operation, so pTq = ~ip[i]q[i]
is the dot product of column vectors p and q. (I use
brackets to refer to vector components, because later I will
use subscripts to refer to samples from a random variable.)
The model assumes that the observer identifies the signal
as s1 if d1 plus some constant a is larger than d2. That is,
the response variable r is

r ¼ 1 if d1 þ a 9 d2

2 otherwise
:

(
ð17Þ

The constant a allows the model observer to be biased
toward choosing one response more often than the other.
This model is redundant, because only the difference

between the two templates influences the observer’s
responses. The observer responds r = 2 if

t1Tðsk þ nÞ þ z1 þ a G t2Tðsk þ nÞ þ z2; ð18Þ

which is equivalent to

ðt2 j t1ÞTðsk þ nÞ þ ðz2 j z1Þ 9 a: ð19Þ

That is, the observer’s decisions are determined by the
difference template w = t2 j t1 and an internal noise
source z with a variance Az

2 that is twice the variance of z1

and z2:

d ¼ wTðsk þ nÞ þ z; ð20Þ

r ¼
1 if d G a

2 otherwise

:

8<
: ð21Þ

Equations 20 and 21 are the form of the linear observer
model that we will use most often. When discussing just the
yes–no experiment, there is no need to introduce separate
templates t1 and t2, since the model depends only on the
difference template w. Later, when we discuss experiments
with more than two signals, it will be useful to have the
multiple-template notation in place (see Multiple response
alternatives section).
We can depict the linear observer’s strategy in a deci-

sion space that represents all possible stimuli g = sk + n
and shows how the observer categorizes them. For sim-
plicity, suppose the stimulus is an image with just two
pixels, so that we can represent all possible stimuli on a
two-dimensional plane (Figure 2a). If the linear observer has
no internal noise, then the decision space is divided into
two regions: wTg G a, where the observer gives response 1,
and wTg Q a, where the observer gives response 2. The
border that divides the two, where wTg = a, is a line that
is perpendicular to the template w (the black arrow in
Figure 2a) and distance a/|w| from the origin.
This representation makes it clear why the standard

weighted sum method in Equation 1 gives an unbiased esti-
mate of the template (Abbey et al., 1999; Ahumada, 2002;
Chichilnisky, 2001; Murray et al., 2002; Solomon, 2002).
Consider the average of the noise on all trials where the
signal was s1 but the observer identified it as s2 (Figure 2a,
large green circle). Because the noise is circularly sym-
metric, the expected value of the s1 stimuli (small green
circles) on the s2 side of the decision line is shifted from
the overall mean of stimulus (large white circle) in a
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direction that is perpendicular to the decision line and so
in the same direction as the template. Thus, the average of
the noise on all such trials is a vector that is proportional
to the template (in expected value). The same is true for
the averages of the other three stimulus–response classes
of noise fields. Taking into account the direction of each
shift (some in the direction of the template and some in
the opposite direction), we can estimate the template by
combining the averages as in Equation 1. That is, the
expected value of the classification image is proportional
to the linear observer’s template.
The same reasoning applies when the stimuli have more

than two pixels: then, the template w and the stimuli g =
sk + n are n-dimensional vectors, the decision surface
wTg = a is an n-dimensional hyperplane perpendicular to
the template, and the conditional averages of the noise
fields are vectors parallel to the template.
This line of reasoning is also valid when the observer

has internal noise, as long as the internal noise is indepen-
dent of the external noise. In this case, some stimuli in the
wTg G a region are identified as signal 2, and some in the
wTg Q a region are identified as signal 1 (Figure 2b). How-
ever, the conditional expected values of the noise fields are
still shifted perpendicular to the decision line, so Equation 1
still gives an unbiased estimate of the template.
Significantly, in all these cases, the experimenter’s choice

of signals has no influence on the estimate of the linear
observer’s template (although it may, of course, influence
the observer’s choice of template). Later, we will see that
when the observer uses a nonlinear strategy, things are not
so simple: then, the classification image can depend on the
signal as well as on the observer’s strategy.

The linear observer model is a useful simplification that
captures many important aspects of human performance,
but it is certainly incomplete. It does not incorporate trans-
duction nonlinearities, contrast normalization, spatial uncer-
tainty, perceptual learning, or many other known properties
of human visual processing. Some research on classifica-
tion images has worked within the linear observer model
and aimed at finding better methods for characterizing
linear observers. Other work has developed methods that
go beyond the linear observer model, taking into account
nonlinearities in visual processing. To organize a review
of methodological developments, I will treat these two
categories separately: first, developments within the linear
observer model, and second, developments that go beyond
the model.

Developments within the linear
observer model
Optimal weighted sums

We have seen that the expected value of a classifica-
tion image is proportional to a linear observer’s template.
Several authors have shown that, furthermore, the standard
weighted sum method given in Equation 1 is an efficient
way of calculating classification images under some cir-
cumstances. Suppose we wish to calculate a classification
image simply by taking a weighted sum of the noise fields
in the four stimulus–response categories, and we wish to
choose the weights based on the signal-to-noise ratio of
the noise fields in each category, in order to maximize the
signal-to-noise ratio of the final classification image. If the

Figure 2. Decision space for a linear observer (a) without internal noise and (b) with internal noise. The white circle is the mean of the
stimuli containing signal 1, and the white square is the mean of the stimuli containing signal 2. The small colored data points represent
stimuli on individual trials. Red points are stimuli that contained signal 1 and were identified as signal 1, and green points are stimuli that
contained signal 1 and were identified as signal 2. Yellow points are stimuli that contained signal 2 and were identified as signal 2, and
blue points are stimuli that contained signal 2 and were identified as signal 1. The larger colored symbols are the averages of the
corresponding small colored points, e.g., the red circle is the average of the small red points. The black arrow is the hypothetical
observer’s template, and the oblique black line is the decision line that the observer used to decide whether to identify a stimulus as signal 1
or signal 2.
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observer is unbiased, and if the observer’s performance is
constant over the course of the experiment, then the standard
method is the weighted sum that has the maximum signal-to-
noise ratio as an estimate of the observer’s template (Abbey
& Eckstein, 2002b; Ahumada, 2002; Murray et al., 2002).
This means, for instance, that the standard method in
Equation 1 is more efficient than the correlation method in
Equation 7, which is often used in auditory research and
has sometimes been used in vision research as well. Con-
veniently, the standard method is the optimal weighted sum
regardless of the variance of the observer’s internal noise.
Optimal weighted sums have also been worked out for a

broader range of conditions. Optimal weighted sums are
known for the cases where the observer is biased, where
signals are shown at multiple contrast levels, where the
observer gives confidence rating responses, and where some
noise fields are repeated in order to measure the observer’s
internal-to-external noise ratio (Abbey & Eckstein, 2002b;
Ahumada, 2002; Murray et al., 2002). In all these cases,
there are more efficient ways of using the data than the
method given by Equation 1. Abbey and Eckstein (2002b)
developed similar methods for the 2AFC design and also
showed how these methods can be modified to allow non-
white Gaussian stimulus noise.
These findings justify using the standard method of

calculating classification images, under appropriate condi-
tions. However, they only establish that of all the methods
that estimate the observer’s template by taking a weighted
sum of the noise fields based on the signal-to-noise ratios
of the four stimulus–response categories, the standard
method is most efficient. They leave open the possibility
that there are better methods whose estimate of the tem-
plate is not simply a weighted sum of the noise fields. In
the next section, we discuss one method where the classi-
fication image is not a weighted sum.

The generalized linear model

An important development in understanding classifica-
tion images has been the realization that they fit naturally
into the generalized linear model (GLM) statistical frame-
work (Dobson & Barnett, 2008; McCullagh & Nelder,
1989). Several investigators have estimated visual classi-
fication images using instances and variants of the GLM
(Abbey & Eckstein, 2001; Ludwig, Gilchrist, McSorley, &
Baddeley, 2005; Solomon, 2002). Knoblauch and Maloney
(2008) were the first to highlight and explore in detail the
relationship of visual classification images to the GLM,
and Mineault, Barthelmé, and Pack (2009) continued with
valuable work along these lines. Auditory psychophysi-
cists have used logistic regression, an instance of the
GLM, to calculate classification images for several years
(e.g., Alexander & Lutfi, 2004), and variants of logistic
regression have been used to estimate activation patterns in
fMRI data (Yamashita, Sato, Yoshioka, Tong, & Kamitani
2008), a task that is similar in some ways to estimating
classification images (Victor, 2005).

In the general linear model, the dependent variable is
a normal random variable y whose variance is fixed and
whose mean 2y = E[y] depends linearly on the covariates:

2y ¼ xT": ð22Þ

Here, x = (x[1], I, x[p])T is a column vector of covariates
and " = ("[1], I, "[p])T is a column vector of regression
coefficients. (As noted earlier, I use brackets to refer to
vector components.) This model underpins many common
statistical methods for handling continuous data, including
multiple linear regression and ANOVA. Binary response
probabilities have sometimes been modeled in this frame-
work; in such a model, the covariates x represent the stimu-
lus, the regression coefficients " represent the observer’s
template, the dependent variable y represents the observer’s
responses, and the expected value of the dependent vari-
able E[y] represents the observer’s response probabilities.
However, difficulties arise from the fact that the variance
of a Bernoulli random variable depends on its mean, and
that probabilities are limited to the range [0, 1] whereas
the dependent variable y in this model can take on any
value (Dobson & Barnett, 2008). Ahumada and Lovell
(1971) found a partial solution to this problem by having
observers make four-point confidence rating responses
instead of just yes–no detection responses and calculating
classification images by regressing the rating responses
against noise fields. However, rating responses are not a
simple linear transformation of the decision variable (Egan,
Schulman, & Greenberg, 1959), so this approach does not
completely resolve the mismatch between the general linear
model and the linear observer model. Nevertheless, Levi
and Klein (2002) reported that this method gave higher
signal-to-noise ratios than a weighted sum method, although
they did not give details of the comparison.
The generalized linear model (GLM) is an extension

of the general linear model that allows the dependent
variable to be continuous or categorical and allows the
mean of the dependent variable to be a nonlinear function
of the covariates. In the GLM, the dependent variable y is
a random variable with mean 2y = E[y], and 2y is a
possibly nonlinear function of a linear transformation of
the covariates:

gð2yÞ ¼ xT": ð23Þ

The GLM assumes that y is a random variable in the
exponential family, which includes the Bernoulli, bino-
mial, multinomial, Poisson, exponential, and normal dis-
tributions, among others. The function g is a smooth,
monotonic function, called the link function, that relates
the mean of the dependent variable to the covariates.
Methods for finding maximum likelihood estimates of the
GLM regression coefficients " are available in most statis-
tical software packages. Dobson and Barnett (2008) give a
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clear introduction to the GLM, and McCullagh and Nelder
(1989) give a more thorough treatment.
The GLM is highly relevant to perceptual modeling:

much of signal detection theory can be seen as a special
case of the GLM, and the GLM offers promising ways of
extending classical detection theory models (DeCarlo,
1998). In particular, the linear observer model implies that
observers’ responses can be modeled with the GLM. For
a specific stimulus on trial number i, gi = ski + ni, the
observer responds r = 2 with some probability p and r = 1
with probability 1 j p. (Here, we subscript g, k, and n to
indicate that, as components of a stimulus shown on a
specific trial number i, they are now samples from random
variables, not random variables.) That is, the dependent
variable is a Bernoulli random variable and, thus, belongs
to the exponential family. We can define y = r j 1, so that
y encodes the observer’s responses as 0 and 1, and then,
the mean of the dependent variable is 2y = E[y] = p, which
according to the linear observer model is

2y ¼ Pðr ¼ 2kgi ¼ ski þ niÞ; ð24Þ

¼ PðwTðski þ niÞ þ z 9 aÞ; ð25Þ

¼ Pðjz GwTðski þ niÞj aÞ: ð26Þ

Introducing the normal cumulative distribution function
6(x, 2, A), this becomes

¼ 6ðwTðski þ niÞj a; 0;AzÞ; ð27Þ

¼ 6ðwTðski þ niÞ=Azj a=Az; 0; 1Þ: ð28Þ

We can rewrite these terms to show that this model is an
instance of the GLM:

gð2yÞ ¼ xT
i "; where gðuÞ ¼ 6j1ðu; 0; 1Þ;

xi ¼
ski þ ni

1

2
4

3
5; and " ¼

w=Az

ja=Az

2
4

3
5: ð29Þ

Thus, the linear observer model leads directly to a gener-
alized linear model of observer responses, with a Bernoulli
dependent variable and a link function that is the inverse
of the standard normal cumulative distribution function.2

Equipped with a GLM model of the observer, we can
use maximum likelihood methods associated with the
GLM to estimate the regression parameters ", which are the
observer’s template and criterion, expressed as multiples

of the internal noise standard deviation. This is a very
different approach to calculating classification images than
the weighted sum method in Equation 1. Knoblauch and
Maloney (2008) compared the two methods in simulations
of linear model observers. They compared the methods by
examining the mean squared residual of the least-squares
fit of classification images to the simulated observer’s tem-
plate. They found that when the model observer had no
internal noise, the GLM consistently had lower residuals,
but when the model observer had realistic amounts of
internal noise (e.g., internal-to-external noise ratio Q0.5
(Neri, 2010a)), the two methods performed equally well.3

Abbey and Eckstein (2001) reported that a similar maxi-
mum likelihood method performed better than a weighted
sum method on data from human observers, but they used
a suboptimal weighted sum method similar to the corre-
lation method in Equation 7, and their maximum like-
lihood method incorporated a smoothing prior, so there is
not necessarily a contradiction between their results and
those of Knoblauch andMaloney. In auditory research, Tang
and Richards (2005) found little difference between corre-
lation methods, least-squares regression, logistic regres-
sion, and probit regression applied to psychophysical data.
The GLM is a promising approach for estimating and

validating classification images in a well-established sta-
tistical framework. Some of its appealing features are that
it makes no assumptions about the stimulus distribution
(i.e., the noise need not be Gaussian), so it can be used to
estimate classification images from natural images (Abbey
& Eckstein, 2001); it has been studied in detail and has
many associated statistical tools; and it is usually used in
a maximum likelihood framework that can easily be
extended to incorporate priors on classification images
(see Dimensionality reduction section). However, there is
a need for studies evaluating how well this approach
works in practice, with realistic amounts of data from
human observers. Maximum likelihood estimates based on
the GLM can be biased even when the observer matches
the model perfectly, whereas human observers are known
to depart from the GLM in important ways (e.g., percep-
tual learning, spatial uncertainty, response nonlinearities).

Statistical tests

Sometimes we can draw conclusions about visual
processing from obvious and robust features of classifica-
tion images (e.g., Caspi, Beutter, & Eckstein, 2004; Gold,
Murray, Bennett, & Sekuler, 2000), but often more careful
analysis and statistical testing are necessary.
Sometimes we are interested in the precise profile of a

classification image, e.g., the strength of an inhibitory sur-
round in a detection template. Abbey and Eckstein (2002a)
showed that the Hotelling T2 test is useful in such cases.
The T2 test is a generalization of Student’s t-test and
relies on the fact that classification images based on
weighted sums are, to a very good approximation, multi-
variate normal. Abbey and Eckstein showed how to use the
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T2 test to determine whether a classification image’s mean
is equal to a hypothesized image (such as an ideal observer’s
template (Geisler, 1989)) and whether two classification
images are significantly different. The latter test is useful
for detecting nonlinearities in observers’ decision strate-
gies, because as we will see later, nonlinearities often lead
to differences between classification images calculated from
subsets of trials where different signals were shown, e.g.,
the averages n�12 j n�11 and n�22 j n�21, which according
to the linear observer model should have identical expected
values when the observer is unbiased. Abbey and Eckstein
also showed how to apply T2 tests to any linear transfor-
mation of a classification image, such as a classification
image that has been downsampled or averaged along some
dimension in order to increase its signal-to-noise ratio.
Ahumada (2002) developed a method of testing the

hypothesis that the observer’s template is a specific, known
image, e.g., the signal in a detection task. This test com-
pares two estimates of the observer’s internal noise power,
measured relative to the power of the external stimulus
noise. First, the internal-to-external noise ratio is estimated
by measuring how consistently the observer responds to
repeated presentations of identical stimuli (Ahumada, 2002;
Burgess & Colborne, 1988): high consistency indicates low
internal noise, and low consistency indicates high internal
noise. Second, the internal-to-external noise ratio is esti-
mated by assuming that the observer uses the hypothesized
template and calculating how much internal noise would
then be necessary in order to account for the observer’s
actual performance level. If these two noise estimates are
inconsistent, then we can reject the hypothesis that the
human observer is a linear observer who uses the template
in question.
Sometimes we are not interested in the exact profile of a

classification image, but instead we would just like to
know what stimulus regions observers use for a task, e.g.,
whether observers use the eye region to identify faces. A
t-test can show which pixels in a classification image are
significantly different from zero, but with hundreds or
thousands of pixels, it is important to correct for multiple
comparisons, ideally with a method not as conservative as
Bonferroni correction. This problem is compounded by
the common practice of blurring classification images to
increase their signal-to-noise ratio, which introduces
correlations among neighboring pixels. Chauvin, Worsley,
Schyns, Arguin, and Gosselin (2005) showed that stat-
istical tests based on random field theory, common in
neuroimaging studies, can be used for this purpose. They
described methods for testing whether a single pixel is
significantly different from the image mean and for testing
whether a cluster of pixels above some intensity level is
larger than expected by chance. These methods can be
applied to smoothed or unsmoothed classification images.
Another important goal of statistical testing is to vali-

date the classification image itself, i.e., test whether it gives
a reasonably good description of the observer’s decision
strategy. Neri and Levi (2006) developed such a test, based

on using the human observer’s classification image as the
template of a simulated linear observer and examining
how well the simulated observer predicts the human
observer’s trial-by-trial responses. This test requires
measuring the human observer’s internal-to-external noise
ratio (Ahumada, 2002; Burgess & Colborne, 1988). Neri
and Levi derived upper and lower bounds for how well the
simulated observer should predict the human observer’s
responses. Murray, Bennett, and Sekuler (2005) developed
another validation test, based on the idea that by
comparing the human observer’s classification image to
the ideal observer’s template (Geisler, 1989), one should
be able to predict the human observer’s performance. A
convenient feature of Murray et al.’s test is that it does not
require measuring the human observer’s internal-to-external
noise ratio.
Knoblauch and Maloney (2008) noted that one advant-

age of calculating classification images with the GLM is
that many statistical tests are available for this model.
They illustrated one such test, using nested models to test
whether a classification image in a detection task was
significantly different on signal-present and signal-absent
trials (as mentioned above, a sign of nonlinearity). Point
estimation, interval estimation, inference, and goodness-
of-fit methods have been developed for the GLM and
should be useful for testing hypotheses about classification
images.

Dimensionality reduction

We typically need several thousand trials to create a
classification image with an adequate signal-to-noise ratio.
Sometimes this is merely inconvenient, but it can also
make it difficult to study transient phenomena like
perceptual learning and sensitive populations like children
and clinical groups.
One solution is simply to use a small number of pixels,

either by using stimuli with few pixels or by combining
neighboring pixels during data analysis. Abbey and
Eckstein (2002a) studied detection of two-dimensional
Gaussian bumps and analyzed radial averages of the full
two-dimensional classification images. With 2,000 trials,
they were able to estimate the radial profile of observers’
templates quite precisely. A related approach, sometimes
referred to as using “dimensional noise,” is to add noise
along a small number of task-relevant stimulus dimen-
sions, such as the position or orientation of stimulus
elements, instead of using pixelwise Gaussian noise (e.g.,
Li, Klein, & Levi, 2006; Neri & Parker, 1999).
One reason classification image methods need so much

data is that we usually allow them far more flexibility than
necessary. Using a 32 � 32 pixel array of white noise to
cover a 1-degree square stimulus, for instance, allows the
possibility that the observer will perform the task using an
alternating black-and-white, pixel-by-pixel checkerboard
template. This is unlikely. We can use data more
efficiently modifying the estimation process to incorporate
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this kind of prior knowledge about what templates are
likely or unlikely. Of course, one appeal of classification
images is that they offer a highly flexible, open-ended
approach to probing observers’ decision strategies. To
incorporate prior knowledge successfully, it is necessary
to strike a balance between eliminating unlikely templates
and avoiding strong biases. Such tradeoffs between
variability and bias are pervasive in statistical modeling
(Bishop, 2006; Duda et al., 2000).
Abbey and Eckstein (2001) measured classification

images using a method that incorporated priors. They
used a prior that penalized large classification image pixel
values, so that only pixels that played a strong role in
explaining observers’ responses were assigned large
values (a form of shrinkage (Duda et al., 2000)). They
also tested a prior that penalized high spatial frequencies
in the classification image, thereby incorporating a form
of smoothing into the estimation process. They made
maximum a posteriori estimates of classification images
by maximizing likelihood functions that incorporated one
of these two priors. In a Gaussian bump detection task
with human observers, they found that both priors
increased the signal-to-noise ratio of the classification
image over a maximum likelihood estimate with no prior
and did not introduce obvious artifacts.
Knoblauch and Maloney (2008) estimated classification

images using the generalized additive model (GAM) frame-
work. This approach allowed them to impose a smoothness
prior on the classification image by representing it as a sum
of splines and penalizing splines that contributed little to
explaining observers’ responses (again, a form of shrinkage).
As with the GLM, there are advantages to using an
established statistical framework like the GAM. Interest-
ingly, though, Knoblauch and Maloney found in simulations
of a linear model observer that, with realistic levels of
internal noise, the weighted sum, GLM, and GAM
approaches all produced classification images with about
the same signal-to-noise ratio.
Mineault et al. (2009) developed a similar approach to

incorporating priors into classification image estimation.
They noted that classification images typically consist of a
small number of simple, blobby features, which suggests
that the appropriate prior is that classification images
should be sparse and smooth. They developed a frame-
work that can accommodate a wide range of sparse and
smooth priors. To illustrate their method, they imple-
mented a prior that represents classification images in an
overcomplete Gaussian pyramid,4 a multiscale represen-
tation that codes an image as a sum of two-dimensional
Gaussians at various scales (Burt & Adelson, 1983). The
prior penalized large coefficients in the pyramid repre-
sentation (again, shrinkage), so that only Gaussians that
played a strong role in explaining observers’ responses
appeared in the classification image. Mineault et al. made
maximum a posteriori estimates of classification images
by maximizing a likelihood function that incorporated this

prior. Using simulated and human observer data, they
showed that the prior substantially improved the signal-to-
noise ratio of classification images.
Mineault et al. gave a useful discussion of potential

problems arising from the biases that priors can introduce.
They suggested that the choice of a prior should depend
on the purpose of the experiment: the appropriate prior is
one whose biases are irrelevant to the hypothesis being
tested. If we are interested in whether an observer’s
template has an inhibitory surround, for instance, then a
prior based on Gaussians is more appropriate than one
based on Gabors, since Gaussians do not have inhibitory
lobes, whereas Gabors do. It may not always be obvious
what biases a prior will introduce, but Mineault et al.’s
suggestion is a sensible starting point for exploring priors
on classification images.

Multiple response alternatives, part 1

All the methods reviewed so far were designed for
experiments with just two response alternatives: the observer
judges the presence or absence of a signal, classifies a face as
male or female, and so on. Recent work has opened the way
to measuring classification images in more flexible designs,
where the observer identifies a stimulus as one of multiple
alternatives.
Watson (1998) calculated classification images in a

three-alternative letter identification experiment. This work
was the first treatment of more than two response
alternatives, but it was reported only in an abstract, so it
is difficult to evaluate. Briefly, though, Watson measured
the dot product of each letter signal with the average of the
noise fields in each of the nine stimulus–response classes
of trials and used these dot products to estimate the
observer’s templates as weighted sums of the letter signals.
Knoblauch and Maloney (2008) investigated classifica-

tion images based on the GLM, as discussed earlier. They
mostly examined the GLM with a Bernoulli dependent
variable, which allows only two response categories.
However, they pointed out that the GLM family also
includes models with multinomial dependent variables, and
they suggested that this should make it possible to estimate
classification images in m-alternative experiments.
It is worth expanding on this suggestion.We can estimate

m-alternative classification images using the GLM as
follows. Suppose we have signals s1, I, sm, and on each
trial, the observer views a noisy stimulus sk + n and tries
to identify the signal. We can extend the linear observer
model by giving the observer templates t1, I, tm. The
observer calculates decision variables d1, I, dm by
finding the dot product of each template with the stimulus
and adding internal noise, di = t iT(sk + n) + z i. The
observer identifies the stimulus by choosing the template
that elicits the largest decision variable di, adjusted by a
criterion ai, so the observer’s response is r = a rgmaxi(d

i j ai)
(Van Trees, 1968/2001, p. 154). The response variable r is
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now a multinomial random variable: for each stimulus,
there are m possible responses with probabilities p1, I,
pm (which sum to one). The template with the largest dot
product is most likely to be chosen, but because the
decision variables include internal noise there is always
some probability that another template will be chosen
instead.
As with the two-template model observer for yes–no

tasks, this formulation of the m-alternative model is
redundant, because only the differences between templates
affect the observer’s responses. We can remove this
redundancy by taking one template, say t1, as a reference5

and subtracting it from all templates: wi = ti j t1. Thus,
the difference templates w2, I, wm are free to vary, but
w1 is always zero. The model observer with decision
variables di = w iT(sk + n) + z i gives the same responses as
the original model observer. Thus, the most we can expect
from a classification image experiment is to recover the
linear observer’s difference templateswi, not the individual
templates ti. For similar reasons, we can assume without
loss of generality that criterion a1 = 0.
The most common form of multiple category regression

based on the GLM is multinomial logistic regression
(Dobson & Barnett, 2008), which uses a decision rule that
is similar but not identical to the one we have just
described. We can define d~i to be the observer’s decision
variables without internal noise, adjusted by the criteria:
d~i = wiT(sk + n) j ai. Multinomial logistic regression

assumes that the response probabilities pi are softmax
functions of d~i:

pi ¼ ed
~i

Xm
j¼1

ed~
j

: ð30Þ

The softmax rule is qualitatively similar to the noisy max
rule: the template with the highest d~i has the greatest
probability of being chosen, but templates with lower
values have some probability of being chosen instead.
Figure 3 shows results from a simulation where four-

alternative classification images were calculated using
multinomial logistic regression. A linear model observer
identified a noisy stimulus as one of four 5 � 9 pixel
signals (Figure 3, column 1), using the max rule and four
templates (Figure 3, column 2). Classification images
were estimated from 10,000 trials by making a multi-
nomial logistic regression of the observer’s identification
responses against the noise fields (Figure 3, column 3).
(Appendix B provides full details of the simulation.)
Template 1 was taken as the reference template, so the ith
classification image contains a positive image of template
i and a negative image of template 1. Clear estimates of
the target and reference templates appear in each
classification image. There are also faint images of other
templates, e.g., a ghost of template 2 in classification

Figure 3. Four-alternative classification images from simulations of a linear model observer. Column 1 shows the signals. Column 2 shows
the simulated observer’s templates. Column 3 shows classification images estimated using multinomial logistic regression. Column 4
shows classification images estimated using Dai and Micheyl’s (2010) method. See Appendix B for details of the simulation.

Journal of Vision (2011) 11(5):2, 1–25 Murray 11



image 3, suggesting that the estimates are weakly biased.
This bias might be due to the small discrepancy between
the simulated observer (whose responses were based on
the max rule with Gaussian noise) and the assumptions of
multinomial logistic regression (which models responses
using the softmax rule).
Thus, routines for estimating maximum likelihood

classification images in m-alternative experiments are
already available in statistical software packages that
incorporate the GLM, such as R and the MATLAB
Statistics Toolbox (R Development Core Team, 2010;
The MathWorks, Natick, MA). This illustrates one benefit
of formulating observer models in terms of established
statistical frameworks. As with the GLM in yes–no
experiments, it remains to be seen how well this method
works with data from human observers.

Multiple response alternatives, part 2

Dai and Micheyl (2010) proposed a different method for
estimating classification images in m-alternative experi-
ments. They divided trials into m groups according to
which signal was shown and analyzed the groups
separately. Within each group, they measured the pixel-
wise correlation between the noise fields and the correct-
ness of the observer’s responses, coded as correct = 1 and
incorrect = 0. They took the correlation map ci for each
group to be an estimate of the observer’s template for the
signal si shown in that group. (That is, they used linear
discriminant analysis in a one-against-the-rest fashion
(Duda et al., 2000).) To validate this method, they
reported simulations of a linear model observer that used
five templates and made responses by finding the template
that had the largest dot product with the stimulus. Their
simulations showed that the correlation maps were similar
to the simulated observer’s templates.
However, I have found that classification images

calculated with this correlation method do not actually
converge to one template. Instead, each classification
image is a mixture of all m templates. To see why,
consider a group of trials that show a particular signal.
Within this group, the observer will tend to give correct
responses when the noise is similar to the template for that
signal and incorrect responses when the noise is similar to
one of the other templates. Accordingly, the classification
image will have a component similar to the target
template but also components similar to the negative
images of the other templates. The amplitudes of the
negative template images will depend on the probabilities
of the various types of errors (i.e., stimulus k = i, response
r = j), and so the mixture of negative templates will differ
from one classification image to another. It also seems
unlikely that the template images will combine additively.
This means that contrary to Dai and Micheyl’s suggestion,
the classification image ci does not converge to template t i.
Further work on this method may find a way of separating

the components, but as discussed earlier, the most we can
expect is to recover a linear observer’s template differ-
ences ti j tj, not the templates ti themselves.
Dai and Micheyl’s simulations seemed to support their

method, but this was because of their choice of model
observer templates: each template was proportional to the
negative of the average of the m j 1 other templates, so
the unwanted negative images of the other templates
simply changed the amplitude of the classification image
and were not visible as distinct artifacts. The fourth
column in Figure 3 shows classification images calculated
using Dai and Micheyl’s method in the simulation
discussed earlier (see Appendix B for details). Here, it is
apparent that each classification image contains both the
target template and negative images of the other templates.

Multiplicative noise

Gosselin and Schyns (2001) independently developed a
method similar to classification images, which they called
bubbles. This method uses multiplicative noise instead of
additive noise and identifies the stimulus regions that help
an observer to identify a stimulus correctly. In a typical
bubbles experiment, the noise field is a sum of many
small, randomly placed two-dimensional Gaussian bumps.
The stimulus is one of m signals multiplied pointwise by
the noise field, with the result that most of the signal is
eliminated, and only randomly placed fragments of the
signal remain visible (i.e., the fragments at the locations of
the Gaussian bumps). The observer attempts to identify
the signal from the visible fragments. The experiment is
analyzed by calculating a bubbles image that shows the
extent to which each visible stimulus fragment increases
the probability that the observer makes a correct response.
Currently, the properties of the bubbles method are best
understood in the context of the linear observer model.
Bubbles images have been shown to recover less informa-
tion about a linear observer’s template than a classification
image does, so the bubbles method is most promising for
investigating nonlinear decision strategies (Gosselin &
Schyns, 2004; Murray & Gold, 2004a, 2004b).
The bubbles method should be able to benefit from

some of the advances made with classification images. For
instance, the key idea of the bubbles method is that each
stimulus region contributes to a greater or lesser degree
to an observer’s correct responses: each stimulus has an
associated map of potent information (Gosselin & Schyns,
2002). It may be possible to formalize this notion in the
GLM framework, using the noise fields as covariates, the
correctness of the observer’s response as the dependent
variable, and potent information maps as the regression
coefficients to be estimated. This approach would per-
mit maximum likelihood estimates of bubbles images and
could be developed into a GAM (following Knoblauch
and Maloney) or modified to incorporate a smooth and
sparse prior on bubbles images (following Mineault et al.).
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Beyond the linear observer model
Nonlinearly transformed stimuli

The most straightforward way of extending classifica-
tion image methods beyond the linear observer model is to
apply the same methods to properties that are nonlinear
functions of the stimulus, such as contrast energy or
power spectral density. This transformation does not
change the class of statistical model (e.g., generalized
linear model), because it transforms the covariates, not
the regression coefficients. In the psychophysical sense,
however, it transforms a linear model into a nonlinear
model, because it allows the observer’s decision variable
to be a nonlinear function of the stimulus as measured in
standard physical units. (Thus, what is psychophysically
“linear” is ambiguous until we specify units, as there are
nonlinearly related but equally valid ways of measuring
stimuli, such as contrast and log contrast.)
Neri and Heeger (2002) used this approach to measure

spatiotemporal classification images in a task where
observers detected a thin vertical bar in dynamic noise.
They measured first-order classification images, combining
the means of the noise fields in each stimulus–response
category according to Equation 1. They also measured
second-order classification images, combining the variance
of the noise fields in each stimulus–response category in a
manner analogous to Equation 1:

cVAR ¼ n12
VAR þ n22

VAR

� �
j n11

VAR þ n21
VAR

� �
: ð31Þ

Here, nVAR
SR is the variance of the noise fields in a

stimulus–response category of trials, e.g., nVAR
12 is the

variance of the noise fields on trials where the stimulus
contained signal s1 and the observer responded r = 2. Neri
and Heeger’s first- and second-order classification images
revealed a surprising detection strategy. Three types of
events made the observer more likely to say that the target
was present: (a) there was a burst of high-energy noise,
positive or negative in contrast, at the target location just
before the time when the target might appear; (b) there
was a burst of positive-contrast noise at the time and
location of the target; or (c) there was a burst of negative-
contrast noise at the time of and spatially adjacent to the
location of the target. Neri and Heeger proposed a neural
circuit composed of simple and complex cells as a
detection mechanism that is consistent with these classi-
fication images. A further experiment suggested that the
first-order mechanism is responsible for identification, and
the second-order mechanism is responsible for detection.
Other researchers have also used second-order classifica-
tion images (Knoblauch & Maloney, 2008; Murray,
2002), and classification images based on the Fourier
power spectrum have been informative as well (Gold,
Cohen, & Shiffrin, 2006; Solomon, 2002; Taylor, Bennett,
& Sekuler, 2009).

Note that a late, monotonic nonlinearity does not
interfere with the usual method of calculating classifica-
tion images. Suppose we modify the linear observer model
in Equations 20 and 21 by introducing a monotonic
nonlinearity f on the decision variable:

d* ¼ f ðwTðsk þ nÞ þ zÞ; ð32Þ

r ¼
1 if d* G a*

2 otherwise

:

8<
: ð33Þ

This model is equivalent to a linear model with decision
variable d = fj1(d*) and criterion a = fj1(a*), so methods
appropriate for linear observers can be used to estimate
the template w. (The observation that a late, monotonic
nonlinearity does not affect the information carried by a
decision variable is sometimes called Birdsall’s theorem
(Lasley & Cohn, 1981).)

Second-order kernels

Neri and Heeger showed that measuring classification
images based on both contrast and squared contrast can
reveal important properties of observers’ detection strat-
egies. A natural generalization is to also consider products
of contrasts at distinct locations as predictors of observers’
responses. This is the second-order Volterra and Wiener
kernel approach.
We can convert the linear observer model into a second-

order model by giving the observer a linear template w as
before and also a second-order Volterra kernel, repre-
sented as a symmetric matrix W = WT. The decision rule is
then

d ¼ wTðsk þ nÞ þ ðsk þ nÞTWðsk þ nÞ þ z; ð34Þ

r ¼
1 if d G a

2 otherwise

:

8<
: ð35Þ

That is, the decision variable is a weighted sum of the
stimulus elements (with weights in w), plus a weighted
sum of all products of pairs of stimulus elements (with
weights in W), plus internal noise.
As discussed earlier, Abel and Quick (1978) estimated

first- and second-order kernels in a task where observers
judged stimulus contrast. Their dependent variable was
continuous (a contrast level), so they were able to use Lee
and Schetzen’s methods directly. Neri (2004) developed
methods for estimating the second-order kernel in tasks
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where observers make yes–no responses. For instance, he
showed that we can estimate the second-order kernel as
follows:

Ŵ¼ Ĉ12 þ Ĉ22
� �

j Ĉ11 þ Ĉ21
� �

: ð36Þ

Here, ĈSR is the sample covariance matrix of the stimuli
in a stimulus–response class of trials, e.g., Ĉ12 is the
sample covariance matrix over all trials where the
stimulus contained signal s1 but the observer gave
response r = 2. Neri showed that this method is strictly
correct only when the observer is unbiased, but using
simulations of model observers he showed that it is
reasonably accurate over a wide range of biases. In
subsequent work, Neri demonstrated that characteristic
patterns in second-order kernels can be used to understand
mechanisms of brightness perception and texture percep-
tion (Neri, 2009) and to identify simple mechanisms that
often appear in models of visual processing, such as
divisive normalization and max-rule uncertainty mecha-
nisms (Neri, 2010b, 2010c).
Nandy and Tjan (2007) developed a related method. In

a letter discrimination task, they examined the extent to
which observers’ responses depended not just on the
contrast at a given pixel but also on correlations between
contrast at pairs of pixels, e.g., whether the noise had
positive contrast at both pixels. They used this approach to
deduce how observers’ templates were subdivided into
component features. They did not describe their method as
an instance of second-order kernel analysis, but the two
approaches are broadly similar, and given the substantial
amount of theory developed for kernel analysis, this may
be a useful viewpoint for developing Nandy and Tjan’s
method further.

Uncertainty, part 1

Ahumada and Beard (1999) measured classification
images in a task where observers detected a high spatial
frequency (16 cycle/degree), sine-phase Gabor signal in
noise. Classification images calculated from signal-present
trials showed a template similar to the signal, as might be
expected, but classification images from signal-absent
trials were empty, consisting only of sampling noise.
Ahumada and Beard noted that this is what one would
expect from an observer who was uncertain about the
phase of the Gabor to be detected and gave a “signal-
present” response when a Gabor-like pattern of any phase
at all appeared in the stimulus. On signal-present trials,
such an observer’s decisions would be driven largely by
whether a noise pattern similar to the signal nudged the
signal intensity above or below the detection criterion, and
Gabor-like noise patterns at other phases would have little
influence on the observer’s responses; hence, on signal-
present trials, the classification image would show a
pattern much like the signal. On signal-absent trials, a

phase-uncertain observer would respond “signal present”
when a Gabor-like pattern of any phase appeared in the
noise; over trials, Gabor-like noise patterns at different
phases would average to zero, and the signal-absent
classification image would be empty. Solomon (2002)
reported further experiments along these lines (including a
classification image analysis on the power spectrum of the
stimuli) and reached similar conclusions.
It is instructive to examine the decision space for this

task. Suppose signal s1 is blank and signal s2 is a sine-
phase Gabor. A phase-uncertain observer could use an
energy detection strategy, in which the decision variable is
the squared dot product of the signal with a sine-phase
template tS, plus the squared dot product of the signal with
an orthogonal cosine-phase template tC:

d ¼ ðtSTðsk þ nÞÞ2 þ ðtCTðsk þ nÞÞ2; ð37Þ

r ¼
1 if d G a

2 otherwise

:

8<
: ð38Þ

This is the ideal strategy in a task where the observer is
completely uncertain about the phase of the Gabor to be
detected (Peterson et al., 1954; Van Trees, 1968/2001,
p. 335). We can depict this strategy in a decision space
where the first axis x1 is in the direction of the sine-phase
template tS, the second axis x2 is in the direction of the
cosine-phase template tC, and the remaining axes are in
orthogonal directions (Figure 4). In this representation, the
observer’s decision rule is to respond “present” if x1

2 + x2
2 Q a,

Figure 4. Decision space for a phase-uncertain observer without
internal noise. The symbols and colors have the same meaning
as in Figure 2. The large red and green circles (the means of
signal 1, response 1 trials and signal 1, response 2 trials,
respectively) are mostly hidden behind the white circle (the mean
of signal 1 trials).
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and “absent” otherwise. That is, the response depends on
whether the stimulus is inside or outside a circle in the
x1x2 plane and does not depend on the stimulus position
along the remaining axes: the decision surface is an
n-dimensional cylinder. (To simplify the exposition, we
have assumed that the observer has no internal noise, but
this does not affect the conclusions we will reach.)
The explanation for Ahumada and Beard’s findings that

we outlined above can be made clearer in terms of this
decision space (Figure 4). On signal-absent trials, the
expected value of the noise fields on trials where the
observer responds “present” (green points) is clearly zero,
and the expected value on trials where the observer
responds “absent” (red points) is zero as well, so the
expected value of the signal-absent classification image
n�12 j n�11 is zero. On signal-present trials, the expected
value of the noise fields on trials where the observer
responds “present” (yellow points) is proportional to the
signal, and the expected value on trials where the observer
responds “absent” (blue points) is proportional to the
negative of the signal, so the expected value of the signal-
present classification image n�22 j n�21 is proportional to
the signal.
Interestingly, if we change the phase of the signal in this

task, the signal-present classification image changes to
match the new signal, even though the observer’s strategy
has not changed. This is true even if we use a Gabor signal
that has a phase somewhere between sine phase and
cosine phase, in which case the signal-present classification
image indicates a template that does not appear anywhere
in the implementation of the observer’s strategy, which is
based on sine-phase and cosine-phase templates.
For simplicity, we have assumed that the signal falls in

the subspace spanned by the observer’s templates. If it
does not, we can decompose the signal as s2 = s|| + s6,
where s|| is the component in the x1x2 plane and s6 is the
component perpendicular to the x1x2 plane. (Here, || means
“parallel” and 6 means “perpendicular.”) In this case,
only the component s|| that has a nonzero dot product with
the observer’s templates affects the observer’s responses,
and the expected value of the classification image on
signal-present trials is proportional to s||, the projection of
the signal into the subspace spanned by the observer’s
templates.
An important lesson to be learned from the analysis of

this phase-uncertain observer is that when we move
beyond the linear observer model, the classification image
can depend on interactions between the signal, the noise,
and the observer’s decision strategy.

Uncertainty, part 2

The case of the phase-uncertain observer suggests that
classification images can be useful for understanding
nonlinear decision strategies, as long as we have an
adequate model of the relevant nonlinearities. Tjan and

Nandy (2006) drew on a long-standing model of uncer-
tainty (Pelli, 1985; Tanner, 1961) to develop a method of
using classification images to measure observers’ uncer-
tainty in detection and discrimination tasks.
The uncertainty model that Tjan and Nandy used

proposes that instead of using a single template for each
stimulus, an uncertain observer uses multiple templates.
For instance, if the observer is uncertain about the phase
of a Gabor to be detected, then they will have many Gabor
templates at a range of different phases. The observer will
respond “signal present” if the maximum template
response exceeds a threshold. Similarly, if the observer
is uncertain about the spatial location of the stimulus in a
discrimination task with letters O and X, then they will
use multiple O templates at various locations, as well as
multiple X templates at various locations, and their
response will be based on the largest template response.
Tjan and Nandy showed that the signals have a

predictable influence on classification images in such
tasks. In the letter discrimination task, for instance, on
trials where the letter X signal is present, the maximum
letter X template response will almost always come from
the letter X template at the location of the signal. Whether
the observer responds “O” or “X” will then depend on
whether the stimulus noise causes the response of that one
letter X template to exceed the maximum of all the letter
O template responses. Thus, a single letter X template will
appear in the classification image from these trials. On the
other hand, the letter X signal will evoke a small-to-
moderate response from many letter O templates, so many
letter O templates will appear in the classification image
from these trials. Spatial uncertainty, in effect, blurs the
letter O template, making it appear smeared over the
region of uncertainty. On trials where the letter O signal is
shown, the roles are reversed, so the letter O appears
clearly in the classification image, and the letter X appears
blurred over the region of uncertainty. Tjan and Nandy
described this effect as “signal clamping” of the templates.
In letter discrimination experiments, Tjan and Nandy

showed that this model qualitatively predicts the effect of
uncertainty on classification images. Remarkably, they
also showed that it is possible to use the differences
between the classification images from the four signal-
response categories to quantify the observer’s uncertainty,
e.g., the size of the region that the observer monitors for
letters in a letter discrimination task.

Principal component analysis

Rajashekar, Cormack, and Bovik (2002) tested a novel
method for examining nonlinear decision strategies. They
tracked observers’ eye movements during visual search
for simple geometric patterns in a large noise field and
used classification images to determine what features
attracted observers’ saccades. Previous research had led
them to expect that the mechanisms guiding observers’
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search trajectories would be highly nonlinear, for instance
making saccades equally often to regions of high positive
and high negative contrast. As discussed earlier, such
strategies can result in classification images with an
expected value of zero. To examine the strategies that
guided observers’ saccades, Rajashekar et al. did a
principal component analysis (PCA) of the noise field
samples in a 3.7-degree square around each fixation
location (Jolliffe, 2010). Several strong principal compo-
nents emerged, resembling sinusoids in various phases
and orientations. In this experiment, it seems likely that
these components emerged mostly because the noise field
had a 1/f spectrum (Rajashekar, personal communication),
but the method is intriguing nevertheless.
What do principal components mean in this analysis? A

simple case is illustrative. Consider the phase-uncertain
observer we discussed earlier (Figure 4). Consider the two
response regions, “signal-absent” and “signal-present,” on
trials where there is no signal, only noise. The “signal-
absent” response region is a long cylinder, with minimum
variance across the width of the cylinder and maximum
variance along the length of the cylinder. Thus, we expect
to find the two smallest principal components in the x1x2
plane and the remaining principal components in orthogonal
directions. The “signal-present” response stimuli form a
Gaussian cloud with a cylinder removed, which will have
maximum variance in the x1x2 plane and smaller variance
along the remaining axes. Here, we expect to find the two
largest principal components in the x1x2 plane and smaller
principal components in orthogonal directions. Rajashekar
et al. reported simulations showing that PCA does in fact
recover the orthogonal templates of such a phase-
uncertain observer.
For any realistic decision strategy, linear or nonlinear,

the distribution of noise fields in each stimulus–response
category of trials is not multivariate Gaussian, so some
caution is necessary when using PCA. Nevertheless, this
method does seem to have the potential to characterize an
observer’s decision strategy by revealing one or more
directions in decision space that affect the observer’s
responses, and neurophysiologists have successfully used
similar methods to characterize neural responses (Horwitz,
Chichilnisky, & Albright, 2007; Prenger, Wu, David, &
Gallant, 2004).

Methodological developments in other fields

I have mostly discussed classification image methods
that have been developed and used by visual psychophys-
icists. However, as we have seen, similar methods have
been used in other fields for a much longer time, and there
is undoubtedly a great deal to be learned from approaches
developed for auditory psychophysics, neurophysiology,
neuroimaging, and statistical learning (Victor, 2005).
Research on classification-image-like methods has been

more extensive in neurophysiology than in psychophysics.

This may be because the potential payoff is higher:
complete system identification is a plausible goal for
research on early sensory neurons (Wu et al., 2006),
whereas in psychophysics, no one would maintain that a
classification image completely characterizes, say, letter
identification mechanisms, except possibly over a tiny
range of stimuli. Whatever the reason, the result is that
over several decades physiologists have examined these
methods in detail and have developed approaches that
may be suitable for psychophysics as well. Higher order
kernel methods (Neri, 2004, 2009, 2010b, 2010c) and
random field theory (Chauvin et al., 2005), both pre-
viously used by physiologists, have already been shown to
be useful in visual psychophysics. There has been
extensive work in neurophysiology on using non-Gaussian
noise to characterize receptive fields, for example, on
using m sequences to estimate receptive fields more
efficiently (Sutter, 1987) and using natural images to
characterize neural responses under realistic stimulus
conditions (David, Vinje, & Gallant, 2004), whereas there
has been little work along these lines in psychophysics
(but see Dobres & Seitz, 2010 on m sequences and Abbey
& Eckstein, 2001 on natural images). Victor (2005)
discusses similarities between classification image meth-
ods, neural receptive field mapping methods, and neuro-
imaging analysis methods and also gives a clear overview
of how nonlinearities, internal noise, and high dimension-
ality pose difficult problems that these methods must
overcome. Wu et al. (2006) give an in-depth review of
recent work on methods for neural receptive field
mapping.
Another promising area for cross-fertilization is stat-

istical learning (Bishop, 2006; Duda et al., 2000; Hastie,
Tibshirani, & Friedman, 2001). The goal of statistical
learning algorithms is to discover structure in complex
and often noisy data sets. Applied to data from classi-
fication image experiments, this means discovering what
factors determine whether the observer identifies a
stimulus as belonging to one category or another. In a
simple but illustrative example of this approach, Cohen,
Shiffrin, Gold, Ross, and Ross (2007) applied a Gaussian
mixture model to classification image data, to test whether
pattern identification is mediated by features detected in
an all-or-none fashion, as many models of visual process-
ing have suggested (e.g., Pelli, Burns, Farell, & Moore-
Page, 2006). The statistical learning literature is vast and
growing, and it is likely to contain useful ideas for extending
classification image methods beyond the linear model that
has dominated psychophysical applications so far.

Developments: Psychophysics

It would be impractical to give a complete review of the
substantive research that has been done with classification
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images, both because there is simply too much of it and
because evaluating any given finding requires knowing the
state of the relevant research area. Nevertheless, this
review has so far been almost entirely about methods, and
it is fair to ask what questions classification images have
allowed researchers to answer. With this goal in mind, I
will review a sample of work done on three representative
topics: spatial vision, perceptual organization, and visual
search. I will not attempt to review the substantial amount
of relevant background material in each area, although I
will sometimes mention directly related studies.

Spatial vision

Visual classification images were first developed to test
models of Vernier acuity (Ahumada, 1996), so given their
provenance and the role of simple, well-defined observer
models in their development, it is not surprising that they
have been used extensively to study low-level detection
and discrimination tasks. We have already discussed
several spatial vision experiments, including Ahumada
and Beard’s (1999) Gabor detection task, Neri and
Heeger’s (2002) line detection task, and Tjan and Nandy’s
(2006) letter identification experiment.
Classification images are ideally suited to studying the

effect of noise on visual processing: in this case, the
stimulus noise is the experimental manipulation. Such
studies are useful for understanding perception of clut-
tered scenes, including natural scenes and medical images.
They can also help refine our use of other methods that
use visual noise, such as band-pass masking (Solomon &
Pelli, 1994) and noise masking functions (Pelli & Farell,
1999). Abbey and Eckstein (2007) and Conrey and Gold
(2009) measured classification images in white, low-pass,
high-pass, and band-pass noise and found that observers’
templates were different in different types of noise. The
most notable pattern was that in low-pass noise, observers
shifted to using higher spatial frequencies, but in high-
pass noise they were unable to shift to lower spatial
frequencies. Furthermore, Abbey and Eckstein (2009)
found that observers’ templates changed as a function of
noise amplitude: in stronger noise, observers shifted to
lower spatial frequencies. Classification image studies and
other types of noise-based studies typically assume that
noise does not substantially change observers’ strategies,
but these findings show that it can sometimes have a
moderate effect. These findings are consistent with earlier
performance-based studies (e.g., Burgess, 1999), but
classification images have revealed in greater detail how
different types of noise affect observers’ templates.
Mareschal, Dakin, and Bex (2006) measured spatiotem-

poral classification images to examine the time course of
observers’ decision strategies in a simple orientation
discrimination task. Observers discriminated between
two Gabor patterns at slightly different orientations, in a

500-ms movie of spatiotemporal white noise. Physiolog-
ical studies have suggested that the receptive fields of
orientation-selective V1 neurons evolve rapidly after
stimulus onset (e.g., Ringach, Hawken, & Shapley, 2003),
but Mareschal et al. found no evidence of tuning changes
in spatial frequency, orientation, or bandwidth over the
course of a trial. They did find that the influence of the
stimulus on observers’ responses was significant only
during the interval 20–300 ms after stimulus onset and
peaked at around 150 ms after onset. They also confirmed
Solomon’s (2002) finding that classification images in an
orientation discrimination task are predictably different
from the ideal observer’s classification image: human
observers attend to orientations that are more widely
separated than the orientations of the two Gabors being
discriminated, which is consistent with some theories of
multiple spatial frequency channels (Itti, Koch, & Braun,
2000).

Perceptual organization

The fields of spatial vision and perceptual organization
both have the goal of understanding shape perception, but
historically they have taken very different paths, and until
recently they have proceeded in parallel with little
communication. In the past two decades, there has been
more dialogue, for instance, as spatial vision models have
begun to incorporate contour grouping mechanisms (e.g.,
Elder & Goldberg, 2002; Field, Hayes, & Hess, 1993;
Geisler, Perry, Super, & Gallogly, 2001).
Gold et al. (2000) used classification images to study

perception of illusory and occluded contours. They used a
task where observers judged the direction of curvature of
illusory contours and partly occluded contours. They
found that even though the stimulus regions where
illusory and occluded contours were perceived contained
no physical signal that could help observers to give
correct responses, classification images nevertheless
showed strong correlations between noise contrast in
these regions and observers’ responses. That is, observers’
templates had large weights along illusory and occluded
contours, just as they did along luminance-defined con-
tours. This finding suggested that illusory and occluded
contours are not simply epiphenomena, but that they
play a key role in perception of shape. Ringach and
Shapley’s (1996) performance-based study had already
given behavioral evidence for this idea. Gold et al. provided
strong confirmation of Ringach and Shapley’s findings
and also revealed several novel, idiosyncratic features of
observers’ shape discrimination strategies, such as using
mainly vertical contours, using mainly contours in the
left visual field, and exhibiting substantial individual
differences.
Several later classification image studies expanded on

these findings. Murray (2002) showed that noise along
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contours defined purely by grouping, where no illusory or
occluded contours are perceived, also has a strong
influence on observers’ responses, and suggested that Gold
et al.’s results primarily reflect grouping, not perceptual
completion. Gold and Shubel (2006) measured spatiotem-
poral classification images in the same task used by Gold
et al. and found evidence for a rapid time course for visual
completion, lasting around 130 ms, consistent with earlier
performance-based studies. Keane, Lu, and Kellman
(2007) used spatiotemporal classification images to show
that the influence of noise along illusory contours and the
time course of completion are largely unchanged even
when observers must interpolate illusory contours over
both space and time. Nagai, Bennett, and Sekuler (2008)
investigated the strong bias to use vertical contours that
Gold et al. revealed, and they confirmed this bias but
found that observers nevertheless performed about equally
well when forced to use horizontal or vertical contours.

Visual search

Visual search requires fast, automatic saccadic targeting
guided by stimuli in the periphery, where visual process-
ing is limited by low spatial resolution (Banks, Sekuler, &
Anderson, 1991), high internal noise (Pelli & Farell,
1999), intrinsic spatial uncertainty (Michel &Geisler, 2011),
imperfect phase encoding (Bennett & Banks, 1987), and
crowding (Pelli & Tillman, 2008), in ways still being
elucidated. The linear observer model is clearly incomplete
under these conditions. Nevertheless, classification image
studies have contributed to our understanding of visual
search and, in particular, to discovering how the saccadic
targeting system gathers information over space and time in
order to direct saccades.
Rajashekar, Bovik, and Cormack (2006) and Tavassoli,

van der Linde, Bovik, and Cormack (2007), in a pair of
closely related studies, used classification images to
estimate the template that guides saccades during visual
search for a simple visual target, such as a triangle or a
circle. Observers’ eye movements were tracked while they
searched freely for a known target in a large noise field.
Rajashekar et al. calculated classification images by
averaging the noise in a small square region around each
saccade location during search. Tavassoli et al. used a
similar procedure but introduced some improvements that
made the classification images dramatically less noisy. In
both studies, the classification images had roughly the
same shapes as the targets, demonstrating that the
saccadic targeting system can use shape information with
some precision to guide saccades. Eckstein, Beutter,
Pham, Shimozaki, and Stone (2007) used similar methods
and reached the even stronger conclusion that the template
that guides saccades is the same as the template that
mediates explicit perceptual decisions (e.g., keypress
responses) when judging stimuli in the periphery.

Ludwig, Eckstein, and Beutter (2007) showed that there
are limits to how precisely the saccadic template can
match the target, however. In their experiments, the target
was a Gaussian luminance bump and the distractors were
slightly lower contrast but otherwise identical Gaussian
luminance bumps. In separate conditions, the Gaussian
bumps were small (A = 0.175-) or large (A = 0.8-).
Classification images showed that the saccadic template
was a Gaussian bump with a weak inhibitory surround that
was approximately the optimal size in the small-bump
condition but much too small in the large-bump condition.
Thus, although the template that guides saccades is
flexible, it seems to be sufficiently constrained that it
cannot even correctly match circular patterns of various
sizes.
Caspi et al. (2004) measured temporal classification

images to investigate how the saccadic targeting system
integrates information over time. Their observers searched
for a high-contrast Gaussian bump among lower contrast
Gaussian bumps. The classification image noise was
temporal noise: all the Gaussian bumps flickered rapidly
throughout the trial. Caspi et al. examined the effect of the
flicker noise up to the time of the first saccade. They
calculated a first-saccade temporal classification image by
averaging the noise leading up to the time of the first
saccade, at the Gaussian bump that was the location of the
observer’s first saccade. They found that bright flicker
tended to attract the observer’s first saccade up to around
100 ms before the saccade. The last 100 ms before the first
saccade was “dead time,” during which flicker did not
influence the location of the first saccade. Caspi et al. also
measured a second-saccade temporal classification image,
by averaging the noise leading up to the time of the first
saccade, at the Gaussian bump that was the location of the
observer’s second saccade. Interestingly, they found that
bright flicker during the 100 ms of dead time before the
first saccade had a strong influence on the location of the
second saccade, indicating that the last 100 ms was dead
time only for the first saccade and that information
continued to be gathered during this time to target the
second saccade.

Conclusion

I will conclude with some general observations on what
we have learned about classification images and sugges-
tions for avenues for future research.
What have we learned? The linear observer model that

underpins the most straightforward interpretation of
classification images, which some researchers expressed
misgivings about when classification images began to be
used in visual psychophysics, has turned out not to put a
strong limit on the usefulness of these methods. The
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linearity assumption can be tested, and it often turns out to
be valid, at least over the very small range of stimuli used
in a typical classification image experiment (Abbey &
Eckstein, 2002a; Murray et al., 2005). Furthermore,
departures from linearity are sometimes unimportant, as
when we draw conclusions simply from the fact that a
classification image shows strong correlations between a
stimulus region of interest and the observer’s responses.
Finally, there are many ways of modifying the method to
incorporate nonlinearities in visual processing, including
the general-purpose Volterra and Wiener kernel frame-
works and more specific modifications based on models of
nonlinearities in visual processing.
In early presentations of the classification image

method, researchers (including the present writer) some-
times described classification images as “revealing the
observer’s strategy,” offering a more “direct” view of
decision mechanisms than traditional measures like
proportion correct, and so on. While it is true that
classification images provide a distinct and useful kind
of information about visual processing, it is important not
to overstate these claims. Our review of methods for
studying nonlinear strategies made it clear that classification
images do not simply lay bare the observer’s decision rule.
Different decision rules can produce the same classifica-
tion image, and a single decision rule can produce
different classification images in experiments with different
stimuli. Furthermore, our review of substantive research
suggests that classification image studies have usually not
led to discoveries that were inaccessible, in principle, to
other behavioral methods. More often, they have served as
a new test of hypotheses that had already been suggested by
previous behavioral studies. They have provided an addi-
tional source of converging evidence and sometimes have
also allowed researchers to estimate the properties of visual
processing more precisely than was feasible with other
methods.
Are classification images “system identification” tools?

Volterra and Wiener kernel methods are system identi-
fication tools that provide a way of describing the input–
output behavior of a system in terms of a flexible but
limited framework (Ljung, 1999; Schetzen, 1980). Clas-
sification image methods are similar to kernel methods,
and they are sometimes described as system identification
tools for psychophysics. This may not be a useful
description. As discussed earlier, complete system identi-
fication is one aim of current research on early sensory
neurons, but in psychophysics such comprehensive goals
for classification images are not credible. A classification
image does not provide enough information to “identify”
the visual system in any useful sense. Instead, it is more
appropriate to treat a classification image as a behavioral
measure, like a threshold or a median reaction time albeit
more complex, that can be used to test the predictions of
competing theories of visual processing. Victor (1992)
suggests this interpretation for kernel analyses of physio-
logical systems as well. On this view, the accuracy with

which a classification image predicts an observer’s trial-
by-trial responses is generally less important than qual-
itative features, such as inhibitory surrounds, that may
have little impact on predicting performance and yet may
be significant for our understanding of visual processing.
Where to from here? One promising line for future

work, already begun by some investigators, is to explore
the relationship between classification images and main-
stream statistical frameworks, such as the general linear
model, the generalized linear model, and the generalized
additive model. This work may lead to better ways of
estimating classification images and new ways of broad-
ening the linear observer model. It should also allow
psychophysicists to draw on the findings of professional
statisticians and reduce the need to develop ad hoc
methods.
There is a need for more conclusive studies on which

methods of calculating classification images are least
noisy while remaining reasonably unbiased. I have
mentioned several studies on this topic, but their
approaches were so diverse that they are difficult to
compare with confidence: some used rating responses, and
some used yes–no responses; some had many more trials
than parameters, and some did not; some used various
types of priors, and some used none; some used human
data, and some used simulated data. It may be that no one
method will be best in all circumstances, but nevertheless
further studies should be able to give us a better idea than
we have at present of which methods work well under
which conditions.
We have seen that classification images based on the

linear observer model can be estimated either using
weighted sums of noise fields, which is an approach
closely related to kernel methods, or using maximum
likelihood estimates based on the generalized linear model
and its extensions. Each approach has its advantages.
Classification images based on weighted sums are linear
functions of the stimulus noise, so they are conceptually
straightforward and their statistical properties are gener-
ally easy to work out. They are also computationally
undemanding, which was no doubt one appeal of
correlation-based kernel methods when they were devel-
oped in the mid-1960s. Classification images based on
maximum likelihood estimates are statistically less trans-
parent and computationally more intensive, but because
they are based on an explicit likelihood function, they are
highly flexible. They can easily be modified to incorporate
priors. More significantly, they can also be modified to
incorporate nonlinearities in visual processing. In principle,
it is straightforward to write down a probabilistic model of
visual processing and use observers’ responses to noisy
stimuli to make a maximum likelihood estimate of its
parameters. In practice, difficulties abound, including the
problems of finding the global maximum of the likelihood
function instead of local maxima, showing that the
available data ensure a single global maximum, estimating
bias and variability, and testing the model for robustness
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against departures from its assumptions. Despite these
obstacles, recent progress suggests that using observers’
responses to noisy stimuli in order to constrain probabil-
istic, nonlinear models of visual processing is a promising
direction for future work on classification images.

Appendix A

Notation

Conventions: Vectors are in bold. Matrices are in upper
case. Samples of random variables are subscripted. Super-
scripts correspond to alternative signals. Images are
represented as column vectors.

Appendix B

Multiple response alternatives

Simulation. The simulation used four 5 � 9 pixel
signals (Figure 3, first column). The background pixels

had value 0.0, and the foreground pixels had value 1.0. On
each trial, the stimulus was one of the four signals, chosen
randomly, in Gaussian white noise with mean 0.0 and
standard deviation 1.0. The model observer identified the
stimulus by taking its dot product with four templates
(Figure 3, second column) and choosing the template with
the largest dot product. The model observer had no
internal noise. (Further simulations with an internal-to-
external noise ratio of 1.0 gave similar results, though
with more sampling noise evident in the classification
images.) The simulation ran for 10,000 trials. The model
observer gave 72% correct responses and was unbiased.
Logistic regression. One set of classification images

was calculated using multinomial logistic regression
(Figure 3, third column). The dependent variable was the
observer’s response number (1 through 4). The covariates
were the 45 noise pixel values and three dummy variables
that encoded the signal number. Signal 1 was encoded as
(0, 0, 0), signal 2 as (1, 0, 0), signal 3 as (0, 1, 0), and
signal 4 as (0, 0, 1). Thus, the covariate vectors had
48 components. The regression coefficient vector for
template 1 was taken as the reference, so each classification
image shows an estimate of t i j t1. The regression
coefficients were estimated using the mnrfit multinomial
logistic regression function in the MATLAB Statistics
Toolbox (The MathWorks, Natick, MA).
Correlation method. A second set of classification

images was calculated using Dai and Micheyl’s (2010)
correlation method (Figure 3, fourth column). Trials were
divided into four groups according to which signal was
shown. The classification image for each group was
calculated as the pixelwise correlation between the 45 noise
pixel values and the correctness of the model observer’s
responses, coded as correct = 1 and incorrect = 0.
Each classification image in Figure 3 has been affinely

transformed so that its average value is mid-gray (0.5) and
it occupies as much of the black–white range as possible,
i.e., either its minimum value is darkest black (0.0) or its
maximum value is brightest white (1.0).
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Footnotes

1
Equation 7 can also be seen as an instance of Fisher’s

linear discriminant for classifying noise fields according
to the observer’s responses, r = 1 or r = 2 (Duda et al.,
2000, p. 120, Equation 106; Fisher, 1936).

2
In practice, it may be better to use just the noise pixels

n as covariates and to use dummy variables to encode the
signals as levels of a factor, instead of using the pixels of
the full stimulus g = sk + n as covariates (Knoblauch &
Maloney, 2008; also see Appendix B). One reason for
doing so is that if the signals do not appear in the
covariates, then any signal-like patterns in the classifica-
tion image must reflect the observer’s decision strategy. If
the signals appear in the covariates, then signal-like
patterns in the classification image could be artifacts of
the estimation procedure (e.g., the result of bias).

3
Knoblauch andMaloney’s simulations leave some room

for doubt, because (a) they gave their model observer a very
liberal response criterion (equal to the mean of the decision
variable on signal-absent trials, so cV=j0.5 (Macmillan &
Creelman, 2005)), incorporated the exact value of the cri-
terion into the model used to make the GLM estimate,
and used the weighted sum estimate that is appropriate for
unbiased responses, thus giving a potential advantage to
the GLM estimate; and (b) they held signal contrast constant
as they varied internal noise strength, so increases in inter-
nal noise were confounded with decreases in performance.
I have repeated their simulations with an unbiased model
observer at a constant performance level, and I found very
similar results.

4
Mineault et al. called their representation a Laplacian

pyramid (Burt & Adelson, 1983), but since they applied
the shrinkage prior to the coefficients of Gaussian basis
functions, not difference-of-Gaussian basis functions, it
may be more appropriate to call it a Gaussian pyramid
(Mineault, personal communication).

5
Other ways of removing the redundancy are also

possible, e.g., we could estimate m classification images
and require that they sum to zero.
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