Problem 1. (4 pts)

Let $A = \{1, 2, 3\}$ $B = \{2, 4, 6\}$

For each relation between A and B as a subset of $A \times B$, state whether it is a function from A to B, and if it is tell whether it is one to one or onto.

Point each part

Problem 2. (4 pts) Show $Z^+ = \{1, 2, 3, \cdots\}$ and the set E of even positive integers have the same cardinality by giving a function $g: Z^+ \to E$ which is a one to one correspondence. Prove that g is a one to one correspondence.

$$g(n) = 2n$$

$$g(n) = 2n$$

$$g(n) = g(n) = g(m) + m(n)$$

$$2n = 2m$$

$$\Rightarrow n = m$$

$$g(n) = 2k \in E,$$

$$g(n) = 2k \cdot 1 + 2k \in E,$$

$$g(n) = 2k \cdot 1 + 2k = 2n = 2k$$

$$\Rightarrow n = k$$

Problem 3. (4 pts) Let $f: Z \to Z$ be given by $f(n) = 2\lfloor \frac{n}{2} \rfloor$

Is f one to one? Explain

No.
$$(1p+)$$
 $S(0) = 2 \lfloor \frac{0}{2} \rfloor = 2 \lfloor 0 \rfloor = 2 \cdot 0 = 0$

and $S(1) = 2 \lfloor \frac{1}{2} \rfloor = 2 \cdot 0 = 0$

So $S(0) = S(1) = b + 0 \neq 1$

Is f onto? Explain.

Problem 4. (4 pts)
a) Define f is O(g) f is O(g) if there are constants $C_{j} k \text{ Such that}$ 2 pts $|f(x)| \leq C |g(x)| \text{ wheneve there } x > k$

20+5

b) For the function g in your estimate of f is O(g) find a simple function of smallest order for the estimate of

$$O(x^{2} + 5) \log(x^{4} + 1) + 2x^{3}$$

$$O(x^{2}) = 0(\log x)$$

$$O(x^{3}) = 0(\log x)$$