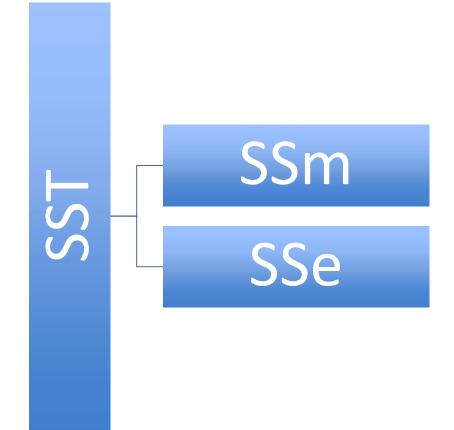
ANOVA

Charles

David Mohammed


ANOVA

- One-way independent ANOVA
- Two-way factorial ANOVA
- One-way repeated-measures
- Other ANOVAs
 - Two-way repeated
 - Two-way mixed
 - 3-way independent
 - Nested

Key Components

- Effect
 - Variance explained by the predictor/model
- Error
 - Unexplained variance
- Assumptions
 - Relative distribution normality
 - Homogeneity of variance
- Procedural examples
 - Exploring the data (graphs; testing for relative normality)
 - Omnibus tests (ANOVA)
 - Pairwise tests controlling for family wise error
 - Effect size

One-way ANOVA

One-way ANOVA

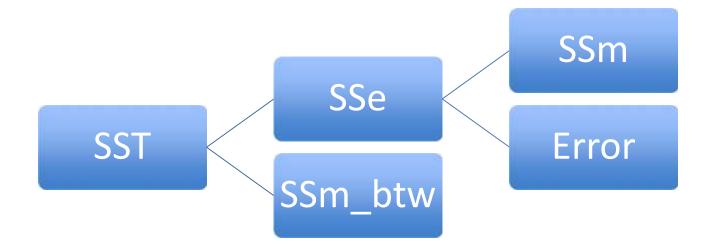
- Effect (SSm) and error (SSe)
 - Total variance: SST= $\Sigma X^2 (G)^2/N$
 - Effect (SSm aka SSbtw): $\Sigma(T)^2/n (G)^2/N$
 - Variability in DV accounted for by a treatment
 - Differences in means among the treatments
 - Error (SSe aks SSw): SSe= ΣSS
 - Contribution of individual subject differences
 - Unsystematic, non-treatment related

F = systematic treatment effect + unsystematic differences
Unsystematic differences

Simulated data

Read 4 Speed	Read Well	Eye Candy	
0.04000		0 0 405 60	
8.24993	10.466106	8.949562	
3.851183	6.934875	9.539441	
5.166481	5.192835	8.415509	
5.819707	11.630756	9.850214	
8.554169	9.662392	9.303608	
2.5191	7.690234	10.49997	
4.331016	7.267778	10.221738	

Two-way


gender	status	Anxiety_leve
female	lecture	5
female	lecture	4
female	lecture	11
female	lecture	13
female	exam	14
female	exam	19
female	exam	11
female	exam	8
male	lecture	16
male	lecture	5
male	lecture	3
male	lecture	7
male	exam	20
male	exam	12
male	exam	13
male	exam	17

Two-way

- Stage 1
 - Total variance: SST= $\Sigma X^2 (G)^2/N$
 - Effect (SSm aka SSbtw): $\Sigma(T)^2/n (G)^2/N$
 - Error (SSe aks SSw): SSe= ΣSS
- Stage 2
 - $-SS_{A} = \Sigma(T)^{2}/n row (G)^{2}/N$ $-SS_{B} = \Sigma(T)^{2}/n col (G)^{2}/N$ $-SS_{AXB} = SSm SS_{A} SS_{B}$

		Factor B	BDI_Anxiety
		Lectures	Exams
		5	14
Factor A	Female	4	19
Gender		11	11
		13	8
		16	20
	Male	5	12
		3	13
		7	17

Repeated-measures ANOVA

Repeated measures

subject	Read 4 Speed	Read Well	Eye Candy
s1	8.24993	10.466106	8.949562
s2	3.851183	6.934875	9.539441
s3	5.166481	5.192835	8.415509
s4	5.819707	11.630756	9.850214
s5	8.554169	9.662392	9.303608
s5	2.5191	7.690234	10.49997
s6	4.331016	7.267778	10.221738

Repeated-measures ANOVA

- Stage 1
 - Total variance: SST= $\Sigma X^2 (G)^2/N$
 - Effect (SSm aka SSbtw): $\Sigma(T)^2/n (G)^2/N$
 - Error (SSe aka SSw): SSe= ΣSS
- Stage 2
 - $SS_per = \Sigma(P)^2/k (G)^2/N$
 - Individual differences removed from denominator
 - SSerror = SSe- SS_per
- F = systematic treatment effect, unsys. diffs (excluding individual differences)
 Unsystematic random differences (excluding individual differences)

Assumptions

- ANOVA one-way
 - Homogeneity of variance
 - Variances across treatments should be similar
 - Levene Test
 - Dependent variable: interval or ratio scale
 - Relatively normal distribution
 - Residuals should have a relatively normal distribution
 - Non-normal data: non-parametric or robust tests
 - Kruskal-Wallis; T1way (Wilcox, 2005)

Assumptions

- Two-way ANOVA
 - Same as those in one-way
 - Plus complication
 - Variance can come from two factors
 - Homogeneity of variance
 - Assessed for main effects
 - As well as the Interaction

Assumptions

- Repeated measures ANOVA
 - Assumption of sphericity
 - Similar to homogeneity of variance
 - Assumes equality of variances on scores between treatment levels

Example procedures

- Power test (optional)
 - Important to know n required
 - to achieve a large effect size
 - at least 80% power
- Explore the data
 - Shapiro-Wilks test
 - Levene Test
 - Plot residuals
- Omnibus test
 - Pairwise test
 - Effect size

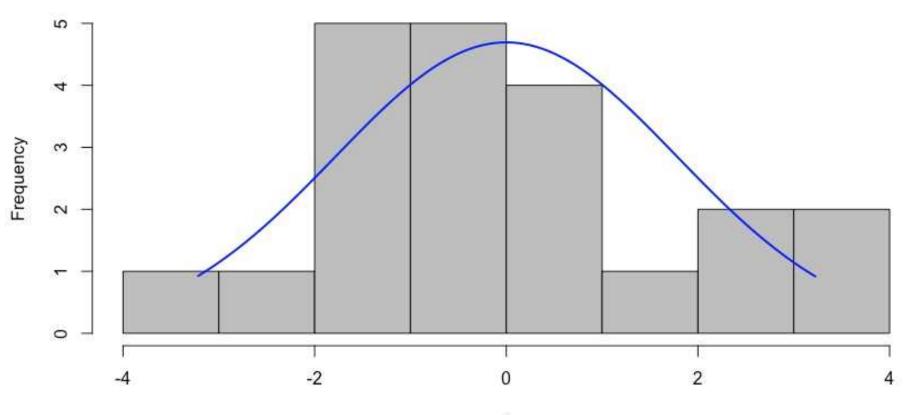
Simulated data

- Simulalated data
 - 3 different reading compression programs
 - The dependent is a score (in minutes)
 - composite of correct answer and RT
- The independent variable
 - Reading method
- Call in R
 - R4S<-runif(7, min= 2, max=10)</pre>
 - RW<-runif(7, min= 5, max=13)</p>
 - EC<-runif(7, min=6, max=12)</pre>

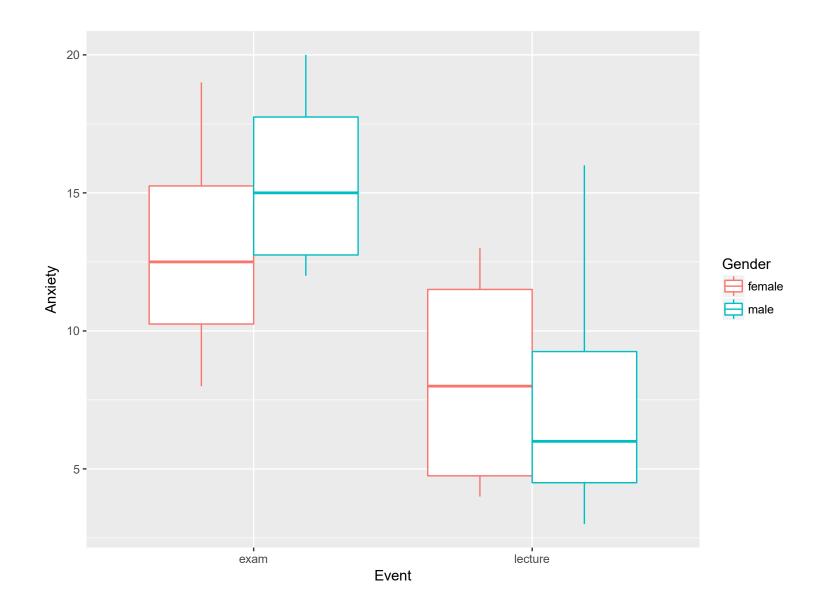
Simulated data

Read 4 Speed	Read Well	Eye Candy	
0.04000		0 0 405 60	
8.24993	10.466106	8.949562	
3.851183	6.934875	9.539441	
5.166481	5.192835	8.415509	
5.819707	11.630756	9.850214	
8.554169	9.662392	9.303608	
2.5191	7.690234	10.49997	
4.331016	7.267778	10.221738	

Explore the data


- Shapiro-Wilk test of normality
 - Biased for larger samples
 - May be non-normal but hidden by *larger N*
- Current data; shapiro.test(score)
 - data: score
 - W = 0.9474, p-value = 0.3039

Explore the data


Test homogeneity of variance
 Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F) group 2 2.4518 0.1144

18

One-way

- tapply(dat1\$score, dat1\$method, var)
 Read 4 Speed Read Well Eye Candy
 5.0123978 5.0863527 0.5252534
- tapply(dat1\$score, dat1\$method, mean)
 Read 4 Speed Read Well Eye Candy
 5.498798 8.406425 9.540006
- tapply(dat1\$score, dat1\$method, sd)
 Read 4 Speed Read Well Eye Candy
 2.2388385 2.2552944 0.7247437

One-way results

mod1<-aov(score~method, data= dat1)
 – summary(mod1)

Df Sum Sq Mean Sq F value Pr(>F)

- method 2 60.83 30.416 8.589 0.0024 **
- Residuals 18 63.74 3.541
- eta-squared of multiple R^2
 - summary.lm(mod1)
 - Multiple R^2= .48, referred to as eta-squared in ANOVA (SSbtn/SST)

Pairwise test

 pairwise.t.test(dat1\$score, dat1\$method, p.adjust.method = "bonf")
 data: dat1\$score and dat1\$method
 Read 4 Speed Read Well
 Read Well 0.0292 Eye Candy 0.0024 0.8237

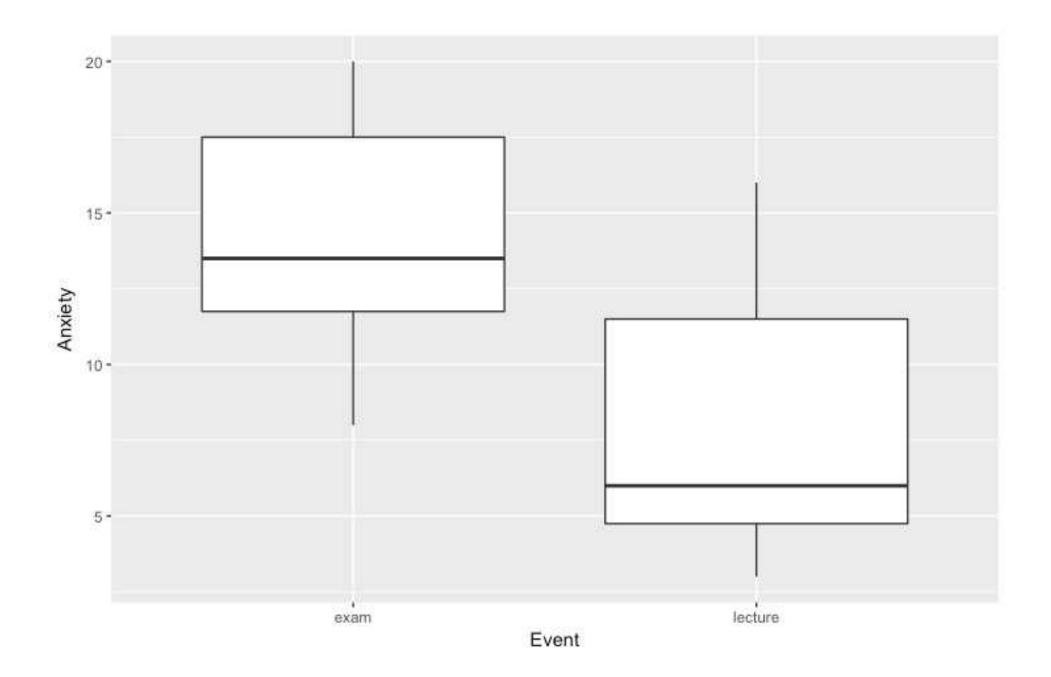
Effect size

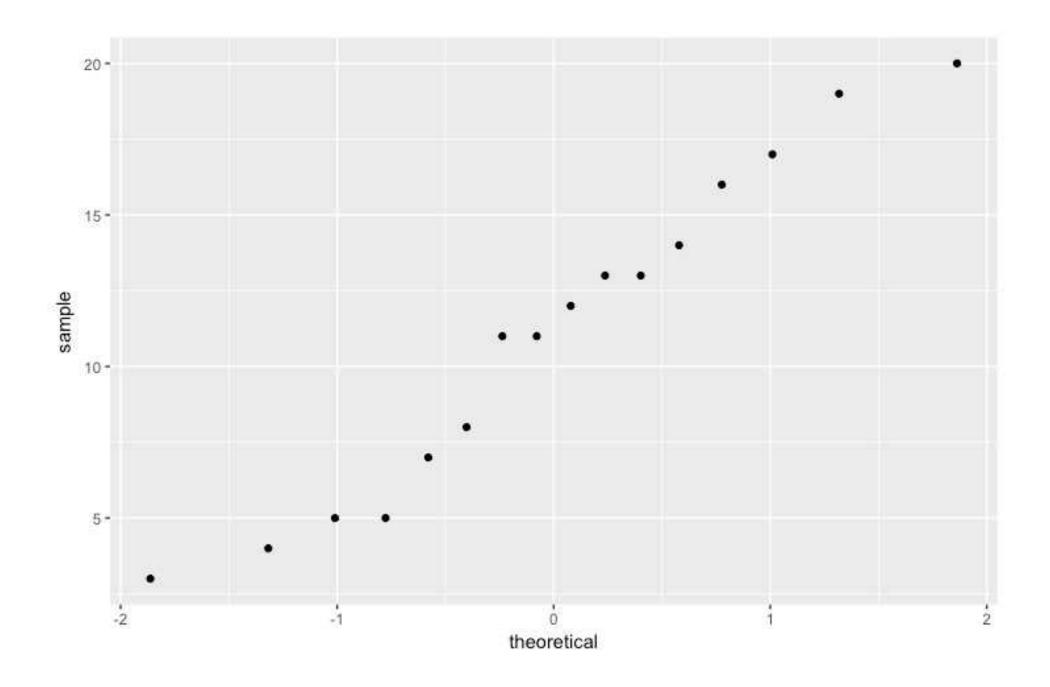
- Read 4 Speed vs. Read Well
 - mes(5.498798 , 8.406425, 2.2388385 , 2.2552944, 7, 7)
 - $-r^{2}=.37$
- Read 4 Speed vs Eye Candy
 - -mes(5.498798, 9.540006, 2.2388385, 0.7247437, 7, 7) $-r^2=.59$

Factorial two-way

- Shapiro-Wilk test of normality
 - Biased for larger samples
 - May be non-normal but hidden by *larger N*
- Current data;
- Shapiro-Wilk normality test
 - data: two_way\$Anxiety
 - W = 0.95404, p-value = 0.5563

Factorial two-way


- Test homogeneity of variance
 - Event (Exam or Lecture)
- Levene's Test for Homogeneity of Variance (center = median)
 - Df F value Pr(>F)
- group 1 0.1197 0.7345
 - 14

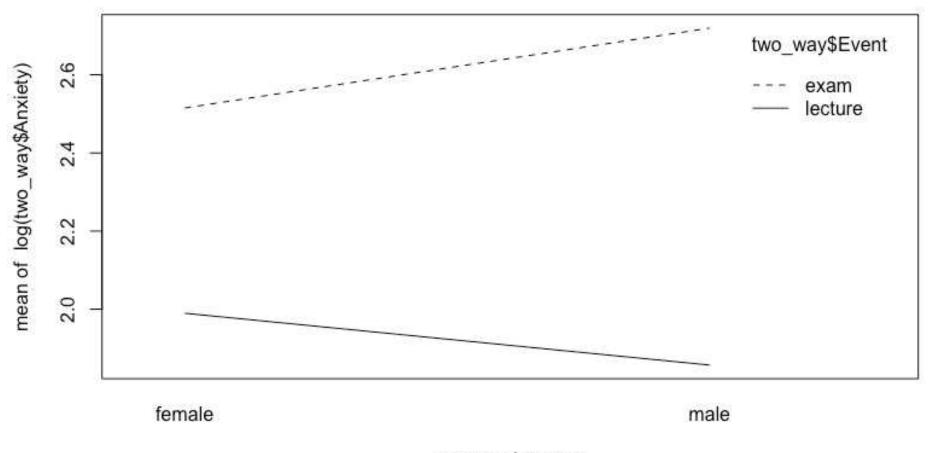

Factorial two-way

• Testing for violation of

Homogeneity of variance from interaction

Levene's Test for Homogeneity of Variance (center = median) Df F value Pr(>F) group 3 0.0736 0.973 12

Two-way


- tapply(two_way\$Anxiety, two_way\$Event, mean)
 - shows mean anxiety based on Event
 - Exam lecture
 - 14.25 8.00
- tapply(two_way\$Anxiety, two_way\$Gender, mean)
 - shows the mean anxiety based on Gender
 - female male
 - 10.625 11.625

Two-way factorial

 mod3<-aov(Anxiety~Event + Gender + Event:Gender, data = two_way)

– summary(mod3)

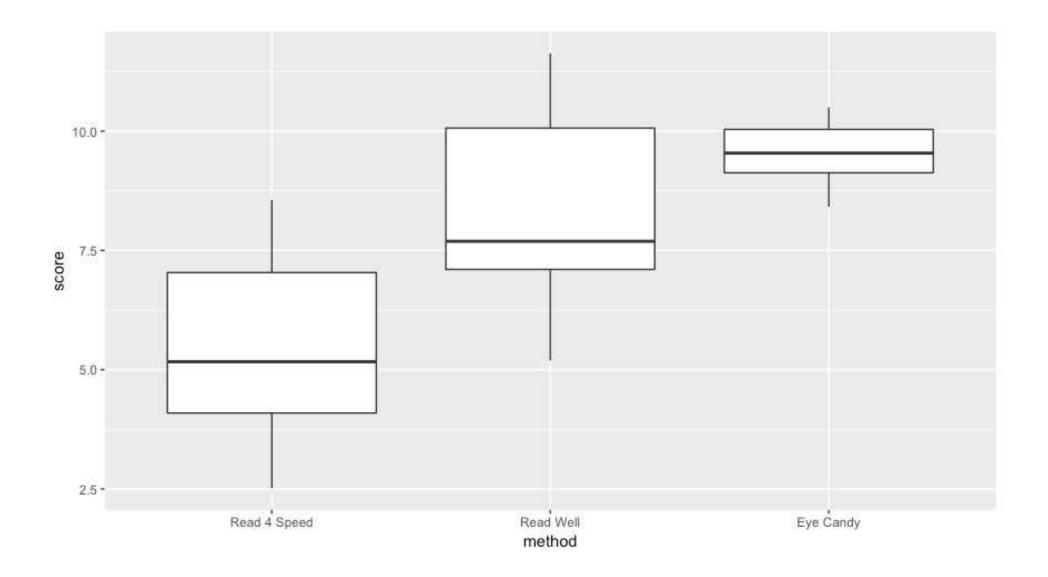
	Df	Sum Sq	Mean Sq	F	value Pr(>F)
# Event	1	156.2	156.25	7.089	0.0207 *
# Gender	1	4.0	4.00	0.181	0.6777
# Event:Gender	1	9.0	9.00	0.408	0.5348
# Residuals	12	264.5	22.04		

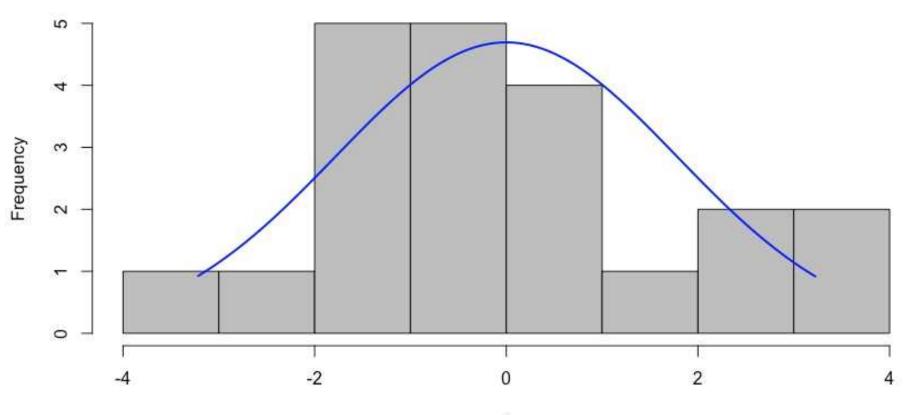
two_way\$Gender

Repeated measures

subject	Read 4 Speed	Read Well	Eye Candy
s1	8.24993	10.466106	8.949562
s2	3.851183	6.934875	9.539441
s3	5.166481	5.192835	8.415509
s4	5.819707	11.630756	9.850214
s5	8.554169	9.662392	9.303608
s5	2.5191	7.690234	10.49997
s6	4.331016	7.267778	10.221738

Explore the data


- Shapiro-Wilk test of normality
 - Biased for larger samples
 - May be non-normal but hidden by *larger N*
- Current data; shapiro.test(score)
 - data: score
 - W = 0.9474, p-value = 0.3039


Explore the data

Test homogeneity of variance
 Levene's Test for Homogeneity of Variance (center = median)

Df F value Pr(>F) group 2 2.4518 0.1144

18

One-way

- tapply(dat1\$score, dat1\$method, var)
 Read 4 Speed Read Well Eye Candy
 5.0123978 5.0863527 0.5252534
- tapply(dat1\$score, dat1\$method, mean)
 Read 4 Speed Read Well Eye Candy
 5.498798 8.406425 9.540006
- tapply(dat1\$score, dat1\$method, sd)
 Read 4 Speed Read Well Eye Candy
 2.2388385 2.2552944 0.7247437

Repeated measures ANOVA

- Call
 - mod5<-ezANOVA(data=rep_m, dv=.(score), wid=
 .(subject), within= .(method), detailed= TRUE,
 type=2)</pre>

\$ANOVA Effect DFn DFd	SSn	SSd	۶ ۶	o p<.05	ges
method 2 12	60.83155	33.42687	10.91904	1.989086e-03	* 0.4883104
\$`Mauchly's Test for Effect W 2 method 0.887657		p p<.05 23572			
\$`Sphericity Correct Effect GGe p	ions` [GG] p[GG]<.	.05 HFe	p[HF] p[H	-	
2 method 0.899003	3 0.00302370)8 * 1.2	59646 0.00	1989086 *	

- Note that this is a higher F-ratio value (10.91) relative to the Independent one-way (8.59)
 - Recall, error in the denominator is reduced
 - Individual differences are removred

Repeated measures multilevel

- Sphericity is not a concern
- Form of regression
 - Explicitly models dependency
 - (Normally residuals must be independent in regression)
 - Includes fixed coefficients and random coefficients
 - Fixed: e.g. gender
 - Random: something that changes over time
 - Fixed effects generalize
 - only to the sample and experiment
 - Random effects generalize beyond the experiment (Field, 2013)

Repeated measures multilevel

- baseline<-lme(score~1, random=~1|subject, data= rep_m, method= "ML")
 - mod6<-lme(score~method, random= ~1|subject, data=rep_m, method="ML")
- anova(baseline, mod6)

Repeated measures multilevel

	Model	df	AIC	BIC	logLik	Test	L.Ratio	p-value
baseline	1	3	102.	106.	-48			
mod6	2	5	92.	97.	-41.1	vs 2	14.94333	6e-04

- The AIC and BIC value measures how well a model fits the data: lower is better
- The L.Ratio:
 - indicates the model fits the data significantly better than no model (baseline

Nested ANOVA

Tech:

Rat:

	Patel			Jenkins	
Alice	Freda	Willy	Mary	Patch	Amy
0.3	0.09	1.27	0.87	0.4829	1.376662
0.5	0.15	1.45	1.05	0.6035	1.47073
0.7	0.21	1.63	1.23	0.7241	1.564798
0.9	0.27	1.81	1.41	0.8447	1.658866
1.1	0.33	1.99	1.59	0.9653	1.752934
1.3	0.39	2.17	1.77	1.0859	1.847002
1.5	0.45	2.35	1.95	1.2065	1.94107
1.7	0.51	2.53	2.13	1.3271	2.035138
1.9	0.57	2.71	2.31	1.4477	2.129206