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Scatter plots 
•Scatterplots are used to depict the relationship between 2 variables  

• Linear relationships 
• Curve linear relationships  
• Strong or weak relationships  
• No relationships  



Covariance and correlation  
•Covariance measures how 2 variables vary with respect to one another 

• Measures the direction of the linear relationship but does not measure the strength  

•Correlation coefficient 
• Population correlation coefficient (𝜌) 

• Sample correlation coefficient (r) 

• Measures the strength and direction of a linear relationship  

• Unit free and ranges from -1 to +1 

• r = sample correlation coefficient  
• n = sample size  
• x = value of the predictor variable  
• y = value of the response variable  

 



Examples of r values  
• Stronger linear relationships (r = -1, r = +1) 
• Weaker linear relationships (r = -0.6, r = + 0.3) 
• No linear relationship (r = 0) 



Significance 
 Hypotheses  

 Null hypothesis  H0: 𝜌 = 0 (no correlation) 

 Alternate hypothesis  HA: 𝜌 ≠ 0 (correlation) 

  

 t-value to test significance of a correlation  

 t = 
𝑟

(1−𝑟2)

(𝑛−2)

 • r = correlation coefficient 
• df = n-2  



Linear regression analysis 
•Statistical analysis to describe the relationship between 2 or more continuous 
variables 

response variable = model + error  

 

•Simple linear regression is part of bivariate statistics  

•Working with 2 variables  
◦ y variable = response, dependant, outcome  

◦ x variable = predictor, independent, explanatory 



Linear model for regression 
 Slope intercept form a line  

 y = m x + b + 𝜺 

 x = random variable 

 m = slope of the line 

 b = y-intercept 

  

Population linear regression model  

yi = 𝜷0 + 𝜷1 x1 + 𝜺i 

𝛽0 = population y-intercept 

𝛽1 = population slope 

x = predictor variable 

𝜀 = error term, unexplained variation in y 



Linear regression model  



Linear regression assumptions 
•Individual variables are normally distributed 

•The relationship between the x and y variable is linear  

•Random sampling  

•Independence of observations  

•The probability distribution of the errors has a constant variance 

  



Estimating model parameters 
 Sample regression line  

 ŷi = b0 + b1 xi 
 ŷi =  value of the yi predicted by the fitted regression line for each x 

 b0 = estimate of the regression intercept  

 b1 = estimate of the regression slope  

 x = predictor variable  

  

 The main aim of regression analysis is to estimate the parameters (𝛽0 , 𝛽1 ) of 
the linear regression model  

 Sample regression line provides an estimate of the population regression line 
using sample data 

  



Sample regression line  

• Model of the least squares regression 
line and residual values  
 

• The difference between each 
observed Y-value and each predicted 
value ŷi value is called a residual  

 

Quinn, G. P., & Keough, M. J. (2002). Experimental design and data 
analysis for biologists. Cambridge University Press. 



Analysis of variance  

 SST   =   SSR   +   SSE 
Total sum of 
squares   
measures the 
variation of the yi 
values around 
their mean 

Sum of squares 
regression  
explained variation 
attributable to the 
relationship 
between x and y 

Sum of squares 
error  variation 
attributed to 
factors other than 
the relationship 
between x and y  



Analysis of variance  

 SST   =   SSR   +   SSE 
SST = Σ(y-ȳ)2   SSR = Σ(ŷ-ȳ)2  SSE = Σ(y-ŷ)2  



Explained and unexplained variation 



Coefficient of Determination (R2) 

 R2 = 
SSR
SST

 = 
sum of squares explained by regression

total sum of squares
 



Linear regression in R 













Multiple Regression 
Eleni Fegaras 



Linear Regression 

1 
Explanatory 

Variable 

1 Response 
Variable 



Linear Regression           Multiple Regression 

1 
Explanatory 

Variable 

1 Response 
Variable 

1 Response 
Variable 

1st  
Explanatory 

Variable 

2nd 
Explanatory 

Variable 

3rd  
Explanatory 

Variable 



Linear Regression           Multiple Regression 

1 
Explanatory 

Variable 

1 Response 
Variable 

1 Response 
Variable 

1st  
Explanatory 

Variable 

2nd  
Explanatory 

Variable 

3rd  
Explanatory 

Variable 

• Prediction: the value of a variable based on the value of 2+ other variables 
• Causal: You can determine the overall fit of the model and the relative contribution of 

each explanatory variable to the response  



• Population model  

• yi = 𝜷0 + 𝜷1 xi 1 + 𝜺i 

• 𝛽0 = population y-intercept 

• 𝛽1 = population slope 

• x = predictor variable 

• 𝜀 = error term, unexplained variation in y 

 

• Population model  

• yi = 𝜷0 + 𝜷1 xi 1 +𝜷𝟐xi 2 + ⋯ + 𝜷𝒌 xi k + 𝜺i 

• 𝛽0 = population y-intercept 

• 𝛽1,2…k = population slope for that predictor 

variable, holding other variables constant 

• x 1,2…k = predictor variable 

• 𝜀 = error term, unexplained variation in y 
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• Population model  

• yi = 𝜷0 + 𝜷1 xi 1 +𝜷𝟐xi 2 + ⋯ + 𝜷𝒌 xi k + 𝜺i 

• 𝛽0 = population y-intercept 

• 𝛽1,2…k = population slope for that predictor 

variable, holding other variables constant 

• x 1,2…k = predictor variable 

• 𝜀 = error term, unexplained variation in y 

 Predicted regression line  
 

ŷi = b0 + b1 xi1 

Predicted regression line  
 
ŷi = b0 + b1 xi1 + b2 xi2 +… + bk xik 

Linear Regression           Multiple Regression 



Our example case study: 
• Q: Are a person’s brain size and body size predictive of his or her 

intelligence? Willerman et al., 1991  

• Response variable (yi): Performance IQ (PIQ) from the Wechsler Adult 
Intelligence Scale 

• Explanatory variables: (xi 1) Brain size in MRI (xi 2) Height in inches     
(xi 3) Weight in pounds 

 

 

(PIQ)I  = 𝜷0 + 𝜷1 (brain size) +𝜷𝟐 (height inches) + 𝜷𝟑 (weight pounds) 

 

 

 

 

yi = 𝜷0 + 𝜷1 xi 1 +𝜷𝟐xi 2 + 𝜷𝟑 xi 3 + 𝜺i 



Some Additional Assumptions 

1. Linear relationship between the response variable and each of the 
explanatory variables, and the response variable and the 
explanatory variables collectively  
   

2. Try to eliminate multicollinearity 

 

3. Minimum number of observations 



1) Linear Relationship 
• Scatter plot matrixes 

• Investigate the relationships 
among all the variables 

• Illustrates “marginal 
relationships”; no regard to 
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1) Linear Relationship 
• Scatter plot matrixes 
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r values: 
 
 
0.37                   -0.21                   0.0025 
 
           

                     
 
                                0.58                 0.51 
                           

                                   
                                       
 
                                                           0.699 
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2) The Issues of Multicollinearity 

Multicollinearity is the most often faced issue 

• 1) small changes to data (adding or deleting data) can greatly change 
the estimated regression coefficients 

• 2) standard errors of the estimated regression slopes are inflated 

  

Basically: different sample, different population may yield very different 
results 



3) Minimum number of observations 

• Green (1991) ratio of # of predictors + 104 : observations 

• Neter et al (1996) ratio of 6-10(# of predictors) : observations 

• Maximize your number of observations 

• If you must, reduce the number of variables you’re testing 

 

• For example: Our study 38 volunteers, 3 predictors: 

 (3) + 104 > 38  

 6(3) to 10(3) = 18 to 30  < 38  



Setup in R statistics 

1. Estimated model coefficients and regression equation 

2. Determine how well the model fits (r-squared) 

3. Which explanatory variables contributes the most (ANOVA) 

4. Choosing the best model (AICc and Partial F-test) 



What about non-numeric data in R? 
 
Ordinal scale represent use “dummy variables” 
 
Or more simpler categories you assign male – 1 female – 0 





Regression Equation: 
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*So far we don’t know if the model with these three explanatory variables is the 
best model! 
 look at AICc and Partial F-Test 

Which explanatory variables contribute the most 



Choosing the Best Model 

Akaike Information Criterion (AIC) 
Schwarz Bayesian Information Criterion (BIC) 

 
• BIC is more harsh 
• AICc is used for smaller sample size 
• Smaller values indicate better models  

 
Reduced Model (Model 4) seems to be a better fit in 
comparison to the Full Model (Model 5) 

 



Partial F Test 
Fstat = 𝐒𝐒𝐄 𝐑𝐞𝐝𝐮𝐜𝐞𝐝. 𝐌𝐨𝐝𝐞𝐥 − 𝐒𝐒𝐄 𝐅𝐮𝐥𝐥. 𝐌𝐨𝐝𝐞𝐥 / 𝐂𝐡𝐚𝐧𝐠𝐞 𝐢𝐧 # 𝐨𝐟 𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬  

MSE(Full) 

If Fstat is large and significant, there is a large difference between the two models -> use full model 

If Fstat is small or not significant, models do not differ greatly -> use reduced model  
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Partial F Test 

(PIQ)I  = 𝟏𝟏𝟏. 𝟑 + 𝟐. 𝟎𝟔 (brain size) 
−𝟐. 𝟕𝟑 (height inches) 



Visualize Data with 2 Explanatory Variables 

(PIQ)I  = 𝟏𝟏𝟏. 𝟑 + 𝟐. 𝟎𝟔 (brain size) −𝟐. 𝟕𝟑 (height inches) 



> Library(rgl) 
> plot3d(Brain, Height, PIQ, col="red", size=3) 

Visualize Data with 2 Explanatory Variables 



Path Analysis  

Includes all correlations and 
all supposed causal links 

 

Can account for unexplained 
causes that might affect the 
response variable, variables 
we have not yet measured (U)  

PIQ 

Brain Size 

Height 

Weight 

U 



Regression Model Analysis 



Tests for linear association in a simple regression model 

• Two primary methods: 

• t-test for the slope 

•  Used to test whether a slope is positive or negative.  

• Analysis of Variance test (ANOVA) F-test 

• Useful for testing whether or not the slope = 0 



t-test for slope 

• The resulting t-statistic obtained from the above formula 
is used to calculate the P-value. The P-value is 
determined by referring to a t-distribution with n-2 
degrees of freedom.  



ANOVA F-test 



ANOVA F-test 

These values help test the null 

and alternative hypotheses: 



Simple Linear Regression assumptions - LINE 

• Linearity (L): The mean of the response of a sample population at 
each value of the predictor value Xi is a linear function of Xi 

• Independence (I): The errors at each predictor value are 
independent  

• Normally distributed (N): The errors at each predictor value are 
normally distributed 

• Equal variance (E): The errors at each predictor value have equal 
variances 



Assessing Linearity (L) 

• Visual inspection 

• Residuals vs Fit (estimated values) plot 

• This can also be a good check for equal variances and outliers 

• Residuals vs Predictor is a similar plot, but can help assess whether a 
new, additional predictor can make the model better 

Residuals: 



Assessing Linearity - Example: alcohol consumption vs 

muscle strength  

(Marquez et al, 1989) 

Source: https://onlinecourses.science.psu.edu/stat501/node/277 



Assessing Linearity - What a non-linear plot looks like 

Source: https://onlinecourses.science.psu.edu/stat501/node/279 



Assessing Independence (I) 

• Residuals vs Order plot 

• NB: This test can only be performed for data collected in an ordered or 
numbered fashion.  

• A scatter plot with the residuals on the y axis and order in which the data 
were collected on the x axis.  



Assessing Independence - What to look for 

when error shows no independence  

Positive serial correlation: Negative serial correlation: 

Source: https://onlinecourses.science.psu.edu/stat501/node/280 



Assessing Normal Distribution 
• Normal probability plot of residuals is used where a plot of 

the theoretical percentiles of the normal distribution vs the 
the observed sample percentiles is plotted.  

• This resulting plot should be linear.  



Assessing Error Variance - what an unequal variance 

looks like on a residual vs fits plot 

Example of a fanning scatter plot: 

Source: https://onlinecourses.science.psu.edu/stat501/node/279 



Data Transformation 

• If the data presented does not adhere to the SLR model, a number of 
approaches can be considered: 

• Omitting predictor variables to improve the model. 

• If the mean of the response is not a linear function of the predictors, a 
different function can be used. Eg: Polynomial regression or Log 
transformation 

• If there are unequal variances, use the “weighted least squares 
regression” to transform response and/or predictor variables 

• If an outlier exists, use “robust estimation procedure” 

• If error terms are not independent, try a “time series model”. 



Data Transformation: Transforming predictor 

values (X) only 
• Transforming Predictor values is usually performed when nonlinearity is the 

ONLY problem; All other assumptions must hold true after transformation  

Regression Model: Residual vs Fit:  

Eg: Proportion of words recalled vs time: 

Source: https://onlinecourses.science.psu.edu/stat501/node/319 



Data Transformation: Transforming predictor 

values (X) only 
• Transforming Predictor values is usually performed when nonlinearity is the 

ONLY problem; All other assumptions must hold true after transformation  

Taking the natural log of predictor value (time) 



Data Transformation: Transforming response 

values (Y) only 
• Transforming response values is usually performed when non-

normality and/or unequal variances are the problem; All other 
assumptions must hold true after transformation  

Eg: Gestation length vs birthweight: 

Source: https://onlinecourses.science.psu.edu/stat501/node/320 



Data Transformation: Transforming response 

values (Y) only 
• Transforming response values is usually performed when non-

normality and/or unequal variances are the problem; All other 
assumptions must hold true after transformation  

Take the natural log of response value (gestation time):   

Mammal Birthwgt Gestation lnGest 

Goat 

 

 

 

2.75 155 5.04343 

Sheep 4.00 175 5.16479 

Deer 0.48 190 5.24702 

Porcupine 1.50 210 5.34711 

Bear 0.37 213 5.36129 

Hippo 50.00 243 5.49306 

Horse 30.00 340 5.82895 

Camel 40.00 380 5.94017 

Zebra 40.00 390 5.96615 

Giraffe 98.00 457 6.12468 

Elephant 113.00 670 6.50728 

Source: https://onlinecourses.science.psu.edu/stat501/node/320 



Data Transformation: Transforming both predictor and 

response values  
• Transforming response values is usually performed when non-normality 

and/or unequal variances as well as non-linearity are the problem. 

Eg: Tree volume vs diameter (Schumacher et al, 1935): 

Regression model: Residuals vs fit: 

Source: https://onlinecourses.science.psu.edu/stat501/node/321 



Eg: Tree volume vs diameter 

(Schumacher et al, 1935): 

Source: https://onlinecourses.science.psu.edu/stat501/node/321 



Eg: Tree volume vs diameter 

(Schumacher et al, 1935): 
Transforming predictor values only: 



Eg: Tree volume vs diameter 

(Schumacher et al, 1935): 
Transforming predictor values only: 

Source: https://onlinecourses.science.psu.edu/stat501/node/321 



Eg: Tree volume vs diameter 

(Schumacher et al, 1935): Transforming both predictor and response values: 

Source: 

https://onlinecourses.science.

psu.edu/stat501/node/321 



Eg: Tree volume vs diameter 

(Schumacher et al, 1935): 
Transforming both predictor and response values: 

Source: 

https://onlinecours

es.science.psu.ed

u/stat501/node/32

1 
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Polynomial Regression 

• The scatter plot of residuals vs predictor may suggest 

a non-linear relationship. Polynomial regression may 

be a more suitable model for the data.  

h = degree of the polynomial 

Polynomial regression guidelines: 

1. The fitted model is more reliable when the sample size is 

large 

2. Do not extrapolate beyond the limit of the observed values  

3. Be aware of statistical overflow when trying to incorporate 

higher degree terms 

4. Use practical significance vs statistical significance 



Polynomial Regression - Example 

• How is the length of a bluegill fish related to its age? 

(Cook and Weisberg, 1999) 

Source: https://onlinecourses.science.psu.edu/stat501/node/325 

https://onlinecourses.science.psu.edu/stat501/node/250
https://onlinecourses.science.psu.edu/stat501/node/250

