Regression Analysis

BIOL 5081 INTRO TO BIOSTATISTICS
OCTAVIA MAHDIYAN, ELENI FEGARAS \& KARAM DAHYALEH

Scatter plots

- Scatterplots are used to depict the relationship between 2 variables
- Linear relationships
- Curve linear relationships
- Strong or weak relationships
- No relationships

Covariance and correlation

-Covariance measures how 2 variables vary with respect to one another

- Measures the direction of the linear relationship but does not measure the strength

- Correlation coefficient

- Population correlation coefficient (ρ)
- Sample correlation coefficient (r)
- Measures the strength and direction of a linear relationship
- Unit free and ranges from -1 to +1

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\mu_{x}\right)^{2} \cdot \sum_{i=1}^{n}\left(y_{i}-\mu_{y}\right)^{2}}}
$$

- $r=$ sample correlation coefficient
- $\mathrm{n}=$ sample size
- $x=$ value of the predictor variable
- $y=$ value of the response variable

Examples of r values

- Stronger linear relationships ($r=-1, r=+1$)
- Weaker linear relationships $(r=-0.6, r=+0.3)$
- No linear relationship $(r=0)$

Significance

Hypotheses
Null hypothesis $\rightarrow \mathrm{H}_{0}: \rho=0$ (no correlation)
Alternate hypothesis $\rightarrow \mathrm{H}_{\mathrm{A}}: \rho \neq 0$ (correlation)
t -value to test significance of a correlation
$t=\frac{r}{\sqrt{\frac{\left(1-r^{2}\right)}{(n-2)}}} \quad \begin{aligned} & \quad \mathrm{df}=\mathrm{correl}=\mathrm{n}-2\end{aligned}$

Linear regression analysis

- Statistical analysis to describe the relationship between 2 or more continuous variables

response variable = model + error

-Simple linear regression is part of bivariate statistics
-Working with 2 variables
${ }^{\circ}$ y variable = response, dependant, outcome
${ }^{\circ} \mathrm{x}$ variable $=$ predictor, independent, explanatory

Linear model for regression

Slope intercept form a line
$y=m x+b+\varepsilon$
$x=$ random variable
$m=$ slope of the line
b = y-intercept

Population linear regression model
$\mathrm{y}_{\mathrm{i}}=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} \mathrm{x}_{1}+\varepsilon_{\mathrm{i}}$
$\beta_{0}=$ population y-intercept
$\beta_{1}=$ population slope
$\mathrm{x}=$ predictor variable
$\varepsilon=$ error term, unexplained variation in y

Linear regression model

Linear regression assumptions

- Individual variables are normally distributed
-The relationship between the x and y variable is linear
-Random sampling
- Independence of observations
-The probability distribution of the errors has a constant variance

Estimating model parameters

Sample regression line
$\hat{y}_{i}=b_{0}+b_{1} x_{i}$
$\hat{y}_{i}=$ value of the y_{i} predicted by the fitted regression line for each x
$b_{0}=$ estimate of the regression intercept
$\mathrm{b}_{1}=$ estimate of the regression slope
$x=$ predictor variable

The main aim of regression analysis is to estimate the parameters $\left(\beta_{0}, \beta_{1}\right)$ of the linear regression model
Sample regression line provides an estimate of the population regression line using sample data

Sample regression line

- Model of the least squares regression line and residual values
- The difference between each observed Y-value and each predicted value \hat{y}_{i} value is called a residual

Analysis of variance

SST = SSR + SSE

Total sum of squares \rightarrow measures the variation of the y_{i} values around their mean

Sum of squares regression \rightarrow explained variation attributable to the relationship between x and y

Sum of squares error \rightarrow variation attributed to factors other than the relationship between x and y

Analysis of variance

$$
\underset{\mathrm{SST}}{\mathrm{SST}=\Sigma(y-\bar{y})^{2}} \underset{\quad \mathrm{SSR}=\Sigma(\hat{y}-\bar{y})^{2}}{ }+\underset{\mathrm{SSE}=\Sigma(y-\bar{y})^{2}}{ }
$$

Explained and unexplained variation

Coefficient of Determination (R^{2})

$R^{2}=\frac{S S R}{S S T}=\frac{\text { sum of squares explained by regression }}{\text { total sum of squares }}$

Linear regression in R

| Environment | History | Connections | Git | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Global Environment | | | | |
| Data | | | | |
| BP_data | 30 obs. of 2 variables | | | |
| List of 12 | | | | |
| | | | | |


```
BP_data \(\times\) © Linear regression script . \(\mathrm{R} \times\)
Source on Save
```

``` 7.
```

\#Import your dataset into your environment
\#Preview the dimensions of the BP_data
dim(BP_data)
\#See the names of the BP_data
names(BP_data)
\#Check the type of variable for Age and BP
class(Age)
class(BP)
\#Plot your data in a scatter plot
plot(Age, BP, main="Systolic Blood Pressure by Age")
\#Fit a linear regression model with the lm fnx + summary
mod <- lm(BP ~ Age)
summary(mod)
\#Adding the regression line to your model (can also change colour and line width)
abline(mod, col=2, lw=3)
summary(mod)
anova(mod)
\#Regression disgnostic plots
plot(mod)
(Top Level) %
\cdot -

Systolic Blood Pressure by Age


```
Console ~/Desktop/SWC/
> summary(mod)
Call:
lm(formula = BP ~ Age)
\begin{tabular}{rrrrrr} 
Residuals: & & & & \\
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-21.724 & -6.994 & -0.520 & 2.931 & 75.654
\end{tabular}
-21.724 -6.994 -0.520 2.931 75.654
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 98.7147 10.0005 9.871 1.28e-10 ***
Age 0.9709 0.2102 4.618 7.87e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 17.31 on 28 degrees of freedom
Multiple R-squared: 0.4324, Adjusted R-squared: 0.4121
F-statistic: 21.33 on 1 and 28 DF, p-value: 7.867e-05
>
>
>
> anova(mod)
Analysis of Variance Table
Response: BP
    Df Sum Sq Mean Sq F value Pr(>F)
Age 1 6394.0 6394.0 21.33 7.867e-05 ***
Residuals 28 8393.4 299.8
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', 1
>
```

- \square

Residuals vs Fitted

Fitted values
Im(BP ~Age)

Multiple Regression

Eleni Fegaras

Linear Regression

Linear Regression

Multiple Regression

Linear Regression

Multiple Regression

- Prediction: the value of a variable based on the value of $2+$ other variables
- Causal: You can determine the overall fit of the model and the relative contribution of each explanatory variable to the response

Linear Regression

- Population model
- $\mathrm{y}_{\mathrm{i}}=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} \mathrm{x}_{\mathrm{i} 1}+\varepsilon_{\mathrm{i}}$
- $\beta_{0}=$ population y-intercept
- $\beta_{1}=$ population slope
- $\mathrm{x}=$ predictor variable
- $\varepsilon=$ error term, unexplained variation in y

Multiple Regression

- Population model
- $\mathrm{y}_{\mathrm{i}}=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} \mathrm{x}_{\mathrm{i} 1}+\boldsymbol{\beta}_{2} \mathrm{x}_{\mathrm{i} 2}+\cdots+\boldsymbol{\beta}_{k} \mathrm{x}_{i \mathrm{k}}+\varepsilon_{\mathrm{i}}$
- $\beta_{0}=$ population y-intercept
- $\beta_{1,2 . . . k}=$ population slope for that predictor variable, holding other variables constant
- $\mathrm{x}_{1,2 \ldots \mathrm{k}}=$ predictor variable
- $\varepsilon=$ error term, unexplained variation in y

Linear Regression

- Population model
- $\mathrm{y}_{\mathrm{i}}=\beta_{0}+\beta_{1} \mathrm{x}_{\mathrm{i} 1}+\varepsilon_{\mathrm{i}}$
- $\beta_{0}=$ population y-intercept
- $\beta_{1}=$ population slope
- $\mathrm{x}=$ predictor variable
- $\varepsilon=$ error term, unexplained variation in y

Predicted regression line

$$
\hat{y}_{\mathrm{i}}=b_{0}+b_{1} x_{i 1}
$$

Multiple Regression

- Population model
- $\mathrm{y}_{\mathrm{i}}=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1} \mathrm{x}_{\mathrm{i} 1}+\boldsymbol{\beta}_{2} \mathrm{x}_{\mathrm{i} 2}+\cdots+\boldsymbol{\beta}_{\mathrm{k}} \mathrm{x}_{\mathrm{ik}}+\varepsilon_{\mathrm{i}}$
- $\beta_{0}=$ population y-intercept
- $\beta_{1,2 \ldots k}=$ population slope for that predictor variable, holding other variables constant
- $\mathrm{x}_{1,2 \ldots \mathrm{k}}=$ predictor variable
- $\varepsilon=$ error term, unexplained variation in y

Predicted regression line

$$
\hat{y}_{i}=b_{0}+b_{1} x_{i 1}+b_{2} x_{i 2}+\ldots+b_{k} x_{i k}
$$

Our example case study:

- Q: Are a person's brain size and body size predictive of his or her intelligence? Willerman et al., 1991
- Response variable (\mathbf{y}_{i}): Performance IQ (PIQ) from the Wechsler Adult Intelligence Scale
- Explanatory variables: $\left(\mathrm{x}_{\mathrm{i}_{1}}\right)$ Brain size in MRI ($\mathrm{x}_{\mathrm{i}_{2}}$) Height in inches $\left(x_{i 3}\right)$ Weight in pounds

$$
\mathrm{y}_{i}=\boldsymbol{\beta}_{0}+\beta_{1} \mathrm{x}_{i 1}+\beta_{2} \mathrm{x}_{i 2}+\boldsymbol{\beta}_{3} \mathrm{x}_{i 3}+\varepsilon_{i}
$$

$(\text { PIQ })_{1}=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1}$ (brain size) $+\boldsymbol{\beta}_{2}$ (height inches) $+\boldsymbol{\beta}_{3}$ (weight pounds)

Some Additional Assumptions

1. Linear relationship between the response variable and each of the explanatory variables, and the response variable and the explanatory variables collectively
2. Try to eliminate multicollinearity
3. Minimum number of observations

1) Linear Relationship

- Scatter plot matrixes
- Investigate the relationships among all the variables
- Illustrates "marginal relationships"; no regard to other variables

1) Linear Relationship

- Scatter plot matrixes
- Investigate the relationships among all the variables
- Illustrates "marginal relationships"; no regard to other variables

1) Linear Relationship

- Scatter plot matrixes
- Investigate the relationships among all the variables
- Illustrates "marginal relationships"; no regard to other variables

1) Linear Relationship

- Scatter plot matrixes
- Investigate the relationships among all the variables
- Illustrates "marginal relationships"; no regard to other variables

Linear Regression

Multiple Regression

2) Multicollinearity

1 Response
Variable

2) The Issues of Multicollinearity

Multicollinearity is the most often faced issue
-1) small changes to data (adding or deleting data) can greatly change the estimated regression coefficients

- 2) standard errors of the estimated regression slopes are inflated

Basically: different sample, different population may yield very different results

3) Minimum number of observations

- Green (1991) ratio of \# of predictors + 104 : observations
- Neter et al (1996) ratio of 6-10(\# of predictors) : observations
- Maximize your number of observations
- If you must, reduce the number of variables you're testing
- For example: Our study 38 volunteers, 3 predictors:

$$
\begin{aligned}
& (3)+104>38 \text { 区 } \\
& 6(3) \text { to } 10(3)=18 \text { to } 30<38
\end{aligned}
$$

Setup in R statistics

1. Estimated model coefficients and regression equation
2. Determine how well the model fits (r-squared)
3. Which explanatory variables contributes the most (ANOVA)
4. Choosing the best model (AICc and Partial F-test)


```
> data1 <-read.delim(file.choose(), header=T)
\begin{tabular}{|c|c|c|c|c|}
\hline & data1 PIO & Brain & Height & Weight \\
\hline 1 & 124 & 81.69 & 64.5 & 118 \\
\hline 2 & 150 & 103.84 & 73.3 & 143 \\
\hline 3 & 128 & 96. 54 & 68.8 & 172 \\
\hline 4 & 134 & 95.15 & 65.0 & 147 \\
\hline 5 & 110 & 92.88 & 69.0 & 146 \\
\hline 6 & 131 & 99.13 & 64.5 & 138 \\
\hline 7 & 98 & 85.43 & 66.0 & 175 \\
\hline 8 & 84 & 90.49 & 66.3 & 134 \\
\hline 9 & 147 & 95.55 & 68.8 & 172 \\
\hline 10 & 124 & 83.39 & 64.5 & 118 \\
\hline 11 & 128 & 107.95 & 70.0 & 151 \\
\hline 12 & 124 & 92.41 & 69.0 & 155 \\
\hline 13 & 147 & 85.65 & 70.5 & 155 \\
\hline 14 & 90 & 87.89 & 66.0 & 146 \\
\hline 5 & 96 & 86.54 & 68.0 & 135 \\
\hline 6 & 120 & 85.22 & 68.5 & 127 \\
\hline 17 & 102 & 94.51 & 73.5 & 178 \\
\hline 18 & 84 & 80.80 & 66.3 & 136 \\
\hline 19 & 86 & 88.91 & 70.0 & 180 \\
\hline 20 & 84 & 90.59 & 76.5 & 186 \\
\hline 21 & 134 & 79.06 & 62.0 & 122 \\
\hline 22 & 128 & 95.50 & 68.0 & 132 \\
\hline 23 & 102 & 83.18 & 63.0 & 114 \\
\hline 24 & 131 & 93.55 & 72.0 & 171 \\
\hline 25 & 84 & 79.86 & 68.0 & 140 \\
\hline 26 & 110 & 106.25 & 77.0 & 187 \\
\hline 27 & 72 & 79.35 & 63.0 & 106 \\
\hline 28 & 124 & 86.67 & 66.5 & 159 \\
\hline 29 & 132 & 85.78 & 62.5 & 127 \\
\hline 30 & 137 & 94.96 & 67.0 & 191 \\
\hline 31 & 110 & 99.79 & 75.5 & 192 \\
\hline 32 & 86 & 88.00 & 69.0 & 181 \\
\hline 33 & 81 & 83.43 & 66.5 & 143 \\
\hline 34 & 128 & 94.81 & 66.5 & 153 \\
\hline 35 & 124 & 94.94 & 70.5 & 144 \\
\hline 36 & 94 & 89.40 & 64.5 & 139 \\
\hline 37 & 74 & 93.00 & 74.0 & 148 \\
\hline & & & & \\
\hline
\end{tabular}
```

Coefficients:					
	Estimate	Std. Error	t value $\operatorname{Pr}(>\|\mathrm{t}\|)$		
(Intercept)	$1.114 \mathrm{e}+02$	$6.297 \mathrm{e}+01$	1.768	0.085979	.
Brain	$2.060 \mathrm{e}+00$	$5.634 \mathrm{e}-01$	3.657	0.000856	***
Height	$-2.732 \mathrm{e}+00$	$1.229 \mathrm{e}+00$	-2.222	0.033034	*
Weight	$5.599 \mathrm{e}-04$	$1.971 \mathrm{e}-01$	0.003	0.997750	

2.5\% vel=0.95)

```
> model <- 1m(PIQ ~ Brain + Height + Weight)
```

> model <- 1m(PIQ ~ Brain + Height + Weight)
> summary(mode1)
> summary(mode1)
cal1:
cal1:
1m(formula = PIQ ~ Brain + Height + Weight)
1m(formula = PIQ ~ Brain + Height + Weight)
Residuals:
Residuals:
Min
Min
Coefficients:
Coefficients:
(Intercept) -16.6190567 239.3262733
(Intercept) -16.6190567 239.3262733
Brain 0.9153051 3.2054285
Brain 0.9153051 3.2054285
Height -5.2304287 -0.2334296
Height -5.2304287 -0.2334296
Weight -0.3999266 0.4010465
Weight -0.3999266 0.4010465
signif. codes: 0 '***' 0.001 '**' 0.01 '%' 0.05 '.' 0.1 ' ' 1
signif. codes: 0 '***' 0.001 '**' 0.01 '%' 0.05 '.' 0.1 ' ' 1
Residual standard error: 19.79 on 34 degrees of freedom
Residual standard error: 19.79 on 34 degrees of freedom
Multiple R-squared: 0.2949, Adjusted R-squared: 0.2327
Multiple R-squared: 0.2949, Adjusted R-squared: 0.2327
F-statistic: 4.741 on 3 and 34 DF, p-value: 0.007215
F-statistic: 4.741 on 3 and 34 DF, p-value: 0.007215
Regression Equation:

```
Regression Equation:
```

$(\text { PIQ })_{1}=\boldsymbol{\beta}_{0}+\boldsymbol{\beta}_{1}$ (brain size) $+\boldsymbol{\beta}_{2}$ (height inches) $+\boldsymbol{\beta}_{3}$ (weight pounds)
\downarrow
$(P I Q)_{1}=111.4+2.06$ (brain size) -2.73 (height inches) +0.001 (weight pounds)

```
> data1 <-read.delim(file.choose(), header=T)
> data1 Brain Height weight
1
```



```
3
N 5
6
7
9
10124
11}1288107.95 70.0 151
```



```
14
15 96 86.54 68.0 135 (Intercept) 1.114e+02 6.297e+01 1.768 0.085979
llllllllllllll
17 102 94.51 73.5 178 Height -2.732e+00 1.229e+00 -2.222 0.033034 *
```



```
19
20
21 134
22 128
24 102 83.18
[rrrr
25 110
27
29 132
```



```
32
33
rrrrr
```



```
36
37
38
```

Min	1Q	Median	3Q	Max
-32.74	-12.09	-3.84	14.17	51.69

```
> model <- 1m(PIQ ~ Brain + Height + Weight)
```

> model <- 1m(PIQ ~ Brain + Height + Weight)
> summary (mode1)
> summary (mode1)
Coefficients:
Coefficients:
Estimate std. Error t value Pr (>|t|)
Estimate std. Error t value Pr (>|t|)
Weight 5.599e-04 1.971e-01 0.003 0.997750 Weight -0.3999266 0.4010465
Weight 5.599e-04 1.971e-01 0.003 0.997750 Weight -0.3999266 0.4010465
signif. codes: 0 '炏' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' }
signif. codes: 0 '炏' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' }
Residual standard error: 19.79 on 34 degrees of freedom
Residual standard error: 19.79 on 34 degrees of freedom
Multiple R-squared: 0.2949, Adjusted R-squared: 0.2327
Multiple R-squared: 0.2949, Adjusted R-squared: 0.2327
F-statistic: 4.741 on 3 and 34 DF, p-value: 0.007215
F-statistic: 4.741 on 3 and 34 DF, p-value: 0.007215
Regression Equation:
Regression Equation:
> confint(model1, conf.]eve]=0.95)
> confint(model1, conf.]eve]=0.95)
(Intercept) -16.6190567 239.3262733
(Intercept) -16.6190567 239.3262733
0.9153051 3.2054285
0.9153051 3.2054285
Height -2.732e+00 1.229e+00 -2.222 0.033034* Height -5.2304287 -0.2334296
Height -2.732e+00 1.229e+00 -2.222 0.033034* Height -5.2304287 -0.2334296
Weight 5.599e-04 1.971e-01 0.003 0.997750 Weight -0.3999266 0.4010465

```
Weight 5.599e-04 1.971e-01 0.003 0.997750 Weight -0.3999266 0.4010465
```



```
                                    \downarrow
    (PIQ)}=111.4+2.06 (brain size) -2.73 (height inches) +0.001 (weight pounds
```



```
> data1 <-read.delim(file.choose(), header=T)
> datal 
1
rrrrrrerrern
3
l
6
7
8
l10}12
```



```
12 124 92.41 
13 147 85.65
1 4 ~ 9 0 ~ 8 7 . 8 9 ~ 6 6 . 0 ~ 1 4 6 ~ E s t i m a t e ~ S t d . ~ E r r o r ~ t ~ v a l u e ~ P r ~ ( > \| t \| ) ~
15 96 86.54 68.0 
16 120
8 102 94.51 1.73.5 178 Height 
18
19
20
```



```
22 128
24 131
```



```
26 110 106.25 
```



```
28
```



```
30}137%\mp@code{94.96
31 110
32
33
34 128
35}1244,94.94 70.5 70.5 144 
36
37
38
l}\begin{array}{l}{> mode1 <- 1m(PIQ ~ Brain + Height + Weight)}\\{>> summary(mode1)}
> data1
```



```
Coefficients: > confint(model1, conf.1eve1=0.95)
Estimate std. Error t value Pr(>|t|) 2.5 % 97.5 %
(Intercept) 1.114e+02 6.297e+01 1.768 0.085979. (Intercept) -16.6190567 239.3262733
Brain 2.060e+00 5.634e-01 3.657 0.000856 *** Brain 0.9153051 3.2054285
Height -2.732e+00 1.229e+00 -2.222 0.033034* Height -5.2304287 -0.2334296
Weight 5.599e-04 1.971e-01 0.003 0.997750 Weight 0.4 -0.3999266 0.4010465
Residual standard error: 19.79 on 34 degrees of freedom
Multiple R-squared: 0.2949, Adjusted R-squared: 0.2327
F-statistic: 4.741 on 3 and 34 DF, p-value: 0.007215
Regression Equation:
```



```
                                    \downarrow
    (PIQ)}=111.4+2.06 (brain size) -2.73 (height inches) +0.001 (weight pounds
```


Which explanatory variables contribute the most

```
> Tibrary(car)
> Anova(mode1, type="III") # Adjusted (type III)
Anova Table (Type III tests)
Response: PIQ
(Intercept)
(Intercept) 1225.2 1 3.12700.0859785 .
Brain 5239.2 1 13.3716 0.0008556 ***
Height 1934.7 1
Weight 0.0 1
Residua1s 13321.8 34
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
```

*So far we don't know if the model with these three explanatory variables is the best model!
look at AICc and Partial F-Test

Choosing the Best Model

```
> mode1.1 = 1m(PIQ ~ Brain,
> model.2 = 1m(PIQ ~ Height,
> model.2 = 1m(PIQ ~ Height,
model 5 = 1m(PIQ ~ Brain + data=data1)
> model.6 = 1m(PIQ ~ Brain + Height + weight, data=data1)
> library(rcompanion)
Error in library(rcompanion) : there is no package called 'rcompanion'
> install.packages("rcompanion")
> library(rcompanion)
>
> compareLM(mode1.1, mode1.2, mode1.3, mode1.4, mode1.5, mode1.6)
$models
    Formula
    1 "PIQ ~ Brain"
    2 "PIQ ~ Height"
3 "PIQ ~ Weight
4 "PIO ~ Brain + Height"
    5 "PIQ ~ Brain + Weight
    6 "PIQ ~ Brain + Height + Weight'
    $Fit.criteria
    Rank Df.res AIC AICC BIC R.squared Adj.R.sq p.value shapiro.w
1 2 2 < 36 343.9 344.6 348.8 1.427e-01 0.11890 0.019350 0.9574
2 2 < 36 349.5 350.2 354.4 8.678e-03 -0.01886 0.578000 0.9415
3 2 36 349.8 350.5 354.7 6.311e-06 -0.02777 0.988100 0.9313
35 338.5 339.7 345.1 2.949e-01 0.25460 0.002208 0.9760
    6 4, 4, 34 340.5 342.4 348.7 2.949e-01 0.23270
    shapiro.p
    1 0.15620
    2 0.04687
    0.04687
        0.02211
        0.57640
        0.61510
        0.57580
```

Akaike Information Criterion (AIC) Schwarz Bayesian Information Criterion (BIC)

- BIC is more harsh
- AICc is used for smaller sample size
- Smaller values indicate better models

Reduced Model (Model 4) seems to be a better fit in comparison to the Full Model (Model 5)

Partial F Test

$$
F_{\text {stat }}=\frac{(\text { SSE }(\text { Reduced. Model })-\operatorname{SSE}(\text { Full. Model })) /(\text { Change in \# of Parameters })}{\operatorname{MSE}(\text { Full) })}
$$

If $\mathrm{F}_{\text {stat }}$ is large and significant, there is a large difference between the two models -> use full model
If $\mathrm{F}_{\text {stat }}$ is small or not significant, models do not differ greatly -> use reduced model

Partial F Test

$F_{\text {stat }}=($ SSE(Reduced. Model) - SSE(Full. Model) $) /($ Change in \# of Parameters)
 MSE(Full)

If $\mathrm{F}_{\text {stat }}$ is large and significant, there is a large difference between the two models -> use full model
If $\mathrm{F}_{\text {stat }}$ is small or not significant, models do not differ greatly -> use reduced model

Partial F Test
> anova(reduced.mode11, mode11)
Analysis of variance Table

```
Mode1 1: PIQ ~ Brain + Height
```

Model 2: PIQ ~ Brain + Height + Weight
Res. Df RSS Df Sum of Sq $\mathrm{F} \operatorname{Pr}(>F)$
1
3513322
$3413322 \quad 10.0031633 \quad 0 \quad 0.9977$
>

RSS is identical, $F=0, p>0.1$

Partial F Test

$F_{\text {stat }}=($ SSE (Reduced. Model) - SSE(Full. Model) $) /($ Change in \# of Parameters $)$
 MSE(Full)

If $\mathrm{F}_{\text {stat }}$ is large and significant, there is a large difference between the two models -> use full model
If $\mathrm{F}_{\text {stat }}$ is small or not significant, models do not differ greatly -> use reduced model

Partial F Test

> anova(reduced.mode11, mode11)
Analysis of Variance Table

```
Model 1: PIQ ~ Brain + Height
```

Model 2: PIQ ~ Brain + Height + Weight
Res. Df RSS Df Sum of Sq $\mathrm{F} \operatorname{Pr}(>\mathrm{F})$
1
$\begin{array}{llllll}1 & 35 & 13322 & & 34 & 13322\end{array} 10.0031633 \quad 0 \quad 0.9977$
$>$

RSS is identical, $\mathrm{F}=0, \mathrm{p}>0.1$

Reduced Model without Weight
> reduced.model1 <- Im(PIQ ~ Brain + Height)
$>$ summary(reduced. model1)
Call:
1 m (formula = PIQ \sim Brain + Height)

$$
\begin{array}{lrlrr}
\text { Residuals: } \\
\text { Min } & 10 & \text { Median } & 3 Q & \text { Max } \\
-32.750 & -12.090 & -3.841 & 14.174 & 51.690
\end{array}
$$

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	111.2757	55.8673	1.992	0.054243	
Brain	2.0606	0.5466	3.770	0.000604	
Height	-2.7299	0.9932	-2.749	0.009399	

Residual standard error: 19.51 on 35 degrees of freedom Multiple R-squared: 0.2949, Adjusted R-squared: 0.2546 F-statistic: 7.321 on 2 and 35 DF, p-value: 0.002208

Partial F Test

$F_{\text {stat }}=(\operatorname{SSE}($ Reduced. Model $)-\operatorname{SSE}($ Full. Model) $) /($ Change in \# of Parameters $)$
 MSE(Full)

If $\mathrm{F}_{\text {stat }}$ is large and significant, there is a large difference between the two models -> use full model
If $\mathrm{F}_{\text {stat }}$ is small or not significant, models do not differ greatly -> use reduced model

Partial F Test

> anova(reduced.mode11, mode11)
Analysis of variance Table

```
Model 1: PIQ ~ Brain + Height
```

Model 2: PIQ ~ Brain + Height + Weight
Res. Df RSS Df Sum of Sq F Pr ($>\mathrm{F}$)
$1 \quad 3513322$
$\begin{array}{llllll}2 & 34 & 13322 & 1 & 0.0031633 & 0\end{array} 0.9977$
$>$
RSS is identical, $\mathrm{F}=0, \mathrm{p}>0.1$
$(\mathrm{PIQ})_{\mid}=111.3+2.06$ (brain size)
-2.73 (height inches)

Reduced Model without Weight
> reduced.model1 <- Im(PIQ ~ Brain + Height)
$>$ summary(reduced. model1)
Call:
1 m (formula = PIQ \sim Brain + Height)

$$
\begin{array}{lrlrr}
\text { Residuals: } \\
\text { Min } & 10 & \text { Median } & 3 Q & \text { Max } \\
-32.750 & -12.090 & -3.841 & 14.174 & 51.690
\end{array}
$$

	Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$				
(Intercept)	111.2757	55.8673	1.992	0.054243	
Brain	2.0606	0.5466	3.770	0.000604	***
Height	-2.7299	0.9932	-2.749	0.009399	

Residual standard error: 19.51 on 35 degrees of freedom Multiple R-squared: 0.2949, Adjusted R-squared: 0.2546 F-statistic: 7.321 on 2 and 35 DF, p-value: 0.002208

Visualize Data with 2 Explanatory Variables

Visualize Data with 2 Explanatory Variables

> Library (rg1)
> plot3d(Brain, Height, PIQ, col="red", size=3)

Brain

Path Analysis

Includes all correlations and all supposed causal links

Can account for unexplained causes that might affect the response variable, variables we have not yet measured (U)

Regression Model Analysis

Tests for linear association in a simple regression model

- Two primary methods:
- t-test for the slope
- Used to test whether a slope is positive or negative.
- Analysis of Variance test (ANOVA) F-test
- Useful for testing whether or not the slope $=0$

t-test for slope

$$
t^{*}=\frac{b_{1}-\beta}{\left(\frac{\sqrt{M S X}}{\sqrt{\sum\left(x_{1}-x^{ \pm}\right.}}\right)}=\frac{b_{1}-\beta}{s e\left(b_{1}\right)}
$$

$$
\text { Null hypothesis } H_{0}: \beta_{1}=\text { some number } \beta
$$

Alternative hypothesis $H_{\mathrm{A}}: \beta_{1} \neq$ some number β

- The resulting t-statistic obtained from the above formula is used to calculate the P -value. The P -value is determined by referring to a t-distribution with n -2 degrees of freedom.

ANOVA F-test

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(y_{i}-y\right)^{2}=\sum_{-1}^{n}\left(y_{i}-y\right)^{2}+\sum_{1=1}^{n}\left(y_{i}-y_{i}\right)^{2} \\
& \text { SSTO } \\
& \text { Tlotal sum of squards } \\
& \text { SSR } \\
& \text { Fiogrosaion zum of squanes } \\
& \text { SSE } \\
& \text { Error sum of squaris } \\
& S S T O=S S R+S S E
\end{aligned}
$$

ANOVA F-test

the null hypothesis $H_{0}-\beta_{1}=0$
against the alternative hypothesis $H_{\mathrm{A}}: \beta_{1} \neq 0$.

These values help test the null and alternative hypotheses:

$$
M S R=\frac{\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}}{1}=\frac{S S R}{1} \quad M S E=\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}=\frac{S S E}{n-2}
$$

$$
F^{*}=\frac{M S R}{M S E}
$$

Simple Linear Regression assumptions - LINE

- Linearity (L): The mean of the response of a sample population at each value of the predictor value Xi is a linear function of Xi
- Independence (I): The errors at each predictor value are independent
- Normally distributed (N): The errors at each predictor value are normally distributed
- Equal variance (E): The errors at each predictor value have equal variances

Assessing Linearity (L)

- Visual inspection
- Residuals vs Fit (estimated values) plot
- This can also be a good check for equal variances and outliers
- Residuals vs Predictor is a similar plot, but can help assess whether a new, additional predictor can make the model better

$$
\text { Residuals: } \quad e_{i}=y_{i}-\dot{y}_{i}
$$

Assessing Linearity - Example: alcohol consumption vs muscle strength (Marquez et al, 1989)

Source: https://onlinecourses.science.psu.edu/stat501/node/277

Assessing Linearity - What a non-linear plot looks like

Source: https://onlinecourses.science.psu.edu/stat501/node/279

Assessing Independence (I)

- Residuals vs Order plot
- NB: This test can only be performed for data collected in an ordered or numbered fashion.
- A scatter plot with the residuals on the y axis and order in which the data were collected on the x axis.

Assessing Independence - What to look for when error shows no independence

Positive serial correlation:
Negative serial correlation:

Source: https://onlinecourses.science.psu.edu/stat501/node/280

Assessing Normal Distribution

- Normal probability plot of residuals is used where a plot of the theoretical percentiles of the normal distribution vs the the observed sample percentiles is plotted.
- This resulting plot should be linear.

Assessing Error Variance - what an unequal variance looks like on a residual vs fits plot

Example of a fanning scatter plot:

Source: https://onlinecourses.science.psu.edu/stat501/node/279

Data Transformation

- If the data presented does not adhere to the SLR model, a number of approaches can be considered:
- Omitting predictor variables to improve the model.
- If the mean of the response is not a linear function of the predictors, a different function can be used. Eg: Polynomial regression or Log transformation
- If there are unequal variances, use the "weighted least squares regression" to transform response and/or predictor variables
- If an outlier exists, use "robust estimation procedure"
- If error terms are not independent, try a "time series model".

Data Transformation: Transforming predictor values (X) only

- Transforming Predictor values is usually performed when nonlinearity is the ONLY problem; All other assumptions must hold true after transformation

Eg: Proportion of words recalled vs time:

Regression Model:
Residual vs Fit:

Source: https://onlinecourses.science.psu.edu/stat501/node/319

Data Transformation: Transforming predictor values (X) only

- Transforming Predictor values is usually performed when nonlinearity is the ONLY problem; All other assumptions must hold true after transformation

Taking the natural log of predictor value (time)

time	prop	Intime
1	0.84	0.00000
5	0.71	1.60944
15	0.61	2.70805
30	0.56	3.40120
60	0.54	4.09434
120	0.47	4.78749
240	0.45	5.48064
480	0.38	6.17379
720	0.36	6.57925
1440	0.26	7.27240
2880	0.20	7.96555
5760	0.16	8.65869
10080	0.08	9.21831

Data Transformation: Transforming response values (Y) only

- Transforming response values is usually performed when nonnormality and/or unequal variances are the problem; All other assumptions must hold true after transformation

Eg: Gestation length vs birthweight:

Data Transformation: Transforming response values (Y) only

- Transforming response values is usually performed when nonnormality and/or unequal variances are the problem; All other assumptions must hold true after transformation

Take the natural log of response value (gestation time):

Mammal	Birthwgt	Gestation	InGest
Goat			
	2.75	155	5.04343
Sheep	4.00	175	5.16479
Deer	0.48	190	5.24702
Porcupine	1.50	210	5.34711
Bear	0.37	213	5.36129
Hippo	50.00	243	5.49306
Horse	30.00	340	5.82895
Camel	40.00	380	5.94017
Zebra	40.00	390	5.96615
Giraffe	98.00	457	6.12468
Elephant	113.00	670	6.50728

Source: https://onlinecourses.science.psu.edu/stat501/node/320

Data Transformation: Transforming both predictor and

 response values- Transforming response values is usually performed when non-normality and/or unequal variances as well as non-linearity are the problem.

Eg: Tree volume vs diameter (Schumacher et al, 1935):
Regression model:
Residuals vs fit:

Source: https://onlinecourses.science.psu.edu/stat501/node/321

Eg: Tree volume vs diameter (Schumacher et al, 1935):

Eg: Tree volume vs diameter
 (Schumacher et al, 1935):

Transforming predictor values only:

Diameter	Volume	InDiam
4.4	2.0	1.48160
4.6	2.2	1.52606
5.0	3.0	1.60944
5.1	4.3	1.62924
5.1	3.0	1.62924
5.2	2.9	1.64866
5.2	3.5	1.64866
5.5	3.4	1.70475
5.5	5.0	1.70475
5.6	7.2	1.72277
5.9	6.4	1.77495
5.9	5.6	1.77495
7.5	7.7	2.01490
7.6	10.3	2.02815

Eg: Tree volume vs diameter (Schumacher et al, 1935):

Transforming predictor values only:

Eg: Tree volume vs diameter Transtorming both prefRecthutmanteeareet al, 1935):

Diameter	Volume	InDiam	InVol
4.4	2.0	1.48160	0.69315
4.6	2.2	1.52606	0.78846
5.0	3.0	1.60944	1.09861
5.1	4.3	1.62924	1.45862
5.1	3.0	1.62924	1.09861
5.2	2.9	1.64866	1.06471
5.2	3.5	1.64866	1.25276
5.5	3.4	1.70475	1.22378
5.5	5.0	1.70475	1.60944
5.6	7.2	1.72277	1.97408
5.9	6.4	1.77495	1.85630
5.9	5.6	1.77495	1.72277
7.5	7.7	2.01490	2.04122
7.6	10.3	2.02815	2.33214

Source:

https://onlinecourses.science.
psu.edu/stat501/node/321

Eg: Tree volume vs diameter (Schumacher et al, 1935):

Transforming both predictor and response values:

Source:
https://onlinecours
es.science.psu.ed u/stat501/node/32

Polynomial Regression

- The scatter plot of residuals vs predictor may suggest a non-linear relationship. Polynomial regression may be a more suitable model for the data.

$$
Y=\beta_{0}+\beta_{1} X+\beta_{2} X^{2}+\ldots+\beta_{h} X^{h}+\varepsilon \quad \mathrm{h}=\text { degree of the polynomial }
$$

Polynomial regression guidelines:

1. The fitted model is more reliable when the sample size is large
2. Do not extrapolate beyond the limit of the observed values
3. Be aware of statistical overflow when trying to incorporate higher degree terms
4. Use practical significance vs statistical significance

Polynomial Regression - Example

- How is the length of a bluegill fish related to its age? (Cook and Weisberg, 1999)

$$
y_{i}=\left(\beta_{0}+\beta_{1} x_{i}+\beta_{11} x_{i}^{2}\right)+\epsilon_{i}
$$

Source: https://onlinecourses.science.psu.edu/stat501/node/325

