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Before we get to nonparametric statistics, 

what are parametric statistics? 

 These statistics estimate and test population means, while 

holding certain assumptions about the distribution of the 

population where the sample data come from 

 These assumptions include: 

Normally distributed population 

No outliers 

 Large sample sizes 

Random independent samples 

 Interval or ratio measurements 

Homogeneity of variance 

 

 

 



What happens when our data violate 

these assumptions? 

 

1. Ignore the violations  

2. Transform the data 

3. Permutation test 

4. Choose a nonparametric test as an 

alternative  



What are Nonparametric Statistics? 

Compared with parametric statistics, they: 

 

Make fewer assumptions 

Rank data to replace actual numerical values 

Do not rely upon parameter estimations, as 

parametric statistics do. 

 

 

 



Why not use only nonparametric 

statistics?  

 

 

 

 

 

 

 

They are conservative 

Less statistical power than parametric tests 

More likely to produce type II errors 

 

 



How to determine if data violate normality 

assumption 

1.Plot histogram 

 

Normal Non-normal 



How to determine if data violate normality 

assumption 

2. Plot density plot 

Normal Non-normal Paranormal 



How to determine if data violate normality 

assumption 

 

3. Formal statistical tests 

 I.e. Shapiro Wilk Test 

 

Estimates mean and standard deviation of sample 
population, then tests goodness of fit to data of normal 
distribution with the same mean and standard 
deviation 

 

In R- shapiro.test(x) 



Parametric Tests and their Nonparametric 

alternatives 

Parametric Nonparametric 

One-way (independent) ANOVA Kruskal-Wallis test 

One-way repeated measures 

ANOVA 

Friedman test 

Pearson Product-Moment 

Correlation 

Spearman’s Rank-Order 

Correlation 

Paired samples t-test The Sign test 

Two sample t-test Mann-Whitney U test 

When parametric assumptions not met, use corresponding 

nonparametric test: 

 



Analysis of Variance: A (very) Brief Review 

Comparison of three or more means; 

Partitions and compares variability – within group 

variation and between group variation; 

Assumptions: 

k independent samples (not 

necessarily equal) taken from… 

k normally distributed 

populations 

with equal variance 



Kruskal-Wallis: A Nonparametric Alternative 

No assumption of normality; however, the following 

assumptions do apply: 

1. Completely randomized design (i.e. 

subjects/organisms are randomly assigned to 

treatments) 

2. Distributions of the treatments have approximately 

the same shape and the same spread 



Kruskal-Wallis: A Nonparametric Alternative 

Unlike analysis of variance, observations are ranked 

relative to one another across the different trials: 

59   62   81   65   87   42   31  



Kruskal-Wallis: A Nonparametric Alternative 

Unlike analysis of variance, observations are ranked 

relative to one another across the different trials: 

59(3)  62(4)  81(6)  65(5)  87(7)  42(2)  31(1)  

59(1)  62(2.5) 62(2.5) 71(3)  

[2 + 3 / 2 = 2.5] 



Kruskal-Wallis: A Nonparametric Alternative 

𝐻0: treatment medians are equal (i.e. md1 = md2… = mdk) 

𝐻𝑎: not all medians are equal (i.e. at least one md ≠) 

 

Test statistic: 

𝐻 =
12

𝑛(𝑛 + 1)
 
𝑇𝑅𝑖
2

𝑛𝑖

𝑘

𝑖=1

− 3(𝑛 + 1) 

where 𝑇𝑅𝑖 is the sum of the ranks assigned to observations 

in treatment i. 𝐻𝑂 is rejected if 𝐻 > 𝜒𝛼
2(k -1) 



Kruskal-Wallis: A Nonparametric Alternative 

Example: 

1. Students are randomly assigned to four different treatment groups 
(different teaching techniques), and test scores are measured 

2. Distributions of the four treatments have approximately the same 
shape and the same spread. 

 I II III IV 

65 75 59 94 

87 69 78 89 

73 83 67 80 

79 81 62 88 

81 72 83 

69 79 76 

90 

n = 6 n = 7 n = 6 n = 4 



Kruskal-Wallis: A Nonparametric Alternative 

Example: 

1. Students are randomly assigned to four different treatment groups 
(different teaching techniques), and test scores are measured 

2. Distributions of the four treatments have approximately the same 
shape and the same spread. 

 I II III IV 

65 (3) 75 (9) 59 (1) 94 (23) 

87 (19) 69 (5.5) 78 (11) 89 (21) 

73 (8) 83 (17.5) 67 (4) 80 (14) 

79 (12.5) 81 (15.5) 62 (2) 88 (20) 

81 (15.5) 72 (7) 83 (17.5) 

69 (5.5) 79 (12.5) 76 (10) 

90 (22) 

n = 6 n = 7 n = 6 n = 4 

𝑻𝑹𝟏 = 𝟔𝟑. 𝟓 𝑻𝑹𝟐 = 𝟖𝟗 𝑻𝑹𝟑 = 𝟒𝟓. 𝟓 𝑻𝑹𝟒 = 𝟕𝟖 



Kruskal-Wallis: A Nonparametric Alternative 

Example: 

1. Students are randomly assigned to four different treatment groups 
(different teaching techniques), and test scores are measured 

2. Distributions of the four treatments have approximately the same 
shape and the same spread. 

 

𝐻 =
12

𝑛(𝑛 + 1)
 
𝑇𝑅𝑖
2

𝑛𝑖

𝑘

𝑖=1

− 3(𝑛 + 1) 

𝐻 =
12

23(24)

63.5 2

6
+
89 2

7
+
45.5 2

6
+
78 2

4
− 3(24) 

𝐻 = 7.78 



Kruskal-Wallis: A Nonparametric Alternative 

Example: 

1. Students are randomly assigned to four different treatment groups 
(different teaching techniques), and test scores are measured 

2. Distributions of the four treatments have approximately the same 
shape and the same spread. 

 

𝑯𝑶 is rejected if 𝑯 > 𝝌𝜶
𝟐(k -1) 

H 𝜒0.10
2 (3) 

7.78 6.25 



Kruskal-Wallis: A Nonparametric Alternative 

Example: 

1. Students are randomly assigned to four different treatment groups 
(different teaching techniques), and test scores are measured 

2. Distributions of the four treatments have approximately the same 
shape and the same spread. 

 

Thus, since H = 7.78 > 6.25, one should reject 𝐻𝑜and 
conclude that at 10% level of significance, there is 
evidence to say that the four teaching techniques 
differ. 

 



Kruskal-Wallis: A Nonparametric Alternative 

Example (in R): 

1. Students are randomly assigned to four different treatment groups 
(different teaching techniques), and test scores are measured 

2. Distributions of the four treatments have approximately the same 
shape and the same spread. 

 



Kruskal-Wallis: A Nonparametric Alternative 

Example (in R): 

1. Students are randomly assigned to four different treatment groups 
(different teaching techniques), and test scores are measured 

2. Distributions of the four treatments have approximately the same 
shape and the same spread. 

 



Kruskal-Wallis: A Nonparametric Alternative 

Example: 

1. Students are randomly assigned to four different treatment groups 
(different teaching techniques), and test scores are measured 

2. Distributions of the four treatments have approximately the same 
shape and the same spread. 

 

Again, since p ≈ 0.05 one should reject 𝐻𝑜and conclude 

that at 10% level of significance, there is evidence to 

say that the four teaching techniques differ. 

 



Friedman Test: A Nonparametric Alternative 

No assumption of normality; however, the following 

assumptions do apply: 

1. One group is measured on three or more different 

occasions  

2. Group is a random sample of the population 

3. Dependent variable is ordinal (e.g. 10-point scale) 

or continuous 

 



Friedman Test: A Nonparametric Alternative 

Like the Kruskal-Wallis test, observations are ranked 

relative to one another across the different trials: 

Patient Treatment 1 Treatment 2 Treatment 3 

1 209 88 109 

2 412 388 142 

3 315 451 155 

4 389 325 121 

5 210 126 75 

6 136 118 49 

7 178 227 101 

n = 7 



Friedman Test: A Nonparametric Alternative 

Like the Kruskal-Wallis test, observations are ranked 

relative to one another across the different trials: 

Patient Treatment 1 Treatment 2 Treatment 3 

1 209 (3) 88 (1) 109 (2) 

2 412 (3) 388 (2) 142 (1) 

3 315 (2) 451(3) 155 (1) 

4 389 (3) 325 (2) 121 (1) 

5 210 (3) 126 (2) 75 (1) 

6 136 (3) 118 (2) 49 (1) 

7 178 (2) 227 (3) 101 (1) 

n = 7 19 15 8 



Friedman Test: A Nonparametric Alternative 

𝐻0: treatment medians are equal (i.e. md1 = md2… = mdk) – identical    
 effects 

𝐻𝑎: not all medians are equal (i.e. at least one md ≠) – different effects 

 

Test statistic: 

where N = # subjects, k = # of trials, and R = the total ranks for 

each column. 𝐻𝑂 is rejected if 𝐹𝑀 > 𝐹𝑀𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒* 

𝐹𝑀 =
12

𝑁 ∙ 𝑘 ∙ 𝑘 + 1
∙ 𝑅2 − 3 ∙ 𝑁 ∙ 𝑘 + 1  

* If your k is over 5, or your n is over 13, use the chi square critical value table 



Friedman Test: A Nonparametric Alternative 

𝐻0: treatment medians are equal (i.e. md1 = md2… = mdk) – identical    
 effects 

𝐻𝑎: not all medians are equal (i.e. at least one md ≠) – different effects 

 

𝐹𝑀 =
12

𝑁 ∙ 𝑘 ∙ 𝑘 + 1
∙ 𝑅2 − 3 ∙ 𝑁 ∙ 𝑘 + 1  

𝐹𝑀 =
12

7 ∙ 3 ∙ 3 + 1
∙ 192 + 152 + 82 − 3 ∙ 7 ∙ 3 + 1  

𝐹𝑀 = 8.86 



Friedman Test: A Nonparametric Alternative 

𝑯𝑶 is rejected if 𝑭𝑴 > 𝑭𝑴𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 𝒗𝒂𝒍𝒖𝒆 

FM 𝐹𝑀𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 

8.86 7.14 

𝐻0: treatment medians are equal (i.e. md1 = md2… = mdk) – identical    
 effects 

𝐻𝑎: not all medians are equal (i.e. at least one md ≠) – different effects 

 



Friedman Test: A Nonparametric Alternative 

Thus, since FM = 8.86 > 7.14 , one should reject 𝐻𝑜and 

conclude that at 5% level of significance, there is 

evidence to say that the three treatment effects differ. 

 

𝐻0: treatment medians are equal (i.e. md1 = md2… = mdk) – identical    
 effects 

𝐻𝑎: not all medians are equal (i.e. at least one md ≠) – different effects 

 



Friedman Test: A Nonparametric Alternative 

𝐻0: treatment medians are equal (i.e. md1 = md2… = mdk) – identical    
 effects 

𝐻𝑎: not all medians are equal (i.e. at least one md ≠) – different effects 

 



Friedman Test: A Nonparametric Alternative 

𝐻0: treatment medians are equal (i.e. md1 = md2… = mdk) – identical    
 effects 

𝐻𝑎: not all medians are equal (i.e. at least one md ≠) – different effects 

 



Spearman’s Rank-Order Correlation 

When to use?? 

Nonparametric version of the Pearson 

product-moment correlation 

Spearman’s correlation coefficient (ρ or 𝑟𝑠) 
measures strength and direction of 

association between two ranked variables 



Spearman’s Rank-Order Correlation 

Assumptions?? 

1. Need two variables that are either ordinal, 

interval, or ratio 

2. Although Pearson product-moment correlation 

would likely be used on interval or ratio data as 

well, use Spearman when Pearson’s 

assumptions are violated 

3. Observations are independent 



Spearman’s Rank-Order Correlation 

What are Pearson’s assumptions? 

1. Variables are interval or ratio measurements 

2. Variables are approximately normally distributed 

3. Possibility of a linear relationship 

4. Outliers are few or removed 

5. Homoscedasticity of the data – variance along 

the line of best fit remains the same 



Spearman’s Rank-Order Correlation 

So what’s the difference? 

Spearman’s correlation determines the 

strength and direction of the monotonic 

relationship between the two variables, 

rather than… 

The strength and direction of the linear 

relationship between them, as in Pearson’s 

correlation 

 



Spearman’s Rank-Order Correlation 

statistics.laerd.com 
Monotonicity 

But monotonicity is not strictly an assumption – you can 

run Spearman’s correlation on a non-monotonic 

relationship to determine if there is a monotonic 

component 



Spearman’s Rank-Order Correlation 

Steps in calculating Spearman’s Correlation 

Coefficient 

• Start with your table of data values, pairing the 

corresponding values with their observation (e.g. 

Student 1 got 75% in English, and 70% in Math) 

Student English grade Math grade 

1 75 70 

2 87 95 

3 64 70 

4 42 53 

5 93 86 

6 75 60 



Spearman’s Rank-Order Correlation 

Steps in calculating Spearman’s Correlation 

Coefficient 

English grade Math grade English rank Math rank 

75 70 

87 95 

64 70 

42 53 

93 86 

75 60 

• To rank the data, you first have to rearrange your 

table… 



Spearman’s Rank-Order Correlation 

Steps in calculating Spearman’s Correlation 

Coefficient 

English grade Math grade English rank Math rank 

75 70 3.5 3.5 

87 95 2 1 

64 70 5 3.5 

42 53 6 6 

93 86 1 2 

75 60 3.5 5 

• Rank both variables, but separately 

• Take the average rank of two values when they are 

tied 

• Rank highest to lowest 



Spearman’s Rank-Order Correlation 

Steps in calculating Spearman’s Correlation 

Coefficient 

English grade Math grade English rank Math rank 

78 72 3 3 

87 95 2 1 

64 69 5 4 

42 53 6 6 

93 86 1 2 

74 60 4 5 

• For now let’s use different data that have no ties 



Spearman’s Rank-Order Correlation 

Steps in calculating Spearman’s Correlation 

Coefficient 
• There are two methods to calculate Spearman’s 

correlation depending on whether: 

1. Data do not have tied ranks 

 

 

 

 

2. Data do have tied ranks (modified Pearson’s equation) 

 

 

 

 

ρ = 1 −
6Σ𝑑𝑖
2

𝑛(𝑛2−1)
, where di = difference in paired ranks 

and  

n = number of cases 

𝜌 =  
Σ𝑖 𝑥𝑖−x̄ (𝑦𝑖−ȳ)

Σ𝑖(𝑥𝑖−x̄)²Σ𝑖(𝑦𝑖−ȳ)²
, where i = paired score 



Spearman’s Rank-Order Correlation 

Steps in calculating Spearman’s Correlation 

Coefficient 

• Now add two more columns: one for d and one for 

d² 

English 

grade 

Math 

grade 

English 

rank 

Math rank d d² 

78 72 3 3 0 0 

87 95 2 1 1 1 

64 69 5 4 1 1 

42 53 6 6 0 0 

93 86 1 2 1 1 

74 60 4 5 1 1 



Spearman’s Rank-Order Correlation 

Steps in calculating Spearman’s Correlation 

Coefficient 

• Then calculate Σ𝑑𝑖
2 

= 4 

English 

grade 

Math 

grade 

English 

rank 

Math rank d d² 

78 72 3 3 0 0 

87 95 2 1 1 1 

64 69 5 4 1 1 

42 53 6 6 0 0 

93 86 1 2 1 1 

74 60 4 5 1 1 

d = difference between the ranks 



Spearman’s Rank-Order Correlation 

Steps in calculating Spearman’s Correlation 

Coefficient 

ρ = 1 −
6Σ𝑑𝑖
2

𝑛(𝑛2 − 1)
 

English 

grade 

Math 

grade 

English 

rank 

Math rank d d² 

78 72 3 3 0 0 

87 95 2 1 1 1 

64 69 5 4 1 1 

42 53 6 6 0 0 

93 86 1 2 1 1 

74 60 4 5 1 1 

d = difference between the ranks 

Σ𝑑𝑖
2 = 4 

𝑛 = 6 
ρ = 0.8857 



Spearman’s Rank-Order Correlation 

Steps in calculating Spearman’s Correlation 

Coefficient 

What values can Spearman correlation 

coefficient, 𝑟𝑠 (or ρ) take? 

 Values from +1 to -1 

 𝑟𝑠 of +1 indicates perfect association of 

ranks 

 𝑟𝑠 of 0 indicates no association between 

ranks 

 𝑟𝑠 of -1 indicates perfect negative 

association of ranks 



Spearman’s Rank-Order Correlation 

Steps in calculating Spearman’s Correlation 

Coefficient 

What does this mean for our example? 

ρ = 0.8857 Indicates very strong, positive 

association of the ranks 



Spearman’s Rank-Order Correlation 

How you report Spearman’s correlation 

coefficient depends on whether or not you’ve 

determined the statistical significance of the 

coefficient 

 Without the significance test:  

 ρ = 0.89 or 𝑟𝑠 = 0.89 

 With significance test: 

 ρ(4) = 0.89, P = P-value 

 

…where df = N-2, where N = number of pairwise 

cases 



Spearman’s Rank-Order Correlation 

… in R 

 

• Make Excel spreadsheet of data 

• Save as “.csv” file 

• Then… 



Spearman’s Rank-Order Correlation 

… in R 

 

 

• Name dataframe 

• Note the column title 

names 



Spearman’s Rank-Order Correlation 

… in R 

 

 

 

 

 

 

 

 

 

Yep, ρ = 0.8857 

 



Spearman’s Rank-Order Correlation 

… in R 

 

 

 

cor(dataframe$column1, dataframe$column2, 

method = “spearman”) 

 

 

At the end, before the bracket, you can also add 

“…spearman”, use=“pairwise.complete.obs”) if 

you’re not sure that all x’s have y’s and vice versa 

 



Spearman’s Rank-Order Correlation 

… in R 

 

If you want to test significance of your ρ… 

 

cor.test(dataframe$column1, dataframe$column2, 

method=“spearman”, use=“pairwise.complete.obs”, 

exact=FALSE 

 



Spearman’s Rank-Order Correlation 

Null hypothesis: 

𝐻0 : There is no [monotonic] association 

between English grades and Math grades  

(ρ = 0) 

 

*Statistical significance does not indicate the 

strength of Spearman’s correlation. Using α=0.05 

and getting a significant P-value means there is a 

<5% chance that the strength of the relationship 

happened by chance; i.e. that the null hypothesis 

is true. 



Two sample T-test: A brief review 

 

 Used to compare two means 

  tests H0  that means from two independent groups are 

equal, H0 : u1=u2 

 

 Assumes that : 

1. Both populations have normal distribution 

2. Random samples from population 

3. Both populations have similar standard deviation and variance 

 

 

 

 



The Mann-Whitney U: A nonparametric 

alternative 

 

Compares two independent samples 

 

Ranks data 

Changes data from interval ->ordinal 

 

Tests whether there is a difference between 

medians of both populations 

 

 

 



Mann-Whitney U 

Assigning ranks allows us to discard normality 

assumption. However, test does assume:  

       

1. Random samples  

2. Independence of observations  

3. Distribution of both samples have the same 

shape  



Calculating Mann-Whitney U 

Where: 

𝑛1  and 𝑛2 = Sample size of each group 

 

𝑅1 and 𝑅2 = Rank sums for each treatment 

 
𝑈1  𝑎𝑛𝑑  𝑈2  = Mann Whitney U test statistics 

 
 

 

              𝑈2  = 𝑛1 𝑛2  - 𝑈1 



Mann-Whitney U 

 Red maple tree (Acer rubrum) seeds are allowed to germinate and grow 

for three weeks in two different types of soil. Growth progress for each 

seedling was measured as follows: 

Consider this example: 

Height of seedlings (mm) grown in silt 

soil 

Height of seedlings (mm) grown 

in peat soil 

10 12.2 

10.5 11.7 

13.2 12.4 

19.7 15.7 

16.6 22.8 

23 24.5 

26.4 27 

45.3 41 

62 

  𝑛1 =8 𝑛2  =9 



Mann-Whitney U 
First, see if distributions of both groups have the same shape 
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Seedling growth (mm) 

Peat soil 
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Silt soil 

• Both frequency distributions 

are not normal, but they have 

similar shapes; both show a 

positive skew. 

 



Mann-Whitney U 

𝐻0 = The two samples are equal 

 The seedlings grown in either soil type do not differ in 
growth height  

 

 

 

 

Hypotheses 

𝐻1 = The two samples are not equal 

The seedlings grow taller in one type of soil than the 
other 

 

Our null hypothesis is rejected if calculated U test 
statistic ≥ critical value for U (𝛼 = 0.05) 
 



Mann-Whitney U 
Steps in calculating Mann-Whitney U test statistic 

 Look at all data points combined and rank from smallest to largest 
Silt soil Peat soil Rank for silt soil Rank for peat 

soil 

10 12.2 1 4 

10.5 11.7 2 3 

13.2 12.4 6 5 

19.7 15.7 9 7 

16.6 22.8 8 10 

23 24.5 11 12 

26.4 27 13 14 

45.3 41 16 15 

62 17 

𝑛1 =8 𝑛2  =9  

 

Rank 

Sums for 

each 

group 
𝑹𝟏 = 𝟔𝟔 𝑹𝟐 = 87 



Mann-Whitney U 
Steps in calculating Mann-Whitney U test statistic 

 Plug in our sample sizes and rank sums to calculate 𝑈1, and then 𝑈2 

      = 8(9) + 
8(8+1)

2
 - 66  

      

      =42 

𝑈2  = 𝑛1 𝑛2  - 𝑈1 
      

 = 8(9)- 46 

  

 =30 

Now, select 

the larger of 

𝑈1 and 𝑈2 as 

your test 

statistic 



Mann-Whitney U 
Steps in calculating Mann-Whitney U test statistic 

 Consult table of critical values and compare calculated U to critical value 

𝛼 = 0.05 

𝑈1= 42 < 𝑈𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙= 57 



Mann-Whitney U 
Conclusions 

 

 

 Thus, our calculated U is less than the 

critical value, so we cannot reject the 

null hypothesis at 5% significance level. There is not 

enough evidence to suggest growth progress is 

significantly different in the two types of soil.  

𝑈1= 42 < 𝑈𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙= 57 



Wilcoxon Mann-Whitney U 
Example in SAS 

1. Load data into SAS 



Wilcoxon Mann-Whitney U 
Example in SAS 

2. Run NPAR1WAY, with the option Wilcoxon 



Wilcoxon Mann-Whitney U 
Example in SAS 

3. Interpret output of test 

The p-value =0.6058, since p-value is larger 

than 0.05, we conclude again that the 

growth rate between both treatments are 

not significantly different. 



One sample T-test: A brief review 

Tests the null hypothesis that the mean of 

observations is the same as known/hypothesized 

value 

 

This test assumes: 

1. Normal distribution 

2. Samples are random 

 

 



The Sign Test: A Nonparametric 

Alternative 

 Can use this test when distribution is neither normal nor symmetrical 

 

 Used to test whether median of population is different from some 
hypothesized value 

 

 Measurements scored "+" if falling above hypothesized median, or "-" if 
below hypothesized value 

 If H0 true, expect half values to be assigned "+" and half values to be assigned 
"-" 

 

 Assumes samples are random 

 

 Low statistical power 

  increases with larger sample size (n >5) 

 



The Sign-test 

 

 Pigs raised their first year on an organic farm were randomly selected and 

weighed. Farmers wish to know if their rate of growth is different than the 

known weight gained during this time in factory farmed pigs, η= 21. 

 

                    

Consider this example: 

Organic pig 
weight (kg)  

10.1 13.1 17 12.2 18.6 19.5 20.5 22.1 39 21.7 18.4 18.6 20.2 15.8 



The Sign-test 
Quick check to visualize distribution of data 

Doesn't appear to be 

normal, nor 

symmetrical 



The Sign-test 

 

 H0: η = η0 

The population median (η) equals the hypothesized 

median (η0=21) 

 

 H1: η ≠ η0 

The population median (η) differs from the 

hypothesized median (η0=21). 

 

 

 

 

 

 

 

 

Hypotheses 



The Sign-test 
Steps in calculating the sign-test statistic 

Organic 

pig weight 

(kg)  

10.1 13.1 17 12.2 18.6 19.5 20.5 22.1 39 21.7 18.4 18.6 20.2 15.8 

Above(+) 

or below(-) 

21 

- - - - - - - + + + - - - - 

Total "-" Total"+" 

11 out of 14 3 out of 14 



The Sign-test 
Steps in calculating the sign-test statistic 

 

 

 

 If H0 is correct, we would expect half of our 
values to fall above 21, and half of our values to 
fall below 21 

 

We use binomial distribution to get our p-value 

Want to know the probability of seeing our 
observation of 3 “+" out of 14 total observations, 
when the probability of observing “+" is 0.5 

 

 
 

 



The Sign-test 
Steps in calculating the sign-test statistic 

 

 

 

 

 

 

 

 

𝑃𝑟 𝑥 ≤ 3 = 
14

𝑖
(0.5)𝑖(0.5)14−𝑖

3

𝑖=0

 

=0.0286 

 

Two sided test,  

P=2(0.0286)= 0.0572 



The Sign-test 
Conclusions 

 

 

 

 p=0.0572 > 0.05, we can conclude that there 

is no significant difference between the 

median weights of factory farmed versus 

organically farmed pigs at the 5% significance 

level. 


