Nonparametric Statistics

Leah Wright, Tyler Ross, Taylor Brown

Before we get to nonparametric statistics, what are **parametric statistics**?

These statistics estimate and test population means, while holding certain assumptions about the distribution of the population where the sample data come from

> These assumptions include:

- Normally distributed population
- No outliers
- Large sample sizes
- Random independent samples
- Interval or ratio measurements
- Homogeneity of variance

What happens when our data violate these assumptions?

Ignore the violations
 Transform the data
 Permutation test
 Choose a nonparametric test as an alternative

What are Nonparametric Statistics?

Compared with parametric statistics, they:

Make fewer assumptions
Rank data to replace actual numerical values
Do not rely upon parameter estimations, as parametric statistics do.

Why not use only nonparametric statistics?

They are conservative
Less statistical power than parametric tests
More likely to produce type II errors

Normal

Non-normal

How to determine if data violate normality assumption

2. Plot density plot

Normal

Paranormal

Non-normal

How to determine if data violate normality assumption

Formal statistical tests
 I.e. Shapiro Wilk Test

Estimates mean and standard deviation of sample population, then tests goodness of fit to data of normal distribution with the same mean and standard deviation

In R- shapiro.test(x)

Parametric Tests and their Nonparametric alternatives

When parametric assumptions not met, use corresponding nonparametric test:

Parametric	Nonparametric
One-way (independent) ANOVA	Kruskal-Wallis test
One-way repeated measures ANOVA	Friedman test
Pearson Product-Moment Correlation	Spearman's Rank-Order Correlation
Paired samples t-test	The Sign test
Two sample t-test	Mann-Whitney U test

Analysis of Variance: A (very) Brief Review

- Comparison of three or more means;
- Partitions and compares variability within group variation and between group variation;
- Assumptions:
 - k independent samples (not necessarily equal) taken from...
 - k normally distributed populations
 - with equal variance

- No assumption of normality; however, the following assumptions do apply:
 - Completely randomized design (i.e. subjects/organisms are randomly assigned to treatments)
 - 2. Distributions of the treatments have approximately the same shape and the same spread

Kruskal-Wallis: A Nonparametric Alternative Unlike analysis of variance, observations are ranked relative to one another across the different trials:

Kruskal-Wallis: A Nonparametric Alternative Unlike analysis of variance, observations are ranked relative to one another across the different trials: 59(3) 62(4) 81(6) 65(5) 87(7) 42(2) 31(1) **62**(2.5) **62**(2.5) 71(3) 59(1) [2 + 3 / 2 = 2.5]

*H*₀: treatment medians are equal (i.e. md1 = md2... = mdk) *H*_a: not all medians are equal (i.e. at least one md \neq)

Test statistic:

$$H = \frac{12}{n(n+1)} \left[\sum_{i=1}^{k} \frac{T_{R_i}^2}{n_i} \right] - 3(n+1)$$

where T_{R_i} is the sum of the ranks assigned to observations in treatment i. H_o is rejected if $H > \chi^2_{\alpha}(k-1)$

Example:

- Students are randomly assigned to four different treatment groups (different teaching techniques), and test scores are measured
- Distributions of the four treatments have approximately the same shape and the same spread.

l I	I	Ш	IV
65	75	59	94
87	69	78	89
73	83	67	80
79	81	62	88
81	72	83	
69	79	76	
	90		
n = 6	n = 7	n = 6	n = 4

Example:

- Students are randomly assigned to four different treatment groups (different teaching techniques), and test scores are measured
- Distributions of the four treatments have approximately the same shape and the same spread.

l I	II	III	IV
65 (3)	75 (9)	59 (1)	94 (23)
87 (19)	69 (5.5)	78 (11)	89 (21)
73 (8)	83 (17.5)	67 (4)	80 (14)
79 (12.5)	81 (15.5)	62 (2)	88 (20)
81 (15.5)	72 (7)	83 (17.5)	
69 (5.5)	79 (12.5)	76 (10)	
	90 (22)		
n = 6	n = 7	n = 6	n = 4
$T_{R_1} = 63.5$	$T_{R_2} = 89$	$T_{R_3} = 45.5$	$T_{R_4} = 78$

Example:

- Students are randomly assigned to four different treatment groups (different teaching techniques), and test scores are measured
- . Distributions of the four treatments have approximately the same shape and the same spread.

$$H = \frac{12}{n(n+1)} \left[\sum_{i=1}^{k} \frac{T_{R_i}^2}{n_i} \right] - 3(n+1)$$

$$H = \frac{12}{23(24)} \left[\frac{(63.5)^2}{6} + \frac{(89)^2}{7} + \frac{(45.5)^2}{6} + \frac{(78)^2}{4} \right] - 3(24)$$
$$H = 7.78$$

Example:

- Students are randomly assigned to four different treatment groups (different teaching techniques), and test scores are measured
- . Distributions of the four treatments have approximately the same shape and the same spread.

H_0 is rejected if $H > \chi^2_{\alpha}$ (k -1)

Н	$\chi^2_{0.10}(3)$
7.78	6.25

Example:

- Students are randomly assigned to four different treatment groups (different teaching techniques), and test scores are measured
- Distributions of the four treatments have approximately the same shape and the same spread.

Thus, since H = 7.78 > 6.25, one should reject H_o and conclude that at 10% level of significance, there is evidence to say that the four teaching techniques differ.

Example (in R):

- Students are randomly assigned to four different treatment groups (different teaching techniques), and test scores are measured
- Distributions of the four treatments have approximately the same shape and the same spread.

Г			
	> Teaching_Te	echniques <- read	d.delim("C:/Users/Tyler/Desktop/Teaching_Techniques.txt")
	> View(Tead	ching_Techniques)	
	> show(Teach ⁻	ing_Techniques)	
	Treatment	Student_Score	
	1 1	65	
	2 1	87	
	3 1	73	
	4 1	79	
	5 1	81	
	61	69	
	7 2	75	
	8 2	69	
	9 2	83	
	10 2	81	
	11 2	72	
	12 2	79	
	13 2	90	
	14 3	59	
	15 3	78	

Example (in R):

- Students are randomly assigned to four different treatment groups (different teaching techniques), and test scores are measured
- . Distributions of the four treatments have approximately the same shape and the same spread.

1 2 > show(Teaching_Techniques) 3 4 > kruskal.test(Student_Score ~ Treatment, data = Teaching_Techniques) 5

> kruskal.test(Student_Score ~ Treatment, data = Teaching_Techniques)

Kruskal-Wallis rank sum test

data: Student_Score by Treatment Kruskal-Wallis chi-squared = 7.7905, df = 3, p-value = 0.05055

Example:

- Students are randomly assigned to four different treatment groups (different teaching techniques), and test scores are measured
- Distributions of the four treatments have approximately the same shape and the same spread.

Again, since $p \approx 0.05$ one should reject H_o and conclude that at 10% level of significance, there is evidence to say that the four teaching techniques differ.

- No assumption of normality; however, the following assumptions do apply:
 - 1. One group is measured on three or more different occasions
 - 2. Group is a random sample of the population
 - 3. Dependent variable is ordinal (e.g. 10-point scale) or continuous

Like the Kruskal-Wallis test, observations are ranked relative to one another across the different trials:

Patient	Treatment 1	Treatment 2	Treatment 3
1	209	88	109
2	412	388	142
3	315	451	155
4	389	325	121
5	210	126	75
6	136	118	49
7	178	227	101
n = 7			

Like the Kruskal-Wallis test, observations are ranked relative to one another across the different trials:

Patient	Treatment 1	Treatment 2	Treatment 3
1	209 (3)	88 (1)	109 <mark>(2)</mark>
2	412 (3)	388 (2)	142 (1)
3	315 (2)	451 <mark>(3)</mark>	155 (1)
4	389 (3)	325 (2)	121 (1)
5	210 (3)	126 (2)	75 (1)
6	136 (3)	118 (2)	49 (1)
7	178 (2)	227 (3)	101 (1)
n = 7	19	15	8

H₀: treatment medians are equal (i.e. md1 = md2... = mdk) – identical effects

 $\frac{H_a}{H_a}$: not all medians are equal (i.e. at least one md \neq) – different effects

Test statistic:

$$FM = \left[\frac{12}{\left(N \cdot k \cdot (k+1)\right)}\right] \cdot \sum R^2 - \left[3 \cdot N \cdot (k+1)\right]$$

where N = # subjects, k = # of trials, and R = the total ranks for each column. H_0 is rejected if $FM > FM_{critical value}^*$

* If your k is over 5, or your n is over 13, use the chi square critical value table

H₀: treatment medians are equal (i.e. md1 = md2... = mdk) – identical effects

 H_a : not all medians are equal (i.e. at least one md \neq) – different effects

$$FM = \left[\frac{12}{\left(N \cdot k \cdot (k+1)\right)}\right] \cdot \sum R^2 - [3 \cdot N \cdot (k+1)]$$
$$FM = \left[\frac{12}{\left(7 \cdot 3 \cdot (3+1)\right)}\right] \cdot (19^2 + 15^2 + 8^2) - [3 \cdot 7 \cdot (3+1)]$$

FM = 8.86

- H_0 : treatment medians are equal (i.e. md1 = md2... = mdk) identical effects
- $\frac{H_a}{H_a}$: not all medians are equal (i.e. at least one md \neq) different effects

H_0 is rejected if $FM > FM_{critical value}$

FM	FM _{critical} value
8.86	7.14

H₀: treatment medians are equal (i.e. md1 = md2... = mdk) – identical effects

 H_a : not all medians are equal (i.e. at least one md \neq) – different effects

Thus, since FM = 8.86 > 7.14, one should reject H_o and conclude that at 5% level of significance, there is evidence to say that the three treatment effects differ.

H₀: treatment medians are equal (i.e. md1 = md2... = mdk) – identical effects

 $\frac{H_a}{H_a}$: not all medians are equal (i.e. at least one md \neq) – different effects

H₀: treatment medians are equal (i.e. md1 = md2... = mdk) – identical effects

 $\frac{H_a}{H_a}$: not all medians are equal (i.e. at least one md \neq) – different effects

```
Treatment <- matrix(c(209, 88, 109,
                      412, 388, 142,
                       315, 451, 155,
                      389, 325, 121,
                      210, 126, 75,
                      136, 118, 49,
                      178, 227, 101),
                    nrow = 7,
                    byrow = "true",
                    dimnames = list(1:7, c("Treatment_1", "Treatment_2", "Treatment_3")))
Treatment
friedman.test(Treatment)
> friedman.test(Treatment)
 Friedman rank sum test
data: Treatment
Friedman chi-squared = 8.8571, df = 2, p-value = (0.01193)
```

When to use??

Nonparametric version of the <u>Pearson</u> <u>product-moment correlation</u>

Spearman's correlation coefficient (p or r_s) measures <u>strength</u> and <u>direction of</u> <u>association</u> between two ranked variables

Assumptions??

- . Need two variables that are either ordinal, interval, or ratio
- 2. Although Pearson product-moment correlation would likely be used on <u>interval</u> or <u>ratio</u> data as well, use <u>Spearman</u> when Pearson's assumptions are violated
- 3. Observations are independent

What are Pearson's assumptions?

- 1. Variables are interval or ratio measurements
- 2. Variables are approximately normally distributed
- 3. Possibility of a linear relationship
- 4. Outliers are few or removed
- 5. Homoscedasticity of the data variance along the line of best fit remains the same

So what's the difference?

Spearman's correlation determines the strength and direction of the monotonic relationship between the two variables, rather than...

The strength and direction of the <u>linear</u> relationship between them, as in Pearson's correlation

Monotonicity

statistics.laerd.com

But monotonicity is not strictly an assumption – you can run Spearman's correlation on a non-monotonic relationship to determine if there is a <u>monotonic</u> <u>component</u>
Steps in calculating Spearman's Correlation Coefficient

Start with your table of data values, pairing the corresponding values with their observation (e.g. Student 1 got 75% in English, and 70% in Math)

Student	English grade	Math grade
1	75	70
2	87	95
3	64	70
4	42	53
5	93	86
6	75	60

Steps in calculating Spearman's Correlation Coefficient

To rank the data, you first have to rearrange your table...

English grade	Math grade	English rank	Math rank
75	70		
87	95		
64	70		
42	53		
93	86		
75	60		

Steps in calculating Spearman's Correlation Coefficient

- Rank both variables, but separately
- Take the <u>average rank</u> of two values when they are tied
- Rank highest to lowest

English grade	Math grade	English rank	Math rank
75	70	3.5	3.5
87	95	2	1
64	70	5	3.5
42	53	6	6
93	86	1	2
75	60	3.5	5

Steps in calculating Spearman's Correlation Coefficient

For now let's use different data that have no ties

English grade	Math grade	English rank	Math rank
78	72	3	3
87	95	2	1
64	69	5	4
42	53	6	6
93	86	1	2
74	60	4	5

Steps in calculating Spearman's Correlation Coefficient

- There are <u>two methods</u> to calculate Spearman's correlation depending on whether:
- 1. Data do not have tied ranks

 $\rho = 1 - \frac{6\Sigma d_i^2}{n(n^2 - 1)}$, where d_i = difference in paired ranks and n = number of cases

2. Data do have tied ranks (modified Pearson's equation)

$$\rho = \frac{\Sigma_i(x_i - \bar{X})(y_i - \bar{y})}{\sqrt{\Sigma_i(x_i - \bar{X})^2 \Sigma_i(y_i - \bar{y})^2}}, \text{ where } i = \text{paired score}$$

Steps in calculating Spearman's Correlation Coefficient

 Now add two more columns: one for d and one for d²

English grade	Math grade	English rank	Math rank	d	d²
78	72	3	3	0	0
87	95	2	1	1	1
64	69	5	4	1	1
42	53	6	6	0	0
93	86	1	2	1	1
74	60	4	5	1	1

Steps in calculating Spearman's Correlation Coefficient

• Then calculate Σd_i^2

= 4

English English Math rank d^2 Math d grade rank grade (

d = difference between the ranks

Steps in calculating Spearman's Correlation Coefficient

$\rho = 1 - \frac{6\Sigma d_i^2}{n(n^2 - 1)}$		Σd_i^2 n	= 4 = 6	ρ = 0.8857	
English grade	Math grade	English rank	Math rank	d	d²
78	72	3	3	0	0
87	95	2	1	1	1
64	69	5	4	1	1
42	53	6	6	0	0
93	86	1	2	1	1
74	60	4	5	1	1

d = difference between the ranks

Steps in calculating Spearman's Correlation Coefficient

What values can Spearman correlation coefficient, r_s (or ρ) take?

- Values from +1 to -1
 - r_s of +1 indicates perfect association of ranks
 - r_s of 0 indicates no association between ranks
 - r_s of -1 indicates perfect negative association of ranks

Steps in calculating Spearman's Correlation Coefficient

What does this mean for our example?

Indicates very strong, positive association of the ranks

How you report Spearman's correlation coefficient depends on whether or not you've determined the <u>statistical significance</u> of the coefficient

- > Without the significance test:
 - $> \rho = 0.89 \text{ or } r_s = 0.89$

> With significance test:

 $> \rho(4) = 0.89, P = P-value$

...where df = N-2, where N = number of pairwise cases

- Make Excel spreadsheet of data
- Save as ".csv" file
- Then...

- Name dataframe
- Note the column title names

🖭 Untit	led1 ×	english_an	d_math ×
$\langle = = \rangle$	🔊 🖓 F	ilter	
^	English [‡] grade	Math [‡] grade	
1	78	72	
2	87	95	
3	64	69	
4	42	53	
5	93	86	
6	74	60	

... in R

🕘 Untit	led1 ×	english_an	d_math \times			
$\langle \neg \neg \rangle$	🔊 🛛 🝸 F	ilter		Q,		
*	English [‡] grade	Math [‡] grade				
1	78	72				
2	87	95				
3	64	69				
4	42	53				
5	93	86				
6	74	60				
Showing	1 to 6 of 6 en	tries				
Console	Terminal	c -				
~/ ?						
<pre>> cor(english_and_math\$`English grade`, english_and_m ath\$`Math grade`, method = "spearman") [1] 0.8857143</pre>						

Yep, $\rho = 0.8857$

cor(dataframe\$column1, dataframe\$column2, method = "spearman")

At the end, before the bracket, you can also add "...spearman", **use="pairwise.complete.obs"**) if you're not sure that all x's have y's and vice versa

🕘 Untit	led1 ×	english_and	d_math ×							
$\langle \phi \Rightarrow \rangle$	🔊 🛛 🖓 F	ilter		Q,						
^	English [‡] grade	Math [‡] grade								
1	78	72								
2	87	95								
3	64	69								
4	42	53								
5	93	86								
6	74	60								
Showing	1 to 6 of 6 en	tries								
Console	Terminal	c								
~/ 🖈				ß						
> cor.	test(eng]	lish_and_	_math\$`English grade`, english_and_math\$`Math grade`, method = "spearman",	use="pairwise.c						
omprec	e.obs , e	ZACC=FAL	.SE)							
	Spearma	an's rank	correlation rho							
data:	english_	_andmath	<u>1\$`</u> English grade` and english_and_math\$`Math grade`							
S = 4,	S = 4, p-value = 0.01885									
sample	sample estimates:									
	rho									
0.8857	143									
>										

Null hypothesis:

 H_0 : There is no [monotonic] association between English grades and Math grades ($\rho = 0$)

*Statistical significance does not indicate the strength of Spearman's correlation. Using a=0.05 and getting a significant P-value means there is a <5% chance that the strength of the relationship happened by chance; i.e. that the null hypothesis is true.

Two sample T-test: A brief review

Used to compare two means

- tests H₀ that means from two independent groups are equal, H₀: U₁=U₂
- Assumes that :
 - 1. Both populations have normal distribution
 - 2. **Random** samples from population
 - 3. Both populations have similar standard deviation and variance

The Mann-Whitney U: A nonparametric alternative

Compares two independent samples

Ranks data

Changes data from interval ->ordinal

Tests whether there is a difference between medians of both populations

Assigning ranks allows us to discard normality assumption. However, test does assume:

- 1. Random samples
- 2. Independence of observations
- 3. Distribution of both samples have the same shape

Calculating Mann-Whitney U

$$U_1 = n_1 n_2 + \frac{n_1(n_1 + 1)}{2} - R_1$$
$$U_2 = n_1 n_2 - U_1$$

Where:

 n_1 and n_2 = Sample size of each group

 R_1 and R_2 = Rank sums for each treatment

 U_1 and U_2 = Mann Whitney U test statistics

Consider this example:

Red maple tree (Acer rubrum) seeds are allowed to germinate and grow for three weeks in two different types of soil. Growth progress for each seedling was measured as follows:

Height of seedlings (mm) grown in silt soil	Height of seedlings (mm) grown in peat soil
10	12.2
10.5	11.7
13.2	12.4
19.7	15.7
16.6	22.8
23	24.5
26.4	27
45.3	41
	62
<i>n</i> ₁ =8	n ₂ =9

First, see if distributions of both groups have the same shape

• Both frequency distributions are not normal, but they have similar shapes; both show a positive skew.

Hypotheses

- H_0 = The two samples are equal
 - The seedlings grown in either soil type do not differ in growth height
- H_1 = The two samples are not equal
 - The seedlings grow taller in one type of soil than the other

Our null hypothesis is rejected if calculated U test statistic \geq critical value for U ($\alpha = 0.05$)

Steps in calculating Mann-Whitney U test statistic

Silt soil	Peat soil	Rank for silt soil	Rank for peat soil
10	12.2	1	4
10.5	11.7	2	3
13.2	12.4	6	5
19.7	15.7	9	7
16.6	22.8	8	10
23	24.5	11	12
26.4	27	13	14
45.3	41	16	15
	62		17
<i>n</i> ₁ =8	n ₂ =9	$R_1 = 66$	$R_{2} = 87$

Rank Sums for each group

Steps in calculating Mann-Whitney U test statistic

Plug in our sample sizes and rank sums to calculate U_{1} and then U_{2}

$$U_{1} = n_{1}n_{2} + \frac{n_{1}(n_{1} + 1)}{2} - R_{1}$$

$$= 8(9) + \frac{8(8+1)}{2} - 66$$

$$= 42$$

$$U_{2} = n_{1}n_{2} - U_{1}$$

$$= 8(9) - 46$$
Now, select the larger of U_{1} and U_{2} as your test statistic

=30

Steps in calculating Mann-Whitney U test statistic

Consult table of critical values and compare calculated U to critical value

 $\alpha = 0.05$

 $U_1 = 42 < U_{critical} = 57$

Conclusions

 $U_1 = 42 < U_{critical} = 57$

Thus, our calculated U is **less** than the critical value, so we cannot reject the null hypothesis at 5% significance level. There is **not** enough evidence to suggest growth progress is significantly different in the two types of soil.

Wilcoxon Mann-Whitney U

Example in SAS

1. Load data into SAS

Log - ((Untitled)								
32	datalines	;							
NOTE	SAS went	to a new set WORK	line when SEEDS bay	n INPUT s s 17 obse	tatement	reached p	ast the en iables.	d of a line.	
NOTE: DATA statement used (Total process time): real time 0.01 seconds									
	cpu time		0.01 s	econds					
90									
36	;								
💒 Ed	litor - Untitled1	*							
🗆 d	lata Seeds;								A
i	nput Soil	Growth @(9;						
d	latalines;								
	1 10	1 10.5	1 13.2	1 19.7	1 16.6	1 23	1 26.4		II
	1 45.3	2 12.2	2 11.7	2 12.4	2 15.7	2 22.8			II
	2 24.5	2 27	2 41	2 62					
	;								II

Wilcoxon Mann-Whitney U

Example in SAS

2. Run NPAR1WAY, with the option Wilcoxon

E Log) - (Untitled)			_ 🗆 X
	cpu time	0.00	seconds	_
42 43 44 45 46	proc npario class So var Grov exact wi run;	way wilcoxon bil; wth; ilcoxon;	correct=no data=Seeds;	
NOTE :	Writ ng HTML	Body file: s	ashtml.htm	
				• //

Wilcoxon Mann-Whitney U

Example in SAS

3. Interpret output of test

Wilcoxon	Scores	(Rank	Sums)	for	Variable Growth				
Classified by Variable Soil									

Soil	N	Sum of Scores	Expected Under H0	Std Dev Under H0	Mean Score		
1	8	66.0	72.0	10.392305	8.250000		
2	9	87.0	<mark>81.0</mark>	10.392305	9.666667		

The p-value =0.6058, since p-value is larger than 0.05, we conclude again that the growth rate between both treatments are not significantly different.

Wilcoxon Two-Sample	Test
Statistic (S)	66.0000
Normal Approximation	
Z	-0.5774
One-Sided Pr < Z	0.2819
Two-Sided Pr > Z	0.5637
t Approximation	
One-Sided Pr < Z	0.2859
Two-Sided Pr > Z	0.5717
Exact Test	
One-Sided Pr <= S	0.3029
Two-Sided Pr >= S - Mean	0.6058

One sample T-test: A brief review

Tests the null hypothesis that the mean of observations is the same as known/hypothesized value

This test assumes:
 1. Normal distribution
 2. Samples are random

The Sign Test: A Nonparametric Alternative

- Can use this test when distribution is neither normal nor symmetrical
- Used to test whether median of population is different from some hypothesized value
- Measurements scored "+" if falling above hypothesized median, or "-" if below hypothesized value
 - If H0 true, expect half values to be assigned "+" and half values to be assigned "-"
- Assumes samples are random
- Low statistical power
 - increases with larger sample size (n >5)

	The Sign-test												
	Consider this example:												
	 Pigs weig know 	raised ghed. F wn weig	their fi armer ght gc	rst yec s wish ained c	ar on a to knc during	n orga w if the this tim	inic far eir rate ne in fa	m we of g ctor	ere ran rowth i y farme	domly s differe ed pigs,	selecte ent tha , η= 21.	ed and n the	
Organic pig weight (kg)	13.1	17	12.2	18.6	19.5	20.5	22.1	39	21.7	18.4	18.6	20.2	15.8

The Sign-test

Quick check to visualize distribution of data

The Sign-test

Hypotheses

 $- H_0: \eta = \eta_0$

 The population median (η) equals the hypothesized median (η₀=21)

H1: η ≠ η₀

The population median (η) differs from the hypothesized median (η₀=21).
Steps in calculating the sign-test statistic

Organic pig weight (kg)	10.1	13.1	17	12.2	18.6	19.5	20.5	22.1	39	21.7	18.4	18.6	20.2	15.8
Above(+) or below(-) 21	-	-	-	-	-	-	-	+	+	+	-	-	-	-
			Total "-"			Tota	Total"+"							
			11 out of 14			3 00	3 out of 14							
NN.														

Steps in calculating the sign-test statistic

If H₀ is correct, we would expect half of our values to fall above 21, and half of our values to fall below 21

We use binomial distribution to get our p-value

Want to know the probability of seeing our observation of 3 "+" out of 14 total observations, when the probability of observing "+" is 0.5

Steps in calculating the sign-test statistic

$$Pr(x \le 3) = \sum_{i=0}^{3} {\binom{14}{i}} (0.5)^{i} (0.5)^{14-i}$$

=0.0286

Two sided test, P=2(0.0286)=0.0572

Conclusions

p=0.0572 > 0.05, we can conclude that there is no significant difference between the median weights of factory farmed versus organically farmed pigs at the 5% significance level.