Nonparametric Stafistics
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Before we get to nhonparametric staftistics,
what are parametric statistics?

These staftistics estimate and test population means, while
holding certain assumptions about the distribution of the
population where the sample data come from

These assumptions include:

Normally distributed population
No outliers

Large sample sizes

Random independent samples
Interval or ratio measurements
Homogeneity of variance




What happens when our data violate
these assumpftionse

. Ilgnhore the violations
2. Transform the datao
3. Permutation test

4. Choose a nonparametric test as an
alternative




What are Nonparametric Statisticse

Compared with parametric stafistics, they:

ake fewer assumptions
Rank data to replace actual numerical values

Do noft rely upon parameter estimations, as
parametric stafistics do.




Why not use only nonparametric
statisticse

=They are conservative
Less statistical power than parametric tests
= More likely to produce type Il errors




How to determine if data violate normality
assumption

|.Plot histogram
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How to determine if data violate normality
assumption

7. Plot density plof
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How to determine if data violate normality
assumption

3. Formal staftistical tests
= |.e. Shapiro Wilk Test

» Estimates mean and standard deviation of sample
population, then tests goodness of fit fo data of normal
distribution with the same mean and standard
deviation

=|n R- shapiro.test(x)




Parametric Tests and their Nonparametric
alternatives

= When parametric assumptions not met, use corresponding
nonparametric test:

Parametric Nonparametric

One-way (independent) ANOVA Kruskal-Wallis test

One-way repeated measures Friedman test

ANOVA

Pearson Product-Moment Spearman’s Rank-Order
Correlation Correlation

Paired samples t-test The Sign test

Two sample t-test Mann-Whitney U test




Analysis of Variance: A (very) Briet Review

= Comparison of three or more means;

= Partitions and compares variability — within group
variation and between group variation;

Assumptions:

=k iIndependent samples (nof
necessarily equal) tfaken from...

=k normally distributed
populations

=with equal variance




Kruskal-Wallis: A Nonparametric Alternative

= No assumption of normality; however, the following
assumptions do apply:

I. Completely randomized design (i.e.
subjects/organisms are randomly assigned to
treatments)

2. Distributions of the freatments have approximately
the same shape and the same spread




Kruskal-Wallis: A Nonparametric Alternative

= Unlike analysis of variance, observations are ranked
relative to one another across the different trials:

7 62 31 65 37 42 31




Kruskal-Wallis: A Nonparametric Alternative

= Unlike analysis of variance, observations are ranked
relative to one another across the different trials:

9(3) 62(4) 81(6) 65(5) 87(7) 42(2) 31(1)

59(1)  62(2.5) 62(2.5) 71(3)

|

2+ 3/2=2.05]




Kruskal-Wallis: A Nonparametric Alternative

freatment medians are equal (i.e. mdl = md2... = mdk]
not all medians are equal (i.e. at least one md #)

est staftistic:

e
12 T,

- nn+1) L 1y

H —3(n+ 1)

where Ty is the sum of the ranks assigned to observations
in freatment i. Hy is rejected if H > y3(k -1)




Kruskal-Wallis: A Nonparametric Alternative

Example:

I, Students are randomly assigned to four different freatment groups
(different teaching techniques), and test scores are measured

2. Distributions of the four treatments have approximately the same
shape and the same spread.

I Il 1] 1Y
65 79 59 94
87 69 /8 89
/3 83 67 80
/9 81 62 88
81 /2 33
69 /9 76

90

n=46 n=7 n=4 n=4




Kruskal-Wallis: A Nonparametric Alternative

Example:

I, Students are randomly assigned to four different freatment groups
(different teaching techniques), and test scores are measured

2. Distributions of the four treatments have approximately the same
shape and the same spread.

I | i IV
65 (3) 75 (%) 59 (1) 94 (23)
87 (19) 69 (5.5) 78 (11) 89 (21)
/3 (8) 83 (17.5) 67 (4) 80 (14)
79 (12.5) 81 (15.5) 62 (2) 88 (20)
81 (15.5) 72 (7) 83 (17.5)
69 (5.5) 79 (12.5) 76 (10)
90 (22)
n=46 n=7 n=4 n=4
Tg, = 63.5 Tg, = 89 Tg, = 45.5 Tg, =78




Kruskal-Wallis: A Nonparametric Alternative

Example:

Students are randomly assigned to four different treatment groups
(different teaching techniques), and test scores are measured

Distributions of the four treatments have approximately the same
shape and the same spread.

S
12 T,

n(n+1)|Lin;
L=

H =

—3(n+1)

(63 5)?  (89)2 (45 5)? ( 8)2
23(24) T3 6 4
H=7.78

H_

— 3(24)




Kruskal-Wallis: A Nonparametric Alternative

Example:

I, Students are randomly assigned to four different freatment groups
(different teaching techniques), and test scores are measured

Distributions of the four treatments have approximately the same
shape and the same spread.

2.

H, isrejected if H > y%(k -1)

7.78 6.25



Kruskal-Wallis: A Nonparametric Alternative

Example:

Students are randomly assigned to four different treatment groups
(different teaching techniques), and test scores are measured

Distributions of the four treatments have approximately the same
shape and the same spread.

Thus, since H=7.78 > 6.25, one should reject H,and
conclude that at 10% level of significance, there is

evidence to say that the four teaching techniques
differ.




Kruskal-Wallis: A Nonparametric Alternative

Example (in R):

I, Students are randomly assigned to four different freatment groups
(different teaching techniques), and test scores are measured

Distributions of the four treatments have approximately the same
shape and the same spread.

2.

= Teaching_Techniques <- read.delim{"C: /Users/Tyler /Desktop/Teaching_Techniques.txt")

> view(Teaching_Techniques)

= show(Teaching_Techniques)
Treatment Student_Score

a5

87

73

79

81

a9

75

a9

83

81

72

79

a0

59

78
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Kruskal-Wallis: A Nonparametric Alternative

Example (in R):

. Students are randomly assigned to four different treatment groups
(different teaching techniques), and test scores are measured

2. Distributions of the four treatments have approximately the same
shape and the same spread.

= show(Teaching_Techniques)

[, I R W N o

= kruskal.test(5tudent_Score -~ Treatment, data = Teaching_Techniques)

> kruskal.test(5tudent_Score ~ Treatment, data = Teaching_Techniques)

Kruskal-wallis rank sum test

data: sStudent_score by Treatment

kKruskal-wallis chi-squared = 7.7905, df = 3, p-value =|0.05055




Kruskal-Wallis: A Nonparametric Alternative

Example:

Students are randomly assigned to four different treatment groups
(different teaching techniques), and test scores are measured

Distributions of the four treatments have approximately the same
shape and the same spread.

Again, since p = 0.05 one should reject H,and conclude
that at 10% level of significance, there is evidence to
say that the four teaching fechniques differ.




Friedman Test: A Nonparametric Alternative

= No assumption of normality; however, the following
assumptions do apply:

I. One group Is measured on three or more different
occasions

2. Group is a random sample of the population

3. Dependent variable is ordinal (e.g. 10-point scale)
or confinuous




Friedman Test: A Nonparametric Alternative

» | ke the Kruskal-Wallis test, observations are ranked
relative to one another across the different trials:

Patient Treatment 1 Treatment 2 Treatment 3
1 209 88 109
2 412 388 142
3 315 451 155
4 389 325 121
5 210 126 /5
6 136 118 49
/ 178 227 101
n=7




Friedman Test: A Nonparametric Alternative

» | ke the Kruskal-Wallis test, observations are ranked
relative to one another across the different trials:

Patient Treatment 1 Treatment 2 Treatment 3

1 209 (3) 88 (1) 109 (2)

2 412 (3) 388 (2) 142 (1)

3 315 (2) 451(3) 155 (1)

4 389 (3) 325 (2) 121 (1)

5 210 (3) 126 (2) /5 (1)

6 136 (3) 118 (2) 49 (1)

/ 178 (2) 227 (3) 101 (1)
n=7 19 15 8




Friedman Test: A Nonparametric Alternative

treatment medians are equal (i.e. md1 = md2... = mdk) — identical
effects

not all medians are equal (i.e. at least one md #) — different effects

est staftistic:

12
(N-k-(k+1))

FM =

]-ZRZ—[B-N-(k+1)]

where N = # subjects, k = # of frials, and R = the total ranks for
each column. Hy isrejected if FM > FM . itical vaiue

*If your kis over 5, or your n is over 13, use the chi square critical value table




Friedman Test: A Nonparametric Alternative

H,: treatment medians are equal (i.e. md1 = md2... = mdk) — identical
effects

H,: not all medians are equal (i.e. af least one md #) — different effects

12
(N-k-(k+1)

FM=[ -ZRZ—[g-N-(kH)]

- 12 . 2 2 2y _ . 7.
FM_[(7_3_(3+1))] (192 + 152+ 82) —[3-7- (3 + 1)]

FM = 8.86



Friedman Test: A Nonparametric Alternative

H,: treatment medians are equal (i.e. md1 = md2... = mdk) — identical
effects

H,: not all medians are equal (i.e. af least one md #) — different effects

H, isrejected if FM > FM . .itical value

FMeriticat vatue

8.86 7.14



Friedman Test: A Nonparametric Alternative

treatment medians are equal (i.e. md1 = md2... = mdk) — identical
effects

not all medians are equal (i.e. at least one md #) — different effects

Thus, since FM =8.86 > /.14, one should reject H,and
conclude that at 5% level of significance, there is
evidence to say that the three treatment effects ditfer.




Friedman Test: A Nonparametric Alternative

H,: treatment medians are equal (i.e. md1 = md2... = mdk) — identical
effects

H,: not all medians are equal (i.e. af least one md #) — different effects

Treatment <- matrix{c{209, BE, 109,

412, 3BE, 142,
315, 451, 155,
389, 325, 121,
210, 124, 75,
136, 118, 49,
178, 227, 101),

nrow = 7,

byrow = "true”,

dimnames = Tist{(1:7, c{"Treatment_1", "Treatment_2", "Treatment_3")))

Treatment

friedman. test(Treatment)




Friedman Test: A Nonparametric Alternative

H,: treatment medians are equal (i.e. md1 = md2... = mdk) — identical
effects

H,: not all medians are equal (i.e. af least one md #) — different effects

Treatment <- matrix{c{209, BE, 109,

412, 3BE, 142,
315, 451, 155,
389, 325, 121,
210, 124, 75,
136, 118, 49,
178, 227, 101),

nrow = 7,

byrow = "true”,

dimnames = Tist{(1:7, c{"Treatment_1", "Treatment_2", "Treatment_3")))

Treatment

friedman. test(Treatment)

> friedman. test{Treatment)

Friedman rank sum test

data: Treatment
Friedman chi-squared = 8.8571, df = 2, p-value < 0.01193

S ——




Spearman’s Rank-Order Correlation

»When 1o use<¢e

= Nonparametric version of the Pearson
product-moment correlation

»Spearman’s correlation coefficient (p or r)
measures strength and direction of
association between two ranked variables




Spearman’s Rank-Order Correlation

Assumptionsee

1.

Need two variables that are either ordinal,
iInterval, or ratio

Although Pearson product-moment correlation
would likely be used on interval or ratio data as
well, use Spearman when Pearson'’s
assumptions are violated

Observations are independent




Spearman’s Rank-Order Correlation

What are Pearson’s assumptionse

1.
. Variables are approximately normally distributed

STl

Variables are interval or ratio measurements

Possibility of a linear relationship
Outliers are few or removed

Homoscedasticity of the data — variance along
the line of best fit remains the same



Spearman’s Rank-Order Correlation

So what's the difference?¢

®Spearman’s correlation determines the
stfrength and direction of the monotonic
relationship between the two variables,
rather than...

=The strength and direction of the linear
relationship between them, as in Pearson’s
correlation




Spearman’s Rank-Order Correlation

Monotonicity

statistics.laerd.com

But monotonicity is not strictly an assumption — you can
run Spearman’s correlation on a non-monotonic
relationship to determine if there is @ monotonic
component




Spearman’s Rank-Order Correlation

Steps in calculating Spearman’s Correlation
Coefficient

« Start with your table of data values, pairing the
corresponding values with their observation (e.g.
Student 1 got 75% in English, and 70% in Math)

m English grade Math grade
/5 /0

1

2 87 925
3 64 /0
4 42 53
S 73 86
6 75 60



Spearman’s Rank-Order Correlation

Steps in calculating Spearman’s Correlation
Coefficient

« To rank the data, you first have to rearrange your
table...

English grade | Math grade m Math rank
/5 /0

87 95
64 /0
42 53
93 86

75 60




Spearman’s Rank-Order Correlation

Steps in calculating Spearman’s Correlation
Coefficient

« Rank both variables, but separately
« Take the average rank of two values when they are

tied
(3.5 (3.5
]

« Rank highest to lowest
6
2
5

D, @,
87 95
64

42 53
93 86

G5 60

@_MM)



Spearman’s Rank-Order Correlation

Steps in calculating Spearman’s Correlation
Coefficient

For now let’s use different data that have no ties

English grade | Math grade m Math rank
/8 /2 3

3
87 95 2 ]
64 69 5 4
42 53 6 6
93 86 ] 2
74 60 4 S




Spearman’s Rank-Order Correlation

Steps in calculating Spearman’s Correlation
Coefficient
* There are two methods o calculate Spearman’s

correlation depending on whether:
. Data do not have tied ranks

62d?
nn2-1)’

p=1-— where di = difference in paired ranks

and
N = number of cases

2. Data do have tied ranks (modified Pearson’s equation)
D = Zi(xi=X)vi=Y)
\/Zi(xi_x_)zzi(Yi_Y)z

, where | = paired score




Spearman’s Rank-Order Correlation

Steps in calculating Spearman’s Correlation
Coefficient

. Now add two more columns: one for d and one for

English Math English
grade grade rank

3 0 0

2 1 1 1

64 69 5 4 1 1
42 53 6 6 0 0
93 86 ] 2 1 ]
/4 60 4 5 1 1




Spearman’s Rank-Order Correlation

Steps in calculating Spearman’s Correlation
Coefficient

- Then calculate xd?

=4
English Math English
grade grade rank
/8 /2 3

3 0 0
87 95 2 1 ] ]
64 69 5 4 1 1
42 53 6 6 0 0
93 86 ] 2 1 ]
/4 60 4 5 1 1

d = difference between the ranks




Spearman’s Rank-Order Correlation

Steps in calculating Spearman’s Correlation

Coefficient
6xd? Sd? = 4
Pl i, p = 0.8857
e e e
grade grade rank
3 0 0
87 95 2 ] 1 ]
64 69 5 4 1 1
42 53 6 6 0 0
93 86 | 2 ] ]
/4 60 4 5 1 1

d = difference between the ranks




Spearman’s Rank-Order Correlation

Steps in calculating Spearman’s Correlation
Coefficient

What values can Spearman correlation
oefficient, r, (or p) take<
> Values from +1 to -1
> 1, of +1 Indicates perfect association of
ranks
> 1, of O Indicates no association between
ranks
> 1, of -1 Indicates perfect negative
association of ranks




Spearman’s Rank-Order Correlation

Steps in calculating Spearman’s Correlation
Coefficient

What does this mean for our example@e

b = 0.8857 Indicates very strong, positive
association of the ranks




Spearman’s Rank-Order Correlation

How you report Spearman’s correlation
coefficient depends on whether or not you've
determined the statistical significance of the
coefficient

Without the significance test:

> 0=0.8%orr, =0.89
> With significance test:

> p(4) =0.89, P = P-value

...where df = N-2, where N = number of pairwise
cases




Spearman’s Rank-Order Correlation

.INR

Then...

Make Excel spreadsheet of data
Save as “.csv” file

@ | Mew Folder @ Delete = | Ren;

e - York » 1stYear » Biostats ..

& Mame

t.

Carnegie Mellen - non-pa...
Engllrlﬂ amd rmath o seae

engl = | View File

.- frig@mpgn DatESED

- Hussain and Sprent. 1985....

| Menparametric Statistics...,

| Motes from class on how ...

| Problem set1.doc



Spearman’s Rank-Order Correlation

...INR
@ | Untitledl english_and_math
" Filter
« Name dataframe *| Engish. 7| Math
« Note the column fitle . 75 72
Names 2 &7 a5
3 B4 B9
4 42 53
5 93 ab
B 74 @l




Spearman’s Rank-Order Correlation

...INR

Yep, p = 0.8857

@ Untitledl english_and_math ———
" Filter
“  English Math
grade grade
1 73 72
2 a7 a5
3 o4 69
4 42 53
5 a3 86
[ 74 Bl

Showing 1 to & of & entries

Console Terminal f— |:|

o

> cor(english_and_math$ English grade’, english_and_m
ath$ Math grade’, method = "spearman™)
[1] 0.8857143

-




Spearman’s Rank-Order Correlation

...INR

cor(dataframe$columnl, dataframe$column?2,
method = “spearman”)

At the end, before the bracket, you can also add
Y...spearman’”, use=“pairwise.complete.obs”) if
you're not sure that all x’s have y's and vice versa




9| Untitledl english_and_math o ]

" Filter

“  English Math

grade grade
1 78 72
2 87 a5
3 a4 a9
4 42 53
5 a3 86
B 74 i

Showing 1 to & of & entries

Console Terminal f— |:|

'

=¥
> cor.test(english_and_math%$ English grade’, english_and_math$ 'mMath grade’, method = "spearman”, use="pairwise.c
omplete.obs"”, exact=FALSE)

Spearman’s rank correlation rho

data: english_and_math$ English grade’ and english_and_math$ Math grade’
5 = 4, |p-value = 0.01885 |
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
O.8857143

> |

\ \




Spearman’s Rank-Order Correlation

Null hypothesis:
H, : There is no [monotonic] association
between English grades and Math grades

(0 =0)

*Staftistical significance does not indicate the
strength of Spearman’s correlation. Using a=0.05
and geftting a significant P-value means there is @
<5% chance that the sirength of the relationship
happened by chance; i.e. that the null hypothesis
IS true.




Two sample T-test: A brief review

= Used to compare two means

» fests Ho that means from two independent groups are
equal, Ho:Ui=U2

= Assumes that :
|. Both populations have normal distribution
2. Random samples from population
3. Both populations have similar standard deviation and variance



The Mann-Whitney U: A nonparametric
alternative

= Compares two independent samples

» Ranks data

= Changes data from interval ->ordinal

= Tests whether there is a difference between
medians of both populations




Mann-Whitney U

= Assigning ranks allows us to discard normality
assumption. However, test does assume:

I. Random samples
7. Independence of observations

3. Distribution of both samples have the same
shape




Calculating Mann-Whitney U

ny(n; +1) _n
2 1

U1 = niny +

U, =nyn, -U;

here:

n; and n, = Sample size of each group
R, and R, = Rank sums for each treatment

Uy and U, = Mann Whitney U test statistics



Mann-Whithey U

Consider this example:

= Red maple tree (Acer rubrum) seeds are allowed to germinate and grow
for three weeks in two different types of soil. Growth progress for each
seedling was measured as follows:

Height of seedlings (mm) grown in silt | Height of seedlings (mm) grown
soil in peat soil

10 12.2
10.5 11.7
13.2 12.4
19.7 15.7
16.6 22.8
23 24.5
26.4 27
45.3 41
62

n, =8 n; =




Mann-Whithey U

First, see if distributions of both groups have the same shape

Silt soil

« Both frequency distributions
are not normal, but they have
similar shapes; both show a
positive skew.

Frequency
SO = N W M~ OO o

0-20 20-40 40-60 60-80

(€}

Peat soil

Frequency
w N

N

—_

o

0-20 20-40 40-60 60-80
Seedling growth (mm)




Mann-Whitney U

Hypotheses

H, = The two samples are equal

= The seedlings grown in either soil type do not differ in
growth height

H, = The two samples are not equal

= The seedlings grow taller in one type of soil than the
other

Our null hypothesis is rejected if calculated U test
statistic = critical value for U (a = 0.05)




Mann-Whithey U

Steps in calculating Mann-Whitney U test stafistic

Peat soil Rank for silt soil | Rank for peat
soil
10 4

12.2 1
10.5 11.7 2 3
13.2 12.4 6 S
19.7 15.7 9 /
16.6 22.8 38 10
23 24.5 11 12
26.4 27 13 14
45.3 41 16 15
62 17 Rank
_ _ Sums for
S 3= R, = 66 R,—g7 «——each

group




Mann-Whitney

U

Steps in calculating Mann-Whitney U test stafistic

= Plug in our sample sizes and rank sums to calculate U; and then U,

U1 = nins + nl(n12+ 1) —
- 8(9) + 8(82+1) 66
U, =n;n, -U;
= 8(9)- 46

=30

1

Now, select
the larger of
U, and U, Qs
your test
statistic




Mann-Whitney U

Steps in calculating Mann-Whitney U test stafistic

= Consult table of critical values and compare calculated U to critical value

a = 0.05

U1: 42 < Ucritical: S/




Mann-Whitney U

Conclusions

U1: 42 < Ucritical: S/

= Thus, our calculated U is less than the
critical value, so we cannot reject the
null hypothesis at 5% significance level. There is not
enough evidence to suggest growth progress Is
significantly different in the two types of soill.




Wilcoxon Mann-Whitney U

Example in SAS

1. Load data info SAS

Log - (Untitled)
a2 datalines; ﬂ

MOTE: 5A5 went to a new line when INPUT statement reached past the end of a line.
MOTE: The data set HWORK.SEEDS has 17 observations and 2 variables.
NOTE: DaATA statement used (Total process time):

real time 0.01 =econds

cpu time 0.01 zeconds

ﬁ Editor - Untitled] *

Fldata Seeds: *I

input So0il Growth @8:
datalines=;
1 10 1 10.5 1 13.2 1 1s58.7 1 1e6.6 1 23 1 26.4

1 45.3 2 12.2 2 11.7 2 12.4 2 15.7 2 22.8
2 24.5 2 27 2 41 £ 62

r




Wilcoxon Mann-Whitney U

Example in SAS

2. Run NPARTWAY, with the option Wilcoxon

= Log - (Untitled)

cpu time 0.00 seconds ﬂ
42 proc npar lvay wilcoxon correct=no data=5Seeds;
43 class Soil;
44 var Growth;
45 exact wilcoxon;
46 run; —
NOTE: WritEng HTML Body file: sashtml.htm M
4 | M




Wilcoxon Mann-Whitney U

Example in SAS

Wilcoxon Two-Sample Test

3. Interpret output of test Statistic (S) 66.0000

Normal Approximation

Wilcoxon Scores (Rank Sums) for Variable Growth Z -0.5774
Classified by Variable Soil One.Sided Pr < Z 0.2819
Sum of Expected Std Dev Mean Two-Sided Pr > |Z| 0.5637
Soil N Scores Under HO Under HO Score
1 8 66.0 72.0 10.392305 8.250000 t Approximation
2 |9| 870 81.0 10.392305 9.666667 Onio- Skfgd Bries s
Two-Sided Pr > |Z] 0.5717

The p-value =0.6058, since p-value is larger

than 0.05, we conclude again that the HapLion
growth rate between both tfreatments are One-Sided Pr<=3S 0.3029
not significantly different. Two-Sided Pr >=|S - Mean| = 0.6058




One sample T-test: A brief review

» Tests the null hypothesis that the mean of
observations is the same as known/hypothesized
value

= This fest assumes:
|. Normal distribution
2. Samples are random




The Sign Test: A Nonparametric
Alternative

= Can use this test when distribution is neither normal nor symmetrical

» Used to test whether median of population is different from some
hypothesized value

= Measurements scored "+" if falling above hypothesized median, or "-" if
below hypothesized value

- .'.f..HO true, expect half values to be assigned "+" and half values to be assigned

» Assumes samples are random

= [ow statistical power
= ncreases with larger sample size (n >5)




The Sign-test

Consider this example:

= Pigs raised their first year on an organic farm were randomly selected and
weighed. Farmers wish to know if their rate of growth is different than the
/ known weight gained during this time in factory farmed pigs, n= 21.

Organicpig  10.1  13.1 17 122 18.6 19.5 205 221 39 21.7 184 18.6 202 158

weight (kg)
Voo !




The Sign-test

Quick check to visualize distribution of data

Frequency

Doesn't appear 1o be
normal, nor
symmetrical




The Sign-test

Hypotheses

= Ho:nN=no

= The population median (n) equals the hypothesized
median (no=21)

= Hl:n#no

= The population median (n) differs from the
hypothesized median (no=21).




The Sign-test

Steps in calculating the sign-test statistic

Organic 10.1 13.1 17 122 18.6 19.5 205 221 39 217 184 186 202 158
pig weight

(kg)
Above(+) - - - - - - - + + + - - - -
or below(-)

11 out of 14 3 outof 14



The Sign-test

Steps in calculating the sign-test stafistic

= |f Ho IS correct, we would expect half of our
values to fall above 21, and half of our values to
fall below 21

= We use binomial distribution to get our p-value

= \Want to know the probability of seeing our
observation of 3 “+" out of 14 tfotal observations,
when the probability of observing “+"is 0.5




The Sign-test

Steps in calculating the sign-test stafistic

3
Pr(x<3) = z (1i4) (0.5)!(0.5)14¢

=0.0286

Two sided test,
P=2(0.0286)= 0.0572




The Sign-test

Conclusions

= p=0.0572 > 0.05, we can conclude that there
IS No significant difference between the
median weights of factory farmed versus
organically farmed pigs at the 5% significance
level.




