MULTIVARIATE STATISTICS

Principal Component Analysis and Cluster Analysis November 6th, 2017

Presented by: Ana Cuciureanu and Shamina S Prova BIOL 5081: Introduction to Biostatistics Professor: Dr. Joel Shore

Multivariate Analysis (MVA)

Introduction

- Complex systems require multiple and different kind of measurements to be taken in order to best describe reality
- MVA is the investigation of many variables, simultaneously, in order to understand the relationships that may exist between variables
- MVA can be as simple as analysing two variables right up to millions

Multivariate Analysis (MVA)

- Is the study of variability and its sources
- Shows the influence of both, wanted and unwanted variability
 - Wanted → the effect of variables on the relationship between data points
 - Unwanted

 random variability resulting from experimental features that cannot be controlled
- Used to predict future events

Types of MVA

- Exploratory Data Analysis (EDA)
 - Deeper insight into large, complex data sets
 - i.e. Principle Component Analysis, Cluster Analysis
- Regression Analysis
- Classification
 - Identifies new or existing classes
 - i.e. Cluster Analysis

MVA vs Classical Statistics

- How would you analyze 50 rows and 10 columns of data?
 - Plot columns together two at a time

Introduction

- Plot each variable for all samples and look for trends
- This univariate analysis is too simplistic, frustrating and fails to detect the relationship between variants (i.e. covariance and correlation)

covariance
$$\sigma_{XY} = E[(X - \mu_X) (Y - \mu_Y)]$$

correlation $\rho_{XY} = E[(X - \mu_X) (Y - \mu_Y)]/(\sigma_X \sigma_Y)$,

Benefits of MVA

- Identifies variables that contribute most to the overall variability in the data
- Helps isolate those variables that co-vary with each other
- A picture is worth a thousand words and helps understanding the data

Benefits of MVA

Applications of MVA

- Pharmaceutical and biotechnological tests
- Agricultural analysis
- Business intelligence and marketing
- Spectroscopic applications
- Genetics and metabolism
- Etc.

Cell Example

- Imagine you have a dish with a bunch of different cells, but you don't know how they are characterized
- You decide that the best way to characterize these cell is to measure the mRNA expression of multiple genes
- However, there are too many measurements
- Conclusion: have to use MVA

Cell Example cells = subjects genes = variables

Gene	cell 1	cell 2	cell 3	cell 4	cell 5	cell 6	cell 7	cell 8	cell 9	cell 10
а	12	8	12	8	20	8	8	20	8	24
b	28	28	28	28	0	8	16	12	20	16
С	16	16	16	12	16	16	16	16	16	12
d	20	20	20	20	8	20	20	8	24	8
е	28	24	24	24	4	12	8	20	12	8
f	4	32	12	12	28	0	8	16	16	4
g	18	12	18	12	30	12	12	30	12	36
h	42	42	42	42	0	12	24	18	30	24
i	24	24	24	18	24	24	24	24	24	18
j	30	30	30	30	12	30	30	12	36	12
k	8	12	8	8	20	0	4	28	4	20
I	7	7	7	7	0	2	4	3	5	4
m	8	8	8	6	8	8	8	8	8	6
n	15	15	15	15	12	30	30	12	36	12
ο	21	21	21	21	0	6	12	9	15	12

PCA and Cluster Analysis

PCA

Cells	Factor 1	Factor 2
cell1	0.93549	0.07226
cell2	0.81307	-0.0181
cell3	0.96315	0.0835
cell4	0.95191	-0.0752
cell5	-0.33566	0.75692
cell6	0.60245	0.0404
cell7	0.8073	0.0129
cell8	-0.01531	0.95305
cell9	0.8369	-0.07732
cell10	0.18234	0.85819
cell10	0.18234	0.85819

Cluster Analysis

Cluster Dendrogram

PRINCIPAL COMPONENT ANALYSIS

Reduction of dimension

1 dimension number line

Transcription from single cell								
Gene	mRNA count							
а	12							
b	5							
С	16							
d	8							
е	7							
f	4							

Two dimension graph

2-D graph of two cells transcription profile

- So for 3 cells....it requires a 3-D data graph.
- For 4 cells...4 dimensional...which is not possible to draw on paper
- For 1000 cells.....1000-D (Impossible!)

Principal Component Determination

Principal Component Analysis

- PCA compresses(flattens) multidimensional data(multiple cell) into 2 or 3 dimensions which provides meaningful interpretation about the maximum variance in the data set.
- Flattening a Z stack of microscope images to make a 2-D image for paper.

Principal Component Analysis

Gene	Cell1	Cell2
а	12	18
b	5	9
С	16	13
d	8	14
е	7	10
f	4	7
g	10	12
h	15	17
i	16	18
j	14	15
k	12	14
I	9	11

2-D graph of two cells transcription profile

PC1: Most variation axis

PC2: the 2nd most variation axis

Principal Component Analysis

Variability extent on each PC

Loading: Influence of each gene on the PC.

Eigenvalue and Eigenvector: an array of loading for a PC with direction of the influence.

Gene	Cell1	Cell2
а	12	18
b	5	9
С	16	13
d	8	14
е	7	10
f	4	7
a	10	12

Gene	Influenc e on PC1	In value PC1	Influence on PC2	In value PC2
а	Medium	5	High	3
b	High	-9	Low	-0.1
С	High	9	High	-3.5
d	Low	-3	High	2
е	Medium	-6	Low	-0.5
f	High	-11	Medium	-1
g	Low	-0.5	Low	-0.5

Variability Scoring

Gene	Cell1	Cell2
а	12	18
b	5	9
С	16	13
d	8	14
е	7	10
f	4	7
g	10	12

Gene	Influenc e on PC1	In value PC1	Influence on PC2	In value PC2
а	Medium	5	High	3
b	High	-9	Low	-0.1
с	High	9	High	-3.5
d	Low	-3	High	2
е	Medium	-6	Low	-0.5
f	High	-11	Medium	-1
g	Low	-0.5	Low	-0.5

Score cell based on transcription level and influence on each principal component:

Cell1 PC1 = Σ (no. of expression of gene * respective influence on PC1) =(12*5)+(5*-9)+(16*9)+(8*-3)+..... =1 Cell1 PC2 =(18*3)+(9*-0.1)+(13*-3.5)+(14*2)+..... =1

Plotting PC2 against PC1

Mathematical representation

- $X = []_{nxm}$ where X is the data matrix, with n no. of samples and m no. of measurements.
- PCA=Eigendecomposition, X[']X=W where W is the eigenvalues with eigenvectors (mXm matrix) and X['] is the X transpose matrix.
- T=XW where T is the score (nXm matrix).

Characteristics of W is such that each column is a PC and the eigenvalues are arranged in descending order.

Assumptions

- 1. Linearity
- 2. Correlation among the variables
- 3. Large variance have more important dynamics
- 4. Sample size: 150+ cases.
- 5. All outliers should be removed
- 6. Components are uncorrelated

PCA BY R

Data Transcription level of 15 genes in 10 different cells.

Gene	cell 1	cell 2	cell 3	cell 4	cell 5	cell 6	cell 7	cell 8	cell 9	cell 10
а	12	8	12	8	20	8	8	20	8	24
b	28	28	28	28	0	8	16	12	20	16
С	16	16	16	12	16	16	16	16	16	12
d	20	20	20	20	8	20	20	8	24	8
е	28	24	24	24	4	12	8	20	12	8
f	4	32	12	12	28	0	8	16	16	4
g	18	12	18	12	30	12	12	30	12	36
h	42	42	42	42	0	12	24	18	30	24
i	24	24	24	18	24	24	24	24	24	18
j	30	30	30	30	12	30	30	12	36	12
k	8	12	8	8	20	0	4	28	4	20
I	7	7	7	7	0	2	4	3	5	4
m	8	8	8	6	8	8	8	8	8	6
n	15	15	15	15	12	30	30	12	36	12
ο	21	21	21	21	0	6	12	9	15	12

Data in R

RR	Gui (32-bit)								_	-	and the second second
File	Edit Vie	w Misc	Packages	Window	s Help						
2	£ 🖬	B) 🔁 🕯	G 💿	5							
R	R Console										
5	datal <-	read.c	sv(file.	choose	() heads	r=TRUF)					^
5 d	data1	1044.01	J*(IIIC.	01100000	(), nead	1002,					
	cell.1	cell.2	cell.3	cell.4	cell.5	cell.6	cell.7	cell.8	cell.9	cell.10	
1	12	8	12	8	20	8	8	20	8	24	
2	28	28	28	28	0	8	16	12	20	16	
3	16	16	16	12	16	16	16	16	16	12	
4	20	20	20	20	8	20	20	8	24	8	
5	28	24	24	24	4	12	8	20	12	8	
6	4	32	12	12	28	0	8	16	16	4	
7	18	12	18	12	30	12	12	30	12	36	
8	42	42	42	42	0	12	24	18	30	24	
9	24	24	24	18	24	24	24	24	24	18	
10	30	30	30	30	12	30	30	12	36	12	
11	8	12	8	8	20	0	4	28	4	20	=
12	7	7	7	7	0	2	4	3	5	4	
13	8	8	8	6	8	8	8	8	8	6	
14	15	15	15	15	12	30	30	12	36	12	
15	21	21	21	21	0	6	12	9	15	12	
>											-
4											
											P

Correlation among cells

PCA summary

🙀 R Console		×	
<pre>> pc <-princomp(data1, > summary(pc) Importance of component</pre>	<pre>score=TRUE, cor=TRUE) cs:</pre>		*
	Comp.1 Comp.2 Comp.3 Comp.4 Comp.5		
Standard deviation	2.2911491 1.4975273 1.2533352 0.80823993 0.44571170		
Proportion of Variance	0.5249364 0.2242588 0.1570849 0.06532518 0.01986589		
Cumulative Proportion	0.5249364 0.7491952 0.9062801 0.97160530 0.99147119		
	Comp.6 Comp.7 Comp.8 Comp.9		
Standard deviation	0.26074355 0.121463216 0.0504736140 1.233474e-08		
Proportion of Variance	0.00679872 0.001475331 0.0002547586 1.521458e-17		
Cumulative Proportion	0.99826991 0.999745241 1.0000000000 1.000000e+00		
	Comp.10	- 6	
Standard deviation	3.756283e-09		
Proportion of Variance	1.410966e-18		Ξ
Cumulative Proportion	1.000000e+00		
			Ŧ
<		Þ.	

Scree plot

Graphical representation PC2 vs PC1

Principle Component Analysis \rightarrow R

Loadings by different components on each cell

🙀 R Console								[×	
> pc\$loading											^
Loadings:											
Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7	Comp.8	Comp.9	Comp.10		
cell.1 -0.399	-	-0.244	0.243	-0.324	-0.251	-0.108	-0.135	0.722	-		
cell.2 -0.348		-0.251	-0.635	0.110		-0.142	-0.203		0.578		
cell.3 -0.411		-0.243			-0.359	-0.206	-0.228	-0.539	-0.502		
cell.4 -0.408		-0.272				0.522	0.687				
cell.5 0.145	-0.509	0.296	-0.481		-0.526	0.114	0.182	0.198	-0.189		
cell.6 -0.282		0.565	0.224	-0.444	-0.196	0.235		-0.292	0.407		
cell.7 -0.367		0.413		0.212	0.187	-0.651	0.427				
cell.8	-0.632	-0.131		-0.480	0.563				-0.108		
cell.9 -0.380		0.354	-0.140	0.307	0.363	0.385	-0.430	0.200	-0.332		
cel1.10	-0.571	-0.156	0.472	0.557					0.295		
	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5	Comp.6	Comp.7	Comp.8	Comp.9		
SS loadings	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0		_
Proportion Var	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		
Cumulative Var	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
	Comp.10)									_
SS loadings	1.0)								1	-
Proportion Var	0.1	L									
Cumulative Var	1.0)									
>											Ŧ
4										P.	

Scores of genes

🙀 R Console	
> pc\$score	•
Comp.1 Comp.2 Comp.3 Comp.4 Co	mp.5 Comp.6
[1,] 2.2450281 -1.33064649 -0.05607516 0.717942907 0.2555	8131 -0.216892660
[2,] -1.6763363 0.78306085 -1.41236564 0.263598637 0.3366	8259 0.048727455
[3,] 0.6001011 -0.07550643 0.74783680 -0.004553757 -0.2854	0144 -0.138325688
[4,] -0.9073793 1.23961560 0.91752584 0.083465319 -0.0236	9290 -0.194324944
[5,] -0.5249865 0.43814682 -1.40227847 -0.053354720 -1.3357	4610 0.074620735
[6,] 1.7393582 0.08976140 -0.11102158 -2.774060033 0.4016	1486 -0.065391029
[7,] 1.0710035 -3.57276903 -0.10083988 0.721943002 0.3173	4920 -0.261368724
[8,] -4.8110431 -0.40220802 -2.13527560 0.040426596 0.4390	0112 0.137061450
[9,] -1.3963871 -1.69005894 1.10502806 -0.361801994 -0.4941	2493 -0.143518265
[10,] -3.6576076 0.28262411 1.35956162 -0.229773380 -0.1015	6213 -0.227517149
[11,] 3.0526422 -1.63480840 -0.83622632 -0.131919745 -0.1744	5924 0.611807994
[12,] 3.0257239 2.56096415 -0.32800069 0.598356697 0.1832	0480 -0.083773537
[13,] 2.5965892 1.53904607 0.39064554 0.352694480 -0.0766	7795 -0.133133111
[14,] -1.2477236 0.39708304 2.91239613 0.401851333 0.2727	0747 0.587467015
[15,] -0.1089829 1.37569528 -1.05091065 0.375184657 0.2855	2333 0.004560458
Comp.7 Comp.8 Comp.9 Comp.10	
[1,] 0.08149097 -0.020557644 -6.611804e-16 8.329112e-15	
[2,] -0.04781310 -0.007876108 9.851823e-16 5.418504e-16	
[3,] -0.18714218 -0.004684563 2.136170e-15 -4.138718e-15	
[4,] 0.09902090 0.063162225 -1.851207e-15 -1.380708e-14	
[5,] 0.16893356 -0.064006881 -3.003064e-15 2.235843e-14	
[6,] 0.06179806 -0.035633258 -1.678487e-15 1.049486e-14	
[7,] 0.12261938 -0.031471151 -1.088675e-15 1.219017e-14	
[8,] -0.07133674 -0.012448848 1.295588e-15 7.240844e-16	
[9,] -0.28033036 -0.007661531 3.049995e-15 -6.357633e-15	
[10,] 0.14891427 0.094108652 -2.849426e-15 -2.077819e-14	
[11,] -0.01517407 0.111578301 1.176871e-15 -2.976349e-14	=
[12,] -0.01252765 -0.001016998 4.031809e-16 2.808084e-16	
[13,] -0.09395401 -0.001707596 1.041708e-15 -1.847887e-15	
[14,] 0.06155226 -0.076194862 -1.406136e-15 2.163233e-14	
[15,] -0.03605128 -0.005589738 7.449214e-16 4.548296e-16	
>	-
i l	h d

PCR IN SAS

Principle Component Analysis \rightarrow SAS

Data with code in SAS

¥	Editor	- Unt	itled1	*]	
	opt	ion	line	size	=80;						A	-	
E	dat	a pc	;										
	title 'GENE TRANSCRIPTION';												
		inpu	t ge	nes\$	cel	11 c	e112	cel	13 c	e114	4 cell5 cell6 cell7 cell8 cell9 cell10;		
		card	s;										
	a	12	8	12	8	20	8	8	20	8	24		
	b	28	28	28	28	0	8	16	12	20	16		
	с	16	16	16	12	16	16	16	16	16	12		
	d	20	20	20	20	8	20	20	8	24	8		
	e	28	24	24	24	4	12	8	20	12	8		
	f	4	32	12	12	28	0	8	16	16	4		
	g	18	12	18	12	30	12	12	30	12	36		
	h	42	42	42	42	0	12	24	18	30	24		
	i	24	24	24	18	24	24	24	24	24	18		
	j	30	30	30	30	12	30	30	12	36	12		
	k	8	12	8	8	20	0	4	28	4	20		
	1	7	7	7	7	0	2	4	3	5	4		
	m	8	8	8	6	8	8	8	8	8	6		
	n	15	15	15	15	12	30	30	12	36	12		
	0	21	21	21	21	0	6	12	9	15	12		
	;												
	pro	c co	rr;										
	pro	c fa	ctor	dat	a=pc	met	nod=	prin	scr	ee;			
	var	cel	11 c	eII2	cel	13 c	eII4	cel	15 C	eII6	6 Cell7 Cell8 Cell9 Cell10;		
	run	;											
	1												
1												1.	

Correlation among cells

Pearson Correlation Coefficients, N = 15 Prob > r under H0: Rho=0													
	cell1 cell2 cell3 cel		cell4	cell5	cell6	cell7	cell8	cell9	cell10				
cell1	1.00000	0.71600 0.0027	0.97531 <.0001	0.94440 <.0001	-0.42357 0.1157	0.44756 0.0944	0.60767 0.0163	0.09305 0.7415	0.60825 0.0161	0.30825 0.2637			
cell2	0.71600 0.0027	1.00000	0.83572 0.0001	0.86697 <.0001	-0.18724 0.5040	0.18830 0.5015	0.49264 0.0621	0.03796 0.8931	0.61913 0.0139	-0.01082 0.9695			
cell3	0.97531 <.0001	0.83572 0.0001	1.00000	0.97389 <.0001	-0.34687 0.2053	0.41133 0.1277	0.63632 0.0108	0.08662 0.7589	0.66668	0.28612 0.3012			
cell4	0.94440 <.0001	0.86697 <.0001	0.97389 <.0001	1.00000	-0.47358 0.0746	0.35165 0.1987	0.60247 0.0175	-0.04359 0.8774	0.67265 0.0060	0.14077 0.6168			
cell5	-0.42357 0.1157	-0.18724 0.5040	-0.34687 0.2053	-0.47358 0.0746	1.00000	0.04382 0.8768	-0.06613 0.8149	0.68216 0.0051	-0.11728 0.6772	0.39158 0.1489			
cell6	0.44756 0.0944	0.18830 0.5015	0.41133 0.1277	0.35165 0.1987	0.04382 0.8768	1.00000	0.89875 <.0001	-0.04721 0.8673	0.82253 0.0002	0.05032 0.8586			
cell7	0.60767 0.0163	0.49264 0.0621	0.63632 0.0108	0.60247 0.0175	-0.06613 0.8149	0.89875 <.0001	1.00000	-0.08824 0.7545	0.96998 <.0001	0.10840 0.7006			
cell8	0.09305 0.7415	0.03796 0.8931	0.08662 0.7589	-0.04359 0.8774	0.68216 0.0051	-0.04721 0.8673	-0.08824 0.7545	1.00000	-0.15554 0.5799	0.74906 0.0013			
cell9	0.60825 0.0161	0.61913 0.0139	0.66668	0.67265 0.0060	-0.11728 0.6772	0.82253 0.0002	0.96998 <.0001	-0.15554 0.5799	1.00000	0.00124 0.9965			
cell10	0.30825 0.2637	-0.01082 0.9695	0.28612 0.3012	0.14077 0.6168	0.39158 0.1489	0.05032 0.8586	0.10840 0.7006	0.74906 0.0013	0.00124 0.9965	1.00000			

PCA summary

Loadings by different components on each cell

Orthogonal rotation

proc factor data=pc method=prin scree n=3 out=scores rotate=varimax; var cell1 cell2 cell3 cell4 cell5 cell6 cell7 cell8 cell9 cell10; run;

GENE TRANSCRIPTION											
The FACTOR Procedure Rotation Method: Varimax											
			Ort	hogoi	nal Trai	nsforma	tion M	atrix			
					1	2		3			
			1	0.8	452	0.57959	-0.0	2521			
			2	-0.01	391	0.06296	0.9	9792			
			3	-0.57	997	0.81247	-0.0	5934			
				Ro	ated Fa	actor Pat	ttern				
				F	actor1	Factor	2 Fa	ctor3			
			cell	1 0	.92082	0.2864	6 0.	07926			
			cell	2 0	.83127	0.2061	9 -0.	00991			
			cell	3 0	.94292	0.3041	4 0.	09064			
			cell	4 0	.95963	0.2610	2 -0.	06657			
			cell	5 -0	.49567	0.1571	5 0.	74760			
			cell	6 0	.11419	0.9544	6 0.	02502			
			cell	7 0	.38440	0.9124	6 0.	00252			
			cell	8 0	.04399	-0.1007	8 0.	95605			
			cell	9 0	.45205	0.8632	.7 -0.	08553			
			cell	10 0	.22304	-0.0184	3 0.	36152			
			Va	riance	Explai	ned by E	ach Fa	ctor			
				Factor1 Factor2			Fac	tor3			
		4.0	011443	1 2.8	092250	2.242	1331				
			Final Con	משמח	ality Fs	timates	: Total	= 9.062801			
cell1	cell2	cell3	cell4	4	cell	5	cell6	cell7	cell8	cell9	cell10
						0.024	26750	0.00004700	0.00040400	0.05604050	0.70000560

Limitation of PCA

- Requires numeric data for analysis
- 150+ data needed to get a representative factor trend.
- Loss of information due to dimension reduction
- Analysis is non conclusive. Needs explanatory factor analysis or cluster analysis to explain overall trend.

CLUSTER ANALYSIS

Cluster Analysis

- An unsupervised learning tool
- It breaks down a large data set into smaller groups (i.e. clusters) where observations within a group are more similar than observations from other groups.

Algorithms

- Hierarchical Cluster
- Non-Hierarchical Cluster (aka K-Means Cluster)

Euclidian Distance

Straight line distance between two points

Euclidian Distance

Euclidian Distance

X axis

Clustering

X axis

GENERAL ASSUMPTIONS

General Assumptions

- Components (X & Y axis) are uncorrelated
- Some relationship among variables
- On a graph, points that are closer together share more similarities than points that are farther apart
- Large variances have more important dynamics in defining clusters
- Data is normalized/standardized
 - Euclidean Distance (straight line distance between 2 points) assumes all parameters have the same scale for fair comparison between them

General Assumptions

Normalization/Standardization

Gene	cell 1	cell 2	cell 3	cell 4	cell 5	cell 6	cell 7	cell 8	cell 9	cell 10
а	12	8	12	8	20	8	8	20	8	24
Size	4789	2334	1566	4678	2346	9654	2345	3567	1245	2366
Grow	0.2	0.05	0.08	0.13	0.67	0.23	0.05	0.76	0.08	0.23
# MITO	20	20	20	20	8	20	20	8	24	8

Normalization → scales all numeric variables in the range [0,1]

$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

 Standardization → transforms data to have zero mean and unit variance [-1,+1]

$$x_{new} = \frac{x - \mu}{\sigma}$$

Cell Example Raw Data

Gene	cell 1	cell 2	cell 3	cell 4	cell 5	cell 6	cell 7	cell 8	cell 9	cell 10
а	12	8	12	8	20	8	8	20	8	24
b	28	28	28	28	0	8	16	12	20	16
С	16	16	16	12	16	16	16	16	16	12
d	20	20	20	20	8	20	20	8	24	8
е	28	24	24	24	4	12	8	20	12	8
f	4	32	12	12	28	0	8	16	16	4
g	18	12	18	12	30	12	12	30	12	36
h	42	42	42	42	0	12	24	18	30	24
i	24	24	24	18	24	24	24	24	24	18
j	30	30	30	30	12	30	30	12	36	12
k	8	12	8	8	20	0	4	28	4	20
I	7	7	7	7	0	2	4	3	5	4
m	8	8	8	6	8	8	8	8	8	6
n	15	15	15	15	12	30	30	12	36	12
ο	21	21	21	21	0	6	12	9	15	12

Cell Example PCA Results

Cells	Factor 1	Factor 2		
cell1	0.93549	0.07226		
cell2	0.81307	-0.0181		
cell3	0.96315	0.0835		
cell4	0.95191	-0.0752		
cell5	-0.33566	0.75692		
cell6	0.60245	0.0404		
cell7	0.8073	0.0129		
cell8	-0.01531	0.95305		
cell9	0.8369	-0.07732		
cell10	0.18234	0.85819		

PCA and Cluster Analysis

Cell Example

Gene	cell 1	cell 2	cell 3	cell 4	cell 5	cell 6	cell 7	cell 8	cell 9	cell 10
а	12	8	12	8	20	8	8	20	8	24
b	28	28	28	28	0	8	16	12	20	16
с	16	16	16	12	16	16	16	16	16	12
d	20	20	20	20	8	20	20	8	24	8
е	28	24	24	24	4	12	8	20	12	8
f	4	32	12	12	28	0	8	16	16	4
g	18	12	18	12	30	12	12	30	12	36
h	42	42	42	42	0	12	24	18	30	24
i i	24	24	24	18	24	24	24	24	24	18
j	30	30	30	30	12	30	30	12	36	12
k	8	12	8	8	20	0	4	28	4	20
1	7	7	7	7	0	2	4	3	5	4
m	8	8	8	6	8	8	8	8	8	6
n	15	15	15	15	12	30	30	12	36	12
0	21	21	21	21	0	6	12	9	15	12

PCA

Cluster Analysis

Y axis

Cluster Dendrogram

HIERARCHICAL CLUSTER

How many clusters?

Hierarchical Cluster

- A series of steps that build a tree-like structure by either adding elements (i.e. agglomerative) to form a large cluster or by subtracting elements (i.e. divisive) from a large cluster to form smaller clusters
- Dendogram is used to visualize the results

Cluster Dendrogram

Single Linkage

Complete Linkage

Average Linkage

Centroid Linkage

Ward's Linkage

Agglomerative Clustering

Single Linkage

$$D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$$

- Distance between closest elements in cluster
- Produces long chains $a \rightarrow b \rightarrow c \rightarrow ... \rightarrow z$

D (distance); c1, c2 (clusters); x1, y2 (distance between two elements) http://bit.ly/s-link

~ °

Single Linkage

$$D(c_1, c_2) = \min_{x_1 \in c_1, x_1 \in c_2} D(x_1, x_2)$$

- Distance between closest elements in cluster
- Produces long chains $a \rightarrow b \rightarrow c \rightarrow ... \rightarrow z$

Complete Linkage

$$D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$$

- Distance between farthest elements in clusters
- Forces "spherical" clusters with consistent diameter

59

Single Linkage

$$D(c_1, c_2) = \min_{x_1 \in C_1, x_2 \in C_2} D(x_1, x_2)$$

- Distance between closest elements in cluster
- Produces long chains $a \rightarrow b \rightarrow c \rightarrow ... \rightarrow z$

Complete Linkage

$$D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2) -$$

- Distance between farthest elements in clusters
- Forces "spherical" clusters with consistent diameter

Average Linkage

$$D(c_1, c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1, x_2)$$

- Average of all pairwise distances
- Less affected by outliers

Single Linkage

$$D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$$

- Distance between closest elements in cluster
- Produces long chains $a \rightarrow b \rightarrow c \rightarrow ... \rightarrow z$

Complete Linkage

$$D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$$

- Distance between farthest elements in clusters -
- Forces "spherical" clusters with consistent diameter

Average Linkage

$$D(c_1, c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1, x_2)$$

- Average of all pairwise distances
- Less affected by outliers

Centroid Linkage

- $D(c_1, c_2) = D\left[\left(\frac{1}{|c_1|}\sum_{x \in c_1} \vec{x}\right), \left(\frac{1}{|c_2|}\sum_{x \in c_2} \vec{x}\right)\right]$ Distance between centroids (means) of two clusters
- Requires → numerical data

6

Single Linkage

$$D(c_1, c_2) = \min_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$$

- Distance between closest elements in cluster
- Produces long chains $a \rightarrow b \rightarrow c \rightarrow ... \rightarrow z$

Complete Linkage

- $D(c_1, c_2) = \max_{x_1 \in c_1, x_2 \in c_2} D(x_1, x_2)$
- Distance between farthest elements in clusters
- Forces "spherical" clusters with consistent diameter

Average Linkage

$$D(c_1, c_2) = \frac{1}{|c_1|} \frac{1}{|c_2|} \sum_{x_1 \in c_1} \sum_{x_2 \in c_2} D(x_1, x_2)$$

 $D(c_1, c_2) = D\left[\left(\frac{1}{|c_1|}\sum_{x \in c_1} \vec{x}\right), \left(\frac{1}{|c_2|}\sum_{x \in c_2} \vec{x}\right)\right]$

 $TD_{c_1 \cup c_2} = \sum_{x \in c_1 \cup c_2} D(x, \mu_{c_1 \cup c_2})^2$

- Average of all pairwise distances
- Less affected by outliers

Centroid Linkage

- Distance between centroids (means) of two clusters
- Requires \rightarrow numerical data

Ward's Linkage

- Consider joining two clusters
- Requires → numerical data

D (distance); c1, c2 (clusters); x1, y2 (distance between two elements)

ltem	X	Y
а		
b		
С		
d		
е		
f		
g		
h		
i		
j		
Etc.		

How many clusters do we have?

Single Linkage Example

Limitations of Hierarchical Clustering

- Single, Complete and Average Linkage can use numerical or categorical data as long as the distance is defined
- Centroid and Ward's Linkage requires numerical (i.e. interval or ratio) data since the formula uses means

Limitations of Hierarchical Clustering

- Underlying structure of the sample is unknown which makes it difficult to select the "correct" algorithm
- Poor cluster assignments cannot be modified
- Unstable solutions with a small sample (need at least 150 observations)

Limitations of Hierarchical Clustering

- Outliers can affect clustering
 - Single and Complete Linkage → outliers can merge the wrong clusters
 - Average Linkage → is less affected by outliers because it computes average distances
 - Centroid Linkage → produces irregular shaped clusters where outliers influence the position of the centroid
 - Ward's Linkage → tends to produce clusters with similar number of observations which makes it easy for outliers to distort results

HIERARCHICAL CLUSTER IN R

PCA Results

Cells	Factor 1	Factor 2
cell1	0.93549	0.07226
cell2	0.81307	-0.0181
cell3	0.96315	0.0835
cell4	0.95191	-0.0752
cell5	-0.33566	0.75692
cell6	0.60245	0.0404
cell7	0.8073	0.0129
cell8	-0.01531	0.95305
cell9	0.8369	-0.07732
cell10	0.18234	0.85819

Open File

pca<-read.csv(file.choose(),header=TRUE)</pre> >_ > pca cells factor.1 factor.2 cell1 0.93549 0.07226 1 2 cell2 0.81307 -0.01810 3 cell3 0.96315 0.08350 4 cell4 0.95191 -0.07520 5 cell5 -0.33566 0.75692 cell6 0.60245 0.04040 6 cell7 0.80730 0.01290 7 8 cell8 -0.01531 0.95305 cell9 0.83690 -0.07732 9 10 cell10 0.18234 0.85819

Graph Data

> plot(pca\$factor.2~pca\$factor.1,data=pca)

Graph Data

> plot(pca\$factor.1~pca\$factor.2,data=pca)

Graph Data

> with(pca,text(pca\$factor.1~pca\$factor.2, labels=pca\$cells,pos=3.5, cex=.5))

pca\$factor.2

Standardize Data

Subtract first column to have quantitative data

```
> pca
    cells factor.1 factor.2
1
    cell1
          0.93549
                     0.07226
2
   cell2
          0.81307 - 0.01810
3
   cell3
          -0.96315
                     0.08350
4
   ce114
           0.95191 - 0.07520
5
   cell5 -0.33566
                     0.75692
6
   cell6
           0.60245
                     0.04040
7
   ce117
           0.80730
                     0.01290
8
    cell8 -0.01531
                     0.95305
9
    cel19
           0.83690
                    -0.07732
   cell10
10
           0.18234
                     0.85819
```


Standardize

Subtract mean and divide by standard deviation

```
> m<-apply(z,2,mean)</pre>
> s<-apply(z,2,sd)
> z<-scale(z,m,s)</pre>
> z
         factor.1
                    factor.2
     0.77933569 -0.4519086
 [1.]
 [2,] 0.51529083 -0.6686520
 [3,] 0.83899491 -0.4249476
 [4,] 0.81475161 -0.8056157
 [5.] -1.96237834
                   1.1903617
      0.06100942 -0.5283300
 [6.]
      0.50284565 -0.5942933
 [7.]
      -1.27142284
 [8.]
                   1.6608119
       0.56668920 -0.8107009
 [9.]
[10,] -0.84511612 1.4332745
attr(,"scaled:center")
factor.1 factor.2
0.574164 0.260660
attr(,"scaled:scale")
factor.1 factor.2
0.4636333 0.4168985
>
```

```
> z=pca[,-c(1,1)]
> Z
   factor.1 factor.2
    0.93549
              0.07226
1
2
    0.81307 - 0.01810
З.
    0.96315
              0.08350
4
    0.95191 - 0.07520
5
   -0.33566
             0.75692
6
    0.60245 0.04040
7
    0.80730 0.01290
8
   -0.01531 0.95305
    0.83690 - 0.07732
9
10
    0.18234
              0.85819
```

Euclidian Distance

Measures the distance between all the points

```
> distance<-dist(z)</pre>
> distance
                                3
           1
                      2
                                           4
                                                     5
                                                                6
                                                                          7
                                                                                    8
                                                                                               9
  0.34161000
3 0.06546845 0.40518658
4 0.35547583 0.32929598 0.38143939
 3.19594232 3.09754357 3.23371551 3.41999658
6 0.72238001 0.47545961 0.78482441 0.80312805 2.65480681
7 0.31099867 0.07539289 0.37639649 0.37675256 3.04340644 0.44673304
8 2.94435023 2.93577036 2.96719659 3.23038530 0.83590845 2.56275597 2.86941253
  0.41707372 0.15106191 0.47218223 0.24811453 3.22497041 0.57917645 0.22562855 3.08010251
10 2.48852544 2.50375756 2.50783157 2.78707561 1.14336412 2.16077668 2.43475507 0.48322943 2.65115446
>
> print(distance,digits=3)
                                               6
                                        5
                                                       7
                                4
                                                               8
                                                                       9
        1
                2
                        3
   0.3416
2
3 0.0655 0.4052
4 0.3555 0.3293 0.3814
  3.1959 3.0975 3.2337 3.4200
5
6 0.7224 0.4755 0.7848 0.8031 2.6548
7 0.3110 0.0754 0.3764 0.3768 3.0434 0.4467
  2.9444 2.9358 2.9672 3.2304 0.8359 2.5628 2.8694
8
   0.4171 0.1511 0.4722 0.2481 3.2250 0.5792 0.2256 3.0801
9
10 2.4885 2.5038 2.5078 2.7871 1.1434 2.1608 2.4348 0.4832 2.6512
```

Euclidian Distance

Measures the distance between all the points

```
> distance<-dist(z)</pre>
> distance
                                3
           1
                      2
                                           4
                                                     5
                                                                6
                                                                          7
                                                                                     8
                                                                                               9
  0.34161000
3 0.06546845 0.40518658
4 0.35547583 0.32929598 0.38143939
 3.19594232 3.09754357 3.23371551 3.41999658
6 0.72238001 0.47545961 0.78482441 0.80312805 2.65480681
7 0.31099867 0.07539289 0.37639649 0.37675256 3.04340644 0.44673304
 2.94435023 2.93577036 2.96719659 3.23038530 0.83590845 2.56275597 2.86941253
   0.41707372 0.15106191 0.47218223 0.24811453 3.22497041 0.57917645 0.22562855 3.08010251
10 2.48852544 2.50375756 2.50783157 2.78707561 1.14336412 2.16077668 2.43475507 0.48322943 2.65115446
>
> print(distance,digits=3)
                                               6
                                        5
                                                       7
                                                               8
                                4
                                                                       9
                2
                        3
         1
   0.3416
2
3 0.0655 0.4052
4 0.3555 0.3293 0.3814
  3.1959 3.0975 3.2337 3.4200
5
6 0.7224 0.4755 0.7848 0.8031 2.6548
7 0.3110 0.0754 0.3764 0.3768 3.0434 0.4467
8 2.9444 2.9358 2.9672 3.2304 0.8359 2.5628 2.8694
9 0.4171 0.1511 0.4722 0.2481 3.2250 0.5792 0.2256 3.0801
10 2.4885 2.5038 2.5078 2.7871 1.1434 2.1608 2.4348 0.4832
                                                                 2.6512
```

> hc.c<-hclust(distance)
> plot(hc.c)

Cluster Dendrogram

distance hclust (*, "complete")

> plot(hc.c,hang=-1,labels=pca\$cells)

Cluster Dendrogram

distance hclust (*. "complete")

distance hclust (*. "complete")

Cluster Dendrogram

distance hclust (*. "complete")

Hierarchical Clustering (average)

> hc.a<-hclust(distance,method="average")</pre>

> plot(hc.a,hang=-1,labels=pca\$cells)

Cluster Dendrogram

distance

Hierarchical Clustering (average)

cell1 cell2 cell2 cell2 cell2 cell2 cell2 cell2 cell3 cell6 cell1 cell1 cell1 cell1 cell1 cell1 cell1 cell2 cell2 cell2 cell2 cell2 cell1 cell2 cell2 cell2 cell6 cell1 cell2 cell2 cell2 cell2 cell6 cell2 cell6 cell5 cell5

Cluster Dendrogram

distance

Cluster Mean

>	aggregat	te(z,list(me	ember.c),mean)
	Group.1	factor.1	factor.2
1	1	0.5827025	-0.612064
2	2	-1.9623783	1.190362
3	3	-1.0582695	1.547043
_			
>	aggregat	te(pca[,-c(1	L.1)],list(member.c),mean)
	Group.1	factor.1	factor.2
1	1	0.8443243	0.005491429
2	2	-0.3356600	0.756920000
3	3	0.0835150	0.905620000

- I

Silhouette Plot

- > library(cluster)
- > plot(silhouette(cutree(hc.c,3),distance))

Silhouette plot of (x = cutree(hc.c, 3), dist = distance)

Optimal Number of Clusters

<pre>> Dendogram_Height=0 > for (i in 2:9) Dendo > plot(9:1, Dendogram_ ylab = "Dendogram Hei > </pre>	ogram_Height[i] <- hc.c\$height[i-1] _Height, type="b", xlab = "# of clusters", ight")				
🛑 Global Environment 👻	Q,				
Values					
Dendogram_Height	num [1:9] 0 0.0655 0.0754 0.2256 0.3768				
distance	Class 'dist' atomic [1:45] 0.3416 0.0655 0.3555 3.1959 0.7224				
Ohc.a	List of 7				
©hc.c List of 7					
merge : int [1:9, 1:2] -1 -2 -9 -4 1 -8 -6 -5 7 -3					
height : num [1:9] 0.0655 0.0754 0.2256 0.3768 0.4722					
order : int [1:10] 6 1 3 4 9 2 7 5 8 10					
labels : NULL					
method : chr "comp"	method : chr "complete"				

HIERARCHICAL CLUSTER IN SAS

Import Data

```
data pc;
title 'PCA Results';
input cells$ factor1 factor2;
cards;
cell1 0.93549
                 0.07226
cell2 0.81307 -0.0181
cell3 0.96315 0.08350
cell4 0.95191
                 -0.0752
cell5 -0.33566
                0.75692
cell6 0.60245
                0.04040
cell7 0.8073 0.01290
cell8 -0.01531 0.95305
cell9 0.8369 -0.07732
cell10 0.18234
                 0.85819
;
21
    data pc:
```

22 title 'PCA Results';

```
23 input cells$ factor1 factor2;
```

24 cards;

```
NOTE: The data set WORK.PC has 10 observations and 3 variables.
NOTE: DATA statement used (Total process time):
real time 0.06 seconds
cpu time 0.04 seconds
```

]proc cluster noeigen method=centroid rsquare nonorm out=tree data=pc; id cells; var factor1 factor2;

run; quit;

PCA Results

The CLUSTER Procedure Centroid Hierarchical Cluster Analysis

Root-Mean-Square Total-Sample Standard Deviation 0.440886

Cluster History							
Number of Clusters	Clusters Joined		Freq	Semipartial R-Square	R-Square	Centroid Distance	Tie
9	cell1	cell3	2	0.0001	1.00	0.0299	
8	cell2	cell7	2	0.0001	1.00	0.0315	
7	CL8	cell9	3	0.0012	.999	0.0794	
6	CL7	cell4	4	0.0043	.994	0.1411	
5	CL9	CL6	6	0.0088	.985	0.1522	
4	cell8	cell10	2	0.0069	.979	0.2192	
3	CL5	cell6	7	0.0199	.959	0.2851	
2	cell5	CL4	3	0.0377	.921	0.4448	
1	CL3	CL2	10	0.9210	.000	1.2387	

proc sort data=clus3; by cluster; proc print data=clus3; by cluster; var cells factor1 factor2; run; quit;

PCA Results

CLUSTER=1

Obs	cells	factor1	factor2
1	cell1	0.93549	0.07226
2	cell3	0.96315	0.08350
3	cell2	0.81307	-0.01810
4	cell7	0.80730	0.01290
5	cell9	0.83690	-0.07732
6	cell4	0.95191	-0.07520
7	cell6	0.60245	0.04040

CLUSTER=2

Obs	cells	factor1	factor2
8	cell8	- <mark>0.015</mark> 31	0.95305
9	cell10	0.18234	0.85819

CLUSTER=3

Obs	cells	factor1	factor2
10	cell5	-0.33566	0.75692

K-MEANS CLUSTER

K-Means Cluster

- Most widely used for extra large data
- Observations can switch cluster membership
- Less impacted by outliers
- Multiple passes through the data allows the final solution to optimize within cluster homogeneity and between cluster heterogeneity
- Algorithm breaks the data into K clusters
- K is fixed

K-Means Cluster

ltem	X	Y
а		
b		
С		
d		
е		
f		
g		
h		
i		
j		
Etc.		

X axis

K-Means Cluster Y axis

X axis

113

K-Means Cluster Y axis

X axis

X axis

118

X axis

Limitations of K-Means Clustering

- Underlying structure of the sample is unknown which makes it difficult to determine the number of clusters (K) needed in advance
- Poor cluster assignments cannot be modified
- Unstable solutions with a small sample (need at least 150 observations)
- Forces clusters to be round
- Outliers can distort clusters

K-MEANS CLUSTER IN R

Cell Example

Cells	Factor 1	Factor 2
cell1	0.93549	0.07226
cell2	0.81307	-0.0181
cell3	0.96315	0.0835
cell4	0.95191	-0.0752
cell5	-0.33566	0.75692
cell6	0.60245	0.0404
cell7	0.8073	0.0129
cell8	-0.01531	0.95305
cell9	0.8369	-0.07732
cell10	0.18234	0.85819

```
- -
> kc<-kmeans(z,3)
> kc
K-means clustering with 3 clusters of sizes 3, 4, 3
Cluster means:
    factor.1 factor.2
1 0.8110274 -0.5608240
2 0.4114588 -0.6504941
3 -1.3596391 1.4281494
Clustering vector:
 [1] 1 2 1 1 3 2 2 3 2 3
Within cluster sum of squares by cluster:
[1] 0.0920484 0.2101224 0.7465117
 (between_SS / total_SS = 94.2 \%)
Available components:
[1] "cluster"
                                                 "withinss"
                                                                "tot.withinss" "betweenss"
                   "centers"
                                  "totss"
                                                                                              "size"
[8] "iter"
                   "ifault"
>
> kc$centers
    factor.1 factor.2
1 0.8110274 -0.5608240
2 0.4114588 -0.6504941
3 -1.3596391 1.4281494
>
```

> plot(factor.1~factor.2, z, col=kc\$cluster) >

factor.2

Remember? Hierarchical Cluster (centroid)

```
proc sgplot data=clus3;
scatter y=factor1 x=factor2 / group=cluster;
run; quit;
```


- > plot(factor.1~factor.2, z, col=kc\$cluster)
- > kc<-kmeans(z,2)
- > plot(factor.1~factor.2, z, col=kc\$cluster)
- > kc<-kmeans(z,4)</pre>
- > plot(factor.1~factor.2, z, col=kc\$cluster)
- > kc<-kmeans(z,5)</pre>
- > plot(factor.1~factor.2, z, col=kc\$cluster)
- >

K-MEANS CLUSTER IN SAS

proc fastclus data=clus3 maxclusters=3 maxiter=10 list;

id cells;

```
var factor1 factor2;
```

run;

PCA Results

The FASTCLUS Procedure Replace=FULL Radius=0 Maxclusters=3 Maxiter=10 Converge=0.02

Initial Seeds											
Cluster	factor1	factor2									
1	0153100000	0.9530500000									
2	0.9631500000	0.0835000000									
3	3356600000	0.7569200000									

Minimum Distance Between Initial Seeds = 0.375621

Iteration History											
	Relative Change in Cluster Seeds										
Iteration	Criterion	1	2	3							
1	0.1245	0.2918	0.3784	0							
2	0.0851	0	0	0							

Convergence criterion is satisfied.

	Cluster Listing													
Obs	cells	Cluster	Distance from Seed											
1	cell1	2	0.1130											
2	cell3	2	0.1421											
3	cell2	2	0.0392											
4	cell7	2	0.0378											
5	cell9	2	0.0831											
6	cell4	2	0.1345											
7	cell6	2	0.2444											
8	cell8	1	0.1096											
9	cell10	1	0.1096											
10	cell5	3	0											

Criterion Based on Final Seeds = 0.0851

Cluster Summary													
Cluster	Frequency	RMS Std Deviation	Maximum Distance from Seed to Observation	Radius Exceeded	Nearest Cluster	Distance Between Cluster Centroids							
1	2	0.1096	0.1096		3	0.4448							
2	7	0.1003	0.2444		1	1.1786							
3	1		0		1	0.4448							

Statistics for Variables												
Variable	Total STD	Within STD	R-Square	RSQ/(1-RSQ)								
factor1	0.46363	0.12786	0.940844	15.904346								
factor2	0.41690	0.06573	0.980667	50.724959								
OVER-ALL	0.44089	0.10166	0.958648	23.182382								

Pseudo F Statistic = 81.14

Approximate Expected Over-All R-Squared =

Cubic Clustering Criterion =

WARNING: The two values above are invalid for correlated variables.

GENERAL LIMITATIONS

General Limitations

- No test statistic available to validate the significance of the result
- Cluster dimensions are often randomly chosen and may not reflect real conditions → can be a statistical artifact
- Cluster analysis is powerful enough that it will provide a cluster even if no meaningful groups are embedded in the sample

General Limitations

- Choosing the variables used to group observations is the most important and different approaches may lead to different clusters
 - How to select the variable
 - Whether or not to standardize/normalize data
 - How to address multicollinearity \rightarrow use PCA
 - High correlation among variables can be an issue because it may overweight other important variables
 - PCA is also controversial since low eigenvalues are dropped which may exclude factors that represent unique and important information

Best Practice

 Use Hierarchical first to determine the optimal number of clusters followed by K-Means
 Clustering to optimize the shape of the clusters

The End

- A good example of PCA and Cell Clustering can be seen in this paper:
- Pollen et al. (2014). Low-coverage single cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nature. Beiotech. 32:1053–1058
- doi:10.1038/nbt.2967

GENE TRANSCRIPTION

Obs	genes	cell1	cell2	cell3	cell4	cell5	cell6	cell7	cell8	cell9	cell10	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6	Factor7	Factor8
1	а	12	8	12	8	20	8	8	20	8	24	-1.81714	-1.13517	-0.50815	1.70426	8.9145	3.63432	-13.3285	45.435
2	b	28	28	28	28	0	8	16	12	20	16	1.92681	2.11678	-0.50975	-3.60624	-12.8978	-3.82623	17.6066	-59.070
3	с	16	16	16	12	16	16	16	16	16	12	-0.66145	-0.82913	0.36270	1.09924	4.6843	1.77916	-7.4711	19.582
4	d	20	20	20	20	8	20	20	8	24	8	0.45281	-0.54510	0.75316	-0.46999	-1.2925	0.28286	2.8269	-5.344
5	е	28	24	24	24	4	12	8	20	12	8	0.93275	1.19706	-0.77193	-1.76390	-3.8704	-2.37981	11.3183	-33.983
6	f	4	32	12	12	28	0	8	16	16	4	-1.64457	-2.06041	-0.54662	5.87948	8.5946	3.09480	-13.5101	45.141
7	g	18	12	18	12	30	12	12	30	12	36	-0.50823	2.03144	-0.08978	-0.49679	0.6718	1.35217	-1.0036	5.940
8	h	42	42	42	42	0	12	24	18	30	24	5.10768	6.90936	-0.09217	-8.46254	-32.0466	-9.83865	45.3991	-150.816
9	i	24	24	24	18	24	24	24	24	24	18	1.22530	2.49050	1.21650	-1.40432	-5.6734	-1.43056	7.7824	-32.839
10	j	30	30	30	30	12	30	30	12	36	12	2.89668	2.91655	1.80218	-3.75816	-14.6387	-3.67502	23.2295	-70.228
11	k	8	12	8	8	20	0	4	28	4	20	-2.67918	-2.07466	-1.31858	4.19442	15.2148	2.16522	-22.1464	74.130
12	1	7	7	7	7	0	2	4	3	5	4	-2.84450	-5.07210	-1.13611	3.67821	15.8254	5.19239	-24.0821	78.550
13	m	8	8	8	6	8	8	8	8	8	6	-2.54819	-4.14876	-0.49110	3.60280	15.0420	4.98888	-22.7247	72.003
14	n	15	15	15	15	12	30	30	12	36	12	-0.17512	-1.51687	2.04818	0.98160	4.7955	-0.51952	-7.6067	24.694
15	0	21	21	21	21	0	6	12	9	15	12	0.33637	-0.27951	-0.71854	-1.17809	-3.3234	-0.82002	3.7104	-13.196

PCA of gene transcription by different kinds of cells

Divisive Clustering