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Multivariate Analysis (MVA)

- Complex systems require multiple and different
kind of measurements to be taken in order to best
describe reality

- MV is the investigation of many variables,
simultaneously, in order to understand the
relationships that may exist between variables

- MVA can be as simple as analysing two variables
right up to millions


Presenter
Presentation Notes
From an early age, most people are taught that the best 
way to investigate a problem is to investigate it one vari
able at a time. For some problems, this approach is perfectly 
acceptable, especially when the variables have a simple one-
to-one relationship.
However, when the relationships become more complex, a 
single variable can’t adequately describe the system. This is 
where Multivariate Analysis (MVA) is most useful

Multivariate analysis adds a much-needed toolkit when 
compared to the usual way people look at data. This highly 
graphical approach seeks to explore what is ‘hidden’ in the 
numbers. The old saying ‘A picture is worth a thousand 
words’ is true. Rather than just presenting many disjointed 
graphs to analyse complex data, multivariate analysis com
-
bines it all into one interpretable picture. It’s like viewing the 
maze from the top down so that you can get a clear path to 
the solution.



Multivariate Analysis (MVA)

- Is the study of variablility and its sources

- Shows the influence of both, wanted and
unwanted variability

- Wanted - the effect of variables on the
relationship between data points

- Unwanted - random variability resulting from
experimental features that cannot be controlled

- Used to predict future events



Types of MVA

- Exploratory Data Analysis (EDA)

- Deeper insight into large, complex data sets

- I.e. Principle Component Analysis, Cluster Analysis

- Regression Analysis

 Classification

- ldentifies new or existing classes

- i.e. Cluster Analysis
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MVA vs Classical Statistics

- How would you analyze 50 rows and 10 columns
of data?

- Plot columns together two at a time
- Plot each variable for all samples and look for trends
- This univariate analysis Is too simplistic,

frustrating and fails to detect the relationship
between variants (i.e. covariance and correlation)

covariance oxy = E[(X — pux ) (Y — py )]
correlation pyy = E[(X — pux ) (Y — py)|/(oxey),


Presenter
Presentation Notes
Covariance  is a measure indicating the extent to which two random variables change in tandem, it is a measure of correlation (ranges from 0 to +), has units
Correlation  relationship between two variables, is a scaled measure of the covariance (+ and – direction), no units
E = expected values 



Benefits of MVA

- l[dentifies variables that contribute most to the
overall variability in the data

- Helps isolate those variables that co-vary with
each other

- A picture is worth a thousand words and helps
understanding the data
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Benefits of MVA
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Presentation Notes
It provides a lot of insight into the data’s hidden structure 


Applications of MVA

- Pharmaceutical and biotechnological tests
- Agricultural analysis

- Business intelligence and marketing

- Spectroscopic applications

- Genetics and metabolism

- EtC.
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Cell Example

- Imagine you have a dish with a bunch of different
cells, but you don’t know how they are
characterized

- You decide that the best way to characterize
these cell is to measure the mMRNA expression of
multiple genes

- However, there are too many measurements

« Conclusion: have to use MVA


Presenter
Presentation Notes
Today we will go over PCA and Cluster Analysis and we decided to use the same set of data to give you a better understanding of how these algorithms work. Therefore, imagine in a dish we had different types of cells but we don’t know how they are characterized. One way way to analyze them is to look at the transcription expression of different genes of interest which can give us more insight into the identity of the cells or how the cells behave. 


Introduction

Cel I Exam p I e cells = subjects genes = variables
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PCA and Cluster Analysis
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PRINCIPAL COMPONENT
ANALY SIS

Reduction of dimension



Principle Component Analysis

1 dimension humber line

i e
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Principle Component Analysis

Two dimension graph

2-D graph of two cells transcription

profile
Cell1 Cell2 .
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- S0 for 3 cells....it requires a 3-D data graph.

s For 4 cells...4 dimensional...whic
to draw on paper

N IS not possible

- For 1000 cells.....1000-D (Impossible!)
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Principal Component Determination

Flattening of data. One axis
showing most variability.

Cell 2

Cell 2

Cell 1 Cell 1



Principle Component Analysis

Principal Component Analysis

- PCA compresses(flattens) multidimensional data(multiple
cell) into 2 or 3 dimensions which provides meaningful
Interpretation about the maximum variance in the data
set.

- Flattening a Z stack of microscope images to make a 2-D
Image for paper.




Principle Component Analysis

Principal Component Analysis
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Principle Component Analysis

Principal Component Analysis

é 4 EIS EIZ 1IO 1I2
For 500 cells....

14
cell1

1I6 1I8
500 Principal component!




Principle Component Analysis

Variability extent on each PC

Loading: Influence of each gene
on the PC.

Eigenvalue and Eigenvector: an

array of loading for a PC with
direction of the influence.

a 12 18
b 5 9

c 16 13
d 8 14
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f 4 7

g 10 12
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cell1
eon PC1 on PC2 PC2
PC1
Medium 5 High 3
High -9 Low -0.1
High 9 High -3.5
Low -3 High 2
Medium -6 Low -0.5
High -11 Medium -1
Low -0.5 Low -0.5



Principle Component Analysis

Variability Scoring

Celll Cell2 Gene Influenc | Invalue | Influence | In value
e on PC1 on PC2 PC2
12 18 PC1

a
b 5 9 a Medium High
b High
c 16 13
c High 9 High -3.5
d 8 14 .
d Low -3 High 2
€ ! 10 e Medium -6 Low 05
f 4 7 i High -11 Medium -1
g 10 12 g Low -0.5 Low -0.5

Score cell based on transcription level and
iInfluence on each principal component:

Celll PC1 =2(no. of expression of gene * respective influence on PC1)
=(12*5)+(5*-9)+(16*9)+(8*-3)+.......
=1

Celll PC2 =(18*3)+(9*-0.1)+(13*-3.5)+(14*2)+......
=1



Principle Component Analysis

Plotting PC2 against PC1
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Principle Component Analysis

Mathematical representation

«X=[ ]xm Where X is the data matrix, with n no.
of samples and m no. of measurements.

:

- PCA=Eigendecomposition, X X=W where W is
the eigenvalues with eigenvectors (mXm matrix)
and X Is the X transpose matrix.

- T=XW where T Is the score (nXm matrix).

Characteristics of W is such that each column is a
PC and the eigenvalues are arranged Iin
descending order.



Principle Component Analysis

Assumptions

1.

Linearity

Correlation among the variables

Large variance have more important dynamics
Sample size: 150+ cases.

All outliers should be removed

Components are uncorrelated
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Principle Component Analysis 2 R

Data Transcription level of 15 genes in 10 different cells.
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Principle Component Analysis 2 R

Data In R

T Reui (2010

File Edit View Misc Packages Windows Help

HEEIERRIEIE

¥ =

‘R RConsole BN EER =5
F
» datal <-read.csv(file.chooae ()  header=TRUE)
> datal
cell.l cell.2 cell.3 cell.d4 cell.S5 cell.6 cell.T cell.8 cell.S cell. 10
1 1z i 1z i 20 i i 20 i 24
2 28 28 28 28 0 i 16 1z 20 16
3 16 16 16 1z 16 16 16 16 16 1z
4 20 20 20 20 i 20 20 i 24 i
5 28 24 24 24 4 1z i 20 1z i
& 4 3z 1z 1z 28 0 i 16 16 4
7 18 1z 18 1z 30 1z 1z 30 1z 36 —
i 42 42 42 42 0 1z 24 18 30 24
g 24 24 24 18 24 24 24 24 24 18
10 30 30 30 30 1z 30 30 1z 36 1z
11 i 1z i i 20 0 4 28 4 20 3
12 7 7 7 7 0 2 4 3 5 4 3
13 i i i & i i i i i &
14 15 15 15 15 1z 30 30 1z 36 1z
15 21 21 21 21 0 & 1z g 15 1z
> | |
'l 3




Principle Component Analysis 2 R

Correlation among cells

R R Graphics: Device 2 (ACTIVE) =N =

> plot (datal)
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Principle Compon

PCA summary

-

R R Console

> po <-princomp (datal,
> summary (poe)

Inportance of components:

Standard dewviation
Proportion of Variance
Cumulative Proportion

Standard dewviation
Proportion of Variance
Cumulative Proportion

Standard dewviation
Proportion of Variance
Cumulative Proportion
>

acore=TRUE,

2.
.5249364 O.
.5249364 O.

[ ]

[ ]

(R

Conp.l
25911491 1.

Conp.&

26074355 0O
00879872 O
.998269591 O

Comnp .10

.756283e-09
-410%66e-18
-.000000e+00

tAnalysis 2 R

cor=TRUE)

Conp .2 Conp.3 Conp .4 Conp.5
4975273 1.2533352 0.808239593 0.44571170
2242588 0.1570849 0.06532518 0.01986589
7491952 0.9062801 0.97160530 0.99147119

Conp .7 Conp.2 Conp .9

121463216 0.0504736140 1.233474e-08
.001475331 0.0002547586 1.521458e-17
.999745241 1.0000000000 1.000000e4+00

m




Principle Component Analysis 2 R

Scree plot

R R Graphics: Device 2 (ACTIVE) ==

> plot(pc)

pc

Varlances

o  —

Comp.1 Comp_3 Comp.5 Comp.7 Comp.9




Principle Component Analysis 2 R 30

Graphical representation PC2 vs PC1

"R R Graphics: Device 2 (ACTIVE) o o=
|} biplot (pc)
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Principle Compon

tAnalysis 2 R

Loadings by different components on
each cell

| R Ceonsole

> pciloading

Loadings=s:

Comp .1
.3598
.348
.411
.408
.145
282
.367

cell.
cell.
cell.
cell.
cell.
cell.
cell.
cell.
cell.
cell.

55 loadings

[¥= S C T N Iy BT S WL T % R B

[
[

. 380

Proportion War
Cumunlative WVar

55 loadings

Proportion War
Cumunlative WVar

>

4

Conp . 2

-0.509

-0.6832

-0.571

Comnp .

B O s

Comp .10

oo e
=]

Comp . 3
.244
.251
. 243
272
L2598
. 565
.413
131
.354
156

Conp . 4
0.243
-0.635

-0.481
0.224

-0.140
0.472

Comp . 5
-0.324
0.110

-0.444
0,212
-0.480
0.307
0.557

Conp . 7
108
.142
L2068
522
.114
. 235
.651

. 385

C:lcll—*'g
Dhb ol

Conp . &
.135
203
228
. 687
.182

L4227

430

Comp . 9
0.722

-0.53%9
0.158

-0.252

0.200

C:lcll—*'g
bbb

Comp .10

0.578
-0.502

-0.18%9
0.407

-0.108
-0.332
0.2585

m

1




"R R Console
> pcEscor
1,1 2.
(2,1 -1
(3,1 ©O.
[4,1 -0
[5,1 -0
(e,1 1.
7.1 1.
(8,1 -4
[g,1 -1
[10,1 -3
[11,1] 3.
[12,1 3.
[13,1 2.
[14,]1 -1
[15,1 -0
(1,1 0.
(2,1 -0
[3,]1 -0
[4,1 0.
(5,1 0.
[e,1 0.
(7,1 0.
(8,1 -0
[5,1 -0
[10,1 0.
[11,] -0
[12,1 -0
[13,1 -0
[14,1 0.
[15,] -0

> |

4

Principle Compon

e
Comp.1
2450281

.BT63363

6001011

.89073793
. 5249865

T393582
0710035

8110431
. 38963871
.85Te076

05268422
0257238
5965892

2477236
.1089829

Comp. 7
08145097

.04781310
18714218

09902050
16893356
06179806
12261938

.07133674
28033036

14891427

01517407
L01252765
.09395401

06155226

03605128

|
[

|
[ ]

S T ST L T S e Y S e T S T e e T S

330649649
. T8306085
.07550643
.23961560
43814682
085976140
L5T2T76903
40220802
. 69005894
28282411
.63480840
56096415
. 535904607
.39708304

. 37569528

alysis

Scores of genes

Comp. 2

Comnp .8
.020557644
.007876108
.004684563
L06831682225
.064006881
.035633258
.031471151
.012448848
007661531
.094108652
.111578301
.0010169898
.001707596
.076194862
.005589738

Comp .3
.05607516
.41236564
. T4TE36E0
.91752584
L40227847
L11102158
.10083988
.13527560
.10502808&
.35956162
.836228632
.32800069
.39064554
.91238813

.05091065

Comp. 9

.611804e-16
.851823e-16
.136170e-15
.851207e-15
.0030684e-15
.678487e-15
.088675e-15
.2895588e-15
.04959595e-15
.8459426e-15
LA176871e-15
.0318089e-16
.041708e-15
.4068136e-15
.4459214e-16

Comp. 4 Comp. 5
LT17942907 0.25558131
.263598637 0.33668259
.004553757 -0.28540144
.083485319 -0.023839280
.053354720 -1.33574610
.T774060033 0.40161486
.T7215943002 0.31734920
.040426596 0.43900112
.381801994 -0.49412483
L2297T7T3380 -0.10156213
.1315159745 -0.17445924
598356697 0.18320480
.352694480 -0.07667785
.401851333 0.27270747
.375184657 0.28552333

Comp .10
8.329112e-15
5.418504e-16

.138718e-15
.380708e-14
.235843e-14
.0454860e-14
.2139017e-14
.240844e-16
L35T76833e-15
L07T7815%e-14
.976345%e-14
.808084e-16
.84788Te-15
.163233e-14
.5482%60e-16

= Een |

Comp . &

216892660
048727455
138325688
.194324544
074620735
065391025
261368724
137061450
143518265
.227517145
.61180739594
083773537
133133111
. 587467015
. 004560458

-

m
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Principle Component Analysis = SAS

Data with code In SAS

P Editor - Untitledl *

option linesize=80; AI

Edata pc:
title 'GENE TRANECRIPTICH':

input genes$ celll cell?2 cell3 celld cells cellé cell7 cells cells cellld;
cards;

12 8 12 8 20 8 8 20 8 24
28 28 28 28 O 8 16 12 20 16
16 186 16 12 16 16 16 168 168 12
20 20 20 20 B 20 20 &8 24 8
28 24 24 24 4 12 &8 20 12 &8
4 32 12 12 28 O B 16 16 4
18 12 18 12 30 12 12 30 12 36
42 42 42 42 0 12 24 18 30 24
24 24 24 18 24 24 24 24 24 18
30 30 30 30 12 30 30 12 38 12
8 12 8 B 20 O 4 28 4 20
7 7 7 7 0 2 3 4
8 8 B & B B B B B &
15 15 15 15 12 30 30 12 3& 12
21 21 21 21 0O & 12 5 15 12

1.9

O3B HEW R0 D R0 D
tn

Flproc corr:

Flproec factor data=pc method=prin scree;
var celll celll cell3 celld cells celle cellT cellf cellS cellll:;
T

<] H




Principle Component Analysis = SAS

Correlation among cells

Pearson Correlation Coefficients, N =15
Prob = |r] under HO: Rho=0

celll cell2 cell celld cells cellb cell? celld

celll | 1.00000  0.71600 097531 | 094440 -0.42357 044756 060767  0.09305
0.0027 <0001 | <0001 01157 00944 00163 07415

cell2 | 0.71600  1.00000 0.83572| 0.86697 -0.18724 018830 049264 0.03796
0.0027 0.0001 <0001 05040 05015 00621 0.8931
cell3 | 097531 0.83572  1.00000 | 0.97389 -0.34687 041133 0.63632 0.08662
<0001 0.0001 <0001 02063 01277 0.0108 | 0.7589
celld | 094440 0866397 0.97389 1.00000 -0.47358 035165 060247 -0.04355
<0001 | =0001 =0001 0.0746 01987 00175 08774
celld | -042357 -018724  -0.34687 | -0.47358  1.00000  0.04382 -0.06613 0.63216
01157 0.5040 02053 0.0746 0.8768  0.814%  0.0051
celle | 044756 018830 041133 | 035165  0.04382  1.00000 0.89875 -0.04721
0.0944 05015 01277 01987 0.8768 <0001 0.8673
celli | 0.60767 049264  0.63632 0.60247 -0.06613  0.8987> 1.00000 -0.08824
0.0163 0.0621 00108 00175 0.8145 <0001 0.7545

cell8 | 0.09305 0.03796 0.08662 |-0.04359 0.68216 -0.04721 -0.08824  1.00000
07415 08931 07589 08774 0.0051 08673 0.7545

cell3 | 060825 0.61913 0.66668 | 067265 -0.11728 0.82253  0.96998 -0.15554
0.0161 | 0.013%9 00086 00080 06772 00002 <0001 05799

cell10 | 030825 -0.01082 0.28612 | 014077 0.39158  0.05032  0.10840  0.74806
0.2637 0.86%5 03012 061686 01489 08586 0.7006 0.0013

celld

0.60825
0.0161

0.61913
0.0139

0.66665
0.0066

0.67265
0.0060

011723
0.6772

0.82253
0.0002

0.96998
<.0001

-0.15554
0.5799

1.00000

0.00124
0.9965

cell10

0.30825
0.2637

-0.01082
0.9635

0.28612
0.3012

0.14077
0.6168

0.39158
0.1489

0.05032
0.8586

0.10840
0.7006

0.749086
0.0013

0.00124
0.9965

1.00000



Principle Component Analysis = SAS

PCA summary

Scree Plot of Eigenvalues

NNNNNN



Principle Component Analysis = SAS

Loadings by different components on
each cell

PCA of gene transcription by. different cells

cell2 0.79684  -0.00847 -0.31400

Factor Pattern

& cell8
cell3 | 0.94202 0.09648 | -0.30514

¢ cell10
0.8 celld | 0.93480  -0.08335 | -0.34054

@ cells cell5 | -0.33148 | 0.76284 0.37079

cellG 0.84558  0.08347 070778

cell? 0.841859 005481  0.518253

celld | -0.04668 054710 -0.16413

T A" B i B

Comp?2
D

cell10 | 0.14527 | 0.85547  -0.19548

Variance Explained by Each Factor

cell3
Factori Factor2 Fa::tor.; cellé ‘Q celll

& cell7
52403641 | 22425879 1.5708492

r T . C%‘ié II9 T 1
-0.4 -0.2 ( 0.2 0.4 0.6 08 ® cgll9g, 1.2
Final Communality Estimates: Total = 9.062301

(e}

celld cell2 G celld cell5 cellg cell celld celld celldd
Comp1l
093524769  0.73362853 | 0.98932611 | 0.99345335 | 0.82929260 | 0.92455759 | 0.98034722 | 0.92512186  0.95891052  0.79230553




Principle Component Analysis = SAS

Orthogonal rotation

proc factor data=pc method=prin =scree n=3 out==scores rotate=varimax;
var celll cell? cell3 celld cells celld cellT celll cellfl celll0;

celld cell2 celld

0.93624769 | 0.73362863  0.98982611

GENE TRANSCRIPTION

The FACTOR Procedure
Rotation Method: Varimax

Orthogonal Transformation Matrix

1 2 3
1 0.81452 | 057958  -0.02521
2| -0.01381 | 0.06256 0.95752
3 | -0.57997 | 081247 | -0.05934

Rotated Factor Pattern

Factor1 | FactorZ Factord
cell 0.52082 0.20546 0.07926
cell2 0.83127 | 0.2081%  -0.00991
celld 0.94252 030414 0.09064
celld 0.95953  0.26102  -0.08657
cells | -0.48567 015715 0.74760
celle 0.11419 095445 0.02502
cell? 0.38440 051246 0.00252
celld 0.04389 -0.10078 0.95805
celld 0.45205  0.86327 -0.08553
cell1d | 0.22304 -0.01843 0.88152

Variance Explained by Each Factor

Factort Factor2 Factord

40114431 | 28082250 22421331

Final Communality Estimates: Total = 9.062501

celld cells cellé cell? celld celld celd

0.85345335 | 0.82929260 0.92456759 | 0.98034722  0.92612186  0.95691052 | 0.79230563




Principle Component Analysis

Limitation of PCA

- Requires numeric data for analysis

- 150+ data needed to get a representative factor

trend.

« Loss of information due to dimension reduction

- Analysis Is non conc

usive. Needs explanatory

factor analysis or cluster analysis to explain

overall trend.



CLUSTER ANALYSIS




®  Cluster Analysis

Cluster Analysis

- An unsupervised learning tool

- It breaks down a large data set into smaller
groups (i.e. clusters) where observations within a
group are more similar than observations from

other groups.


Presenter
Presentation Notes
An unsupervised learning tool  meaning that there is no specific target variable that is measured. 

We just explore the structure of the data. 


Cluster Analysis

Algorithms

« Hierarchical Cluster

- Non-Hierarchical Cluster (aka K-Means Cluster)



Cluster Analysis

Euclidian Distance

- Straight line distance between two points



£ Cluster Analysis

Euclidian Distance

Y axis



Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



£ Cluster Analysis

Euclidian Distance

Y axis



Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



#  Cluster Analysis

Clustering

Y axis



Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



GENERAL
ASSUMPTIONS




Cluster Analysis

General Assumptions

- Components (X & Y axis) are uncorrelated
- Some relationship among variables

- On a graph, points that are closer together share
more similarities than points that are farther apart

- Large variances have more important dynamics
In defining clusters

- Data i1s normalized/standardized

- Euclidean Distance (straight line distance between 2 points)
assumes all parameters have the same scale for fair comparison
between them



#  Cluster Analysis

General Assumptions

Y axis



Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



®  Cluster Analysis

Normalization/Standardization

Size 4789 2334 1566 4678 2346 9654 2345 3567 1245 2366
Grow 02 005 008 013 067 023 005 076 008 0.23
#MITO 20 20 20 20 8 20 20 8 24 8

- Normalization = scales all numeric variables in the range [0,1]

A—X

Hiin

frew .

Hiax nin

- Standardization = transforms data to have zero mean and unit
' -1+
variance [-1,+1] XU

o)

X

mew


Presenter
Presentation Notes
What if we had a mixture of different measuremetns 


®  Cluster Analysis

Cell Example Raw Data

12 8 12 8 20 8 8 20 8 24

e o © -~ 0O 9o O T 9

O o 3

28
16
20
28
4
18
42
24
30
8

15
21

28
16
20
24
32
12
42
24
30
12

15
21

28
16
20
24
12
18
42
24
30
8

15
21

28
12
20
24
12
12
42
18
30
8

15
21

0
16

28

30

24

12
20

12

8
16
20
12

0
12
12
24
30

0

30

16
16
20

12
24
24
30

30
12

12
16
8
20
16
30
18
24
12
28

12

20
16
24
12
16
12
30
24
36

36
15

16
12

36
24
18
12
20

12
12


Presenter
Presentation Notes
In our cell example all our data has the same units and the range is small 


®  Cluster Analysis

Cell Example PCA Results

celll
cell2
cell3
cell4
cell5
cell6
cell7
cell8
cell9
cell10

0.93549
0.81307
0.96315
0.95191
-0.33566
0.60245
0.8073
-0.01531
0.8369
0.18234

0.07226
-0.0181
0.0835
-0.0752

0.75692
0.0404
0.0129

0.95305

-0.07732

0.85819


Presenter
Presentation Notes
Even though the data is very similar, I still conducted standardization just to be safe. It is recommended that you run both standardized/normalized data as well as your actual data 


Cluster Analysis

PCA and Cluster Analysis

8 8 8

Cell
Example

Cluster
Analysis

Y axis

a

b
c
d
e
f
]
h
i
i
k
I
m
n
o

12 12 20 8 8 20 24
28 28 28 28 0 8 16 12 20 16
16 16 16 12 16 16 16 16 16 12
20 20 20 20 8 20 20 8 24 8
28 24 24 24 4 12 8 20 12 8
4 32 12 12 28 0 8 16 16 4
18 12 18 12 30 12 12 30 12 36
42 42 42 42 0 12 24 18 30 24
24 24 24 18 24 24 24 24 24 18
30 30 30 30 12 30 30 12 36 12
8 12 8 8 20 0 4 28 4 20
7 7 7 7 0 2 4 3 5 4
8 8 8 6 8 8 8 8 8 6
15 15 15 15 12 30 30 12 36 12
21 21 21 21 0 6 12 9 15 12

celll
cell2
cell3
cell4
cell5
cellé
cell7
celld
cell9
cell10

0.93549
0.81307
0.96315
0.95191
-0.33566
0.60245
0.8073
-0.01531
0.8369
0.18234

10 20 30

0.0

0.07226
-0.0181

0.0835

-0.0752
0.75692

0.0404
0.0129

0.95305
-0.07732
0.85819

cellé

cell1

Cluster Dendrogram

cell3

cell4

cell9

cell2

cell?

-

|

cell5
celld
sell10



HIERARCHICAL
CLUSTER




# Hierarchical Cluster Analysis

How many clusters?

- -
- Gﬁ - @ﬁ
@ﬁ@ ﬁﬁ@

©
©


Presenter
Presentation Notes
Currently there is no good method to determine the most appropriate number of clusters that your data contains set because it is a mater of scale. Fore example, how many clusters do you think this image shows? 
2, 4, could be 16, could be infinite, it depends on how much you want to zoom in per se
Therefore we need to create a sort of order, or hierarchy to determine a set of steps that can help us group this data


Hierarchical Cluster Analysis

Hierarchical Cluster

- A series of steps that build a tree-like structure
by either adding elements (i.e. agglomerative)
to form a large cluster or by subtracting

elements (i.e. divisive) from a large cluster to
form smaller clusters

- Dendogram is used to visualize the results

Cluster Dendrogram

cellf ——

00 10 20 30

cell1
cell3
cell4
celld
cell2
cell?
cell5
celld



®  Hierarchical Cluster Analysis

Single Linkage

Complete Linkage

Average Linkage . Agglomerative
Clustering
Centroid Linkage

Ward’s Linkage



Presenter
Presentation Notes
Single Linkage 

Similar to Kruskal’s Algorithm for minimum spanning trees 
Difference lies within the mathematical procedure used to calculate the distance between clusters.  
Each has a different biases 

Single Linkage  groupes clusters in bottom-up fashion combining two clusters that contain the closest pair of elements not yet belonging to the same cluster 
(-) difficult to define classes that could be useful to subdivede the data since nearby elements of the same cluster have small distances, but elements fat opposite ends of a cluster may be much farther from each other than other clusters
Complete Linkage
Average Linkage
Centroid Method
Ward’s Method



Hierarchical Cluster Analysis

Single Linkage D(c;,c;)= min D(x,x,)
I|‘:C1 .JIH: w
- Distance between closest elements in cluster O o o
) o o
- Produceslongchainsa>b—>c—> ... >z ° @D

D (distance); cl, c2 (clusters); x1, y2 (distance between two elements) http://bit.ly/s-link


Presenter
Presentation Notes
Single Linkage 
Similar to Kruskal’s Algorithm for minimum spanning trees 
Simplest one 
If we have the three clusters, and measure the distance between two points from each cluster that are the closest … and then you take the minimum distance between points of each cluster 
Produces very long chains because then you put together points that are at the opposite spectrum but still within a cluster  creating long chains

RED merges with YELLOW



Hierarchical Cluster Analysis

Single Linkage D(c;,c;)= min D(x,x,)
X| €6y, X3 €0y -
- Distance between closest elements in cluster o 06
. ® o)
- Produces longchainsa=>b>c> ... >z ° @D

€

Complete Linkage D(c,c;)= max D(x;,x,)

- Distance between farthest elements in clusters o ® o
- Forces “spherical” clusters with consistent diameter e
®

D (distance); cl, c2 (clusters); x1, y2 (distance between two elements)


Presenter
Presentation Notes
Complete link
Opposite of single chains 
It creates spherical clusters because it wants all the points within a cluster to be close together, not just one point 
Now we have the maximum distance between the farthest point  but you still merge the MIN distance between the clusters (red and blue, or red and yellow) 

RED and YELLOW not merged because the distance between RED and BLUE is smaller  RED and BLUE or YELLOW and BLUE will merge before RED and YELLOW


Hierarchical Cluster Analysis

Single Linkage D(c;,c;)= min D(x,x,)
X| €6y, X3 €0y -
- Distance between closest elements in cluster o 06
. ® o)
- Produces longchainsa=>b>c> ... >z ° @D

€

Complete Linkage D(c,c;)= max D(x;,x,)

- Distance between farthest elements in clusters o ® o
- Forces “spherical” clusters with consistent diameter e
®

Average Linkage Dic,.cy) =i Y D D(x,.x,)

X6,
- Average of all pairwise distances
- Less affected by outliers

D (distance); cl, c2 (clusters); x1, y2 (distance between two elements)


Presenter
Presentation Notes
Average link 
Looks at the pairwise cluster between each element of the cluster  then you add up their distances and divide by the total number of pairs 
It’s a middle ground between Single Link and Complete Link 
A bit less affected by outliers


Hierarchical Cluster Analysis

Single Linkage D(c;,c;)= min D(x,x,)
X| €6y, X3 €0y -
- Distance between closest elements in cluster o 06
. ® o)
- Produces longchainsa=>b>c> ... >z ° @D

Complete Linkage D(ci,c;)= max D(x,x,)

X €€, X3 ECy

€

- Distance between farthest elements in clusters - o I
- Forces “spherical” clusters with consistent diameter 9o of
Ie)
Average Linkage D(cycy) =ihis > D D(x,.x,)
X Ecy x2€EcC,

- Average of all pairwise distances
- Less affected by outliers

Centroid Linkage D(c""z)”uﬁ sz’[*Zi D

XEQ) XEC,
- Distance between centroids (means) of two clusters ® o)
- Requires = numerical data s (> Y

D (distance); cl, c2 (clusters); x1, y2 (distance between two elements)


Presenter
Presentation Notes
Centroid Cluster
You take the centroid of each cluster (the mean)  the distance between clusters becomes the distance between centroids


Hierarchical Cluster Analysis

Single Linkage

- Distance between closest elements in cluster
- Produceslongchainsa>b—>c—> ... >z

D(c,c,)= min D(x,x,)

X)EC) X3 €Cy

Complete Linkage

D(c,,c;)= max D(x,,x,)

X EC| X3 €C;
- Distance between farthest elements in clusters
- Forces “spherical” clusters with consistent diameter

Average Linkage

- Average of all pairwise distances

L _1
D(c,,c,) = o1 6T 2 D(x,,x;)
_l'|E('|

X6,

- Less affected by outliers
Centroid Linkage Dicy,c;)= Duﬁ ZfJ:[i ZED
- Distance between centroids (means) of two clusters -
- Requires = numerical data

Ward’s Linkage D, = 3 D(xa,..)

XEC,\JCy

- Consider joining two clusters
- Requires = numerical data

D (distance); cl, c2 (clusters); x1, y2 (distance between two elements)


Presenter
Presentation Notes
Ward’s Linkage is similar to K-Means Cluster (will talk about it in a minute) 
You look at the total variance around the centroid  for each centroid you look at all the points around it and you look at the deviation from that centriod 

Looks at how much does the total deviation changes between individual clusters and merged RED and YELLOW clusters  therefore the diviation when you merge clusters will always go up  but you pick the pair of clusters that results in the smallest increase in variance 


®  Hierarchical Cluster Analysis

Y axis

Single Linkage Example

jab)

oSKQ© -~ Dd® O O T

m
A — —
o


Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



®  Hierarchical Cluster Analysis

Y axis

Single Linkage Example
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Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



®  Hierarchical Cluster Analysis

Single Linkage Example

Y axis

X axis


Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



®  Hierarchical Cluster Analysis

Y axis

Single Linkage Example

X axis


Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



®  Hierarchical Cluster Analysis

Y axis

Single Linkage Example

X axis



Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



®  Hierarchical Cluster Analysis

Y axis

Single Linkage Example



Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



®  Hierarchical Cluster Analysis

Y axis

Single Linkage Example



Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



®  Hierarchical Cluster Analysis

Y axis

Single Linkage Example

How many clusters do we have?



Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



®  Hierarchical Cluster Analysis

Y axis

Single Linkage Example
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Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



®  Hierarchical Cluster Analysis

Y axis

Single Linkage Example



Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



®  Hierarchical Cluster Analysis

Y axis

Single Linkage Example



Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



®  Hierarchical Cluster Analysis

Limitations of Hierarchical Clustering

- Single, Complete and Average Linkage can use
numerical or categorical data as long as the
distance is defined

- Centroid and Ward’s Linkage requires
numerical (i.e. interval or ratio) data since the
formula uses means


Presenter
Presentation Notes
Centroid Method  produces irregularly shaped clusters and can only be used with interval and ratio data
Ward’s Method  produces clusters with similar number of observations and solutions are distorted by outliers



®  Hierarchical Cluster Analysis

Limitations of Hierarchical Clustering

- Underlying structure of the sample is unknown
which makes it difficult to select the “correct”
algorithm

- Poor cluster assignments cannot be modifiec

- Unstable solutions with a small sample (need at
least 150 observations)


Presenter
Presentation Notes
Centroid Method  produces irregularly shaped clusters and can only be used with interval and ratio data
Ward’s Method  produces clusters with similar number of observations and solutions are distorted by outliers



Hierarchical Cluster Analysis

Limitations of Hierarchical Clustering

- QOutliers can affect clustering -
- Single and Complete Linkage - outliers can merge " )
the wrong clusters o ® 0°

- Average Linkage - is less affected by outliers
because it computes average distances

 Centroid Linkage - produces irregular shaped oc—8°
clusters where outliers influence the position of the ¢ "
centroid

- Ward'’s Linkage - tends to produce clusters with ';;.‘7-\623-0
similar number of observations which makes it easy vs.

for outliers to distort results .}@*--* & .


Presenter
Presentation Notes
Centroid Method  produces irregularly shaped clusters and can only be used with interval and ratio data
Ward’s Method  produces clusters with similar number of observations and solutions are distorted by outliers



HIERARCHICAL
CLUSTER
IN R




Hierarchical Cluster Analysis 2 R

PCA Results
celll 0.93549 0.07226
cell2 0.81307 -0.0181
cell3 0.96315 0.0835
cell4 0.95191 -0.0752
cell5 -0.33566 0.75692
celle 0.60245 0.0404
cell7 0.8073 0.0129
cell8 -0.01531 0.95305
cell9 0.8369 -0.07732

cell10 0.18234 0.85819



Hierarchical Cluster Analysis 2 R

Open File

= pca<-read.csv(file.choose(),header=TRUE)

> pca

cells factor.1l factor.?2
1 celll 0.93549 0.07226
2 cell2 0.81307 -0.01810
3 cell3 0.96315 0.08350
4 celld 0.95191 -0.07520
5 cells -0.33566 0.75692
6 celle 0.60245 0.04040
7 cell?7 0.80730 0.01290
8 cell8 -0.01531 ©.95305
9 cell9 0.83690 -0.07732
10 cellld ©0.18234 0.85819



Hierarchical Cluster Analysis 2 R

Graph Data

= i:n'l Dtllf'pcaifactnr . 2~i:uca$factc-r .1 , data=i:ncaf:

O
U:!_ ]
L O
o
' —_
O
o}
[
a0 =
e O
0
i
O _
s,
= o 6
O
O O

| | | | | | |
-0.2 0.0 0.2 0.4 0.6 0.8 1.0

pca$factor.



Hierarchical Cluster Analysis 2 R

Graph Data

= plot(pca$factor.l~pca%factor.2,data=pca)

-
— | o i+
4 2 on
= °
= _
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E ™
ﬁ[g o T o
&
— — O
d
o —
' O
[ [ [ [ [
0.0 0.2 0.4 0.6 0.8

pca$factor.2



Hierarchical Cluster Analysis 2 R

Graph Data

= ﬂith(bca,text(pca$factnr.1~pca$factnf.2, lTabels=pcatcells,pos=3.5, cex=.5))

=
—

ol o |1 7 o
2 oo
el
-— w — L
o L
i
4+ —
&)
Y o oedl 10
= ]
g © °
el
0 ] 1
™
c? ] cedl§
]
I I I I I
0.0 0.2 0.4 06 0.8

pca$factor.2



®  Hierarchical Cluster Analysis > R

Standardize Data

= pCa
cells factor.1
celll ©0.93549
cell2 ©0.81307
cell3d 0.96315
celld ©0.95191
cell5 -0.33566
celle 0.60245
cell? 0.B0730
cell8 -0.01531
cell9 ©0.83690
0 celll0 0.18234

1
2
3
4
5
6
7
8
9
1

factor. 2

07226
. 01810
. 08350
. 07520
. 75692
. 04040
. 01290
. 95305
07732
. 55819

2

- Subtract first column to have quantitative data

> z=pcal,-c(1,1)]

> £

HouD oo ) Shown B R

factor.l

. 93549
. 81307
. 96315
.95191
. 33566
. 60245
. 80730
. 01531
. 83690
18234

factor. 2

0.
-0.

07226
01810

. 0B350
. 07520
. 756892
. 04040
. 01290
. 95305
07732
. 85819


Presenter
Presentation Notes
Normalize by substracting and dividing by standard deviation
To normalize our data we need to have only quantitative data, therefore we need to subtract the first column out of our original PCA chart


®  Hierarchical Cluster Analysis > R

Standardize

- Subtract mean and divide by standard deviation

> m<-apply(z,2,mean)
= s<-apply(z,2,sd)
> Z<-scale(z,m,s)
> Z
factor.1l
[1,] 0.77933569
[2,] 0.51529083
[3,] 0.83899491
[4,] 0.81475161
[5,] -1.96237834
[6,] 0.06100942
[7,] 0.50284565
[8,] -1.27142284
[9,] 0O.56668920
[10,] -0.84511612
attr{, "scaled:center
factor.l factor.?2
0.574164 0. 260660

factor. 2
L4519086
. 6686520
4249476
. B056157
.1903617
. 53283300
. 5942933
. 06608119
. 8107009
.4332745

")

attr(,"scaled:scale")
factor.1 factor.?2

0.4636333
> |

0.4168985

@

> z=pcal,-c(1,1)]

> £

HouD oo ) Shown B B

factor.1

(o e e e Y e Y i Y e Y e Y i

. 93549
. 81307
. 96315
. 95191
. 33566
. 60245
. 80730
. 01531
. 853690
18234

factor. 2

07226
-0,
. 08350
. 07520
. 75692
. 04040
. 01290
. 95305
07732
. 85819

01810


Presenter
Presentation Notes
Calculate mean for all the variables
2 means we do it for columns
1 means we do it for rows

We store means in m, standard deviation in s, and calculate normalization for z



®  Hierarchical Cluster Analysis > R

Euclidian Distance

- Measures the distance between all the points

= distance<-dist{z)
= distance

1 2 3 4 3 & 7 B
2 0.34161000
3 0.06546845 0.4051B865E8
4 0.35547583 0.32929598 0.38143939
3 3.19394232 3.097534357 3.23371551 3.419996538
6 0.72238001 0.47545961 0.78482441 0.B80312805 2.65480681
7 0.31099867 0.07539289 0,37639049 0,37675250 3.04340044 0.44673304
8 2.94435023 2.93577036 2.96719659 3,23038530 0.83590845 2.56275597 2.86941253
9 0.41707372 0.15106191 0.47218223 0.24811453 3.22497041 0.57917645 0. 22562855 3.08010251
10 2.4BB852544 2.50375756 2,50783157 2.787075361 1.14336412 2.16077668 2.43475507 0.48322943 2.65115446
> |

= print{distance,digits=3)

1 2 3 4 5 6 7 8 9
2 0.3416
3 0.0655 0.4052
4 0.35535 0.3293 0. 3814
5 3.1959 3.0975 32,2337 3.4200
6 0.7224 0.4755 0.7848 0.8031 2.6548
70,3110 0.0754 0.3764 0.3768 3.0434 0.4467
8 2.9444 22,9358 2.9672 3.2304 0.8359 2.5628 2.8094
9 0.4171 0.1511 0.4722 0.2481 3.2250 0.5792 0.2256 3.0801
10 2.4885 2.5038 2.5078 2.7871 1.1434 2.1008 2.4348 0.4832 2.651!


Presenter
Presentation Notes
We have 10 rows in the data set 
This table shows how far apart are each points from eachother. 
For example #8 and #9 are 3.08 points apart (far) compared to #8 and #10 which are 0.48 points apart (close) 


®  Hierarchical Cluster Analysis > R

Euclidian Distance

- Measures the distance between all the points

= distance<-dist{z)
= distance

1 2 3 4 3 & 7 B
2 0.34161000
3 0.06546845 0.4051B865E8
4 0.35547583 0.32929598 0.38143939
3 3.19394232 3.097534357 3.23371551 3.419996538
6 0.72238001 0.47545961 0.78482441 0.B80312805 2.65480681
7 0.31099867 0.07539289 0,37639049 0,37675250 3.04340044 0.44673304
8 2.94435023 2.93577036 2.96719659 3,23038530 0.83590845 2.56275597 2.86941253
9 0.41707372 0.15106191 0.47218223 0.24811453 3.22497041 0.57917645 0. 22562855 3.08010251
10 2.4BB852544 2.50375756 2,50783157 2.787075361 1.14336412 2.16077668 2.43475507 0.48322943 2.65115446
> |

= print{distance,digits=3)

1 2 3 4 5 6 7 8 g
2 0.3416

3 0.0655 0.4052

4 0.3555 0.3293 0.3814

5 3.1959 3.0075 32.2337 3.4200

6 0.7224 0.4755 0.7848 0.8031 2.6548

7 0.3110 0.0754 0.3764 0.3768 3.0434 0.4467

§ 2.9444 2.9358 2.9672 3.2304 0.8359 2.5628 2.8694

9 0.4171 0.1511 0.4722 0.2481 3.2250 0.5792 u.zzsd:EZEEEB

10 2.4885 2.5038 2.5078 2.7871 1.1434 2.1608 2.434 2.6512


Presenter
Presentation Notes
We have 10 rows in the data set 
This table shows how far apart are each points from eachother. 
For example #8 and #9 are 3.08 points apart (far) compared to #8 and #10 which are 0.48 points apart (close) 


Hierarchical Cluster Analysis 2 R

Hierarchical Clustering (complete)

> hc. c<-hclust({distance)
= plot(hc.c)

Cluster Dendrogram

3.0
|

2.0

Height
1.0
|

}
]

distance
hclust (*, "complete™)


Presenter
Presentation Notes
Complete linkage clustering and then plot 
Initially each cell is treated as a single cluster and then they join with the nearest cluster. As we saw 8 and 10 were very close therefore they joined right at the beginning, however, 8 and 9 were far apart and so they only got a chance to join at the end. 
The process continues until all the clusters join into one, about height of 3.0. If you take a horizontal line at 3.0 you have 3 clusters, if you take a line at 0.5, then you have 4 clusters 


Hierarchical Cluster Analysis 2 R

Hierarchical Clustering (complete)

> h10t(hc.c,hang=—1,1hbe15=pca$ce115)

Cluster Dendrogram

o |
[ ]
Q]
[ |
]
= _
LS B -
i —
T i ‘ | |
g _ i | — | |
LLw] -— [ = [ }] i - L (48] [
j— j— j— j— j— j— j— j— j— -
L)) [1}] [1}] [1}] [i}] [i}] [i}] [ }] [ }] —
L] L] L] L] [} [} [} L] L] L1 K]
L]
distance

hclust (*. "complete™)



Hierarchical Cluster Analysis 2 R

Hierarchical Clustering (complete)

Cluster Dendrogram

Height

00 10 20 4o

(" celld)
cellq
cell3
celld |—
celld
cell?
cell7

)
cells
cells
cell10

—

distance
hclust (*. "complete™)



Hierarchical Cluster Analysis 2 R

Hierarchical Clustering (complete)

Cluster Dendrogram

Hejght

oo 1o 20 20

distance
hclust (*. "complete™)


Presenter
Presentation Notes
Complete linkage clustering and then plot 
Initially each cell is treated as a single cluster and then they join with the nearest cluster. As we saw 8 and 10 were very close therefore they joined right at the beginning, however, 8 and 9 were far apart and so they only got a chance to join at the end. 
The process continues until all the clusters join into one, about height of 3.0. If you take a horizontal line at 3.0 you have 3 clusters, if you take a line at 1, then you have 3 clusters 

The height in the dendogram is within group variance 


®  Hierarchical Cluster Analysis > R

Hierarchical Clustering (average)

= hc.aé—thﬂst(aisténce,methud="averhge”)
= plot(hc. a.hano=-1.,labels=pca%cells)

Height

00 10 20 30

celld ——

Cluster Dendrogram

cell

cell3

= & ™ r-
i) i) i) i)
O O O O

distance

cells

celld

cell10


Presenter
Presentation Notes
This method uses the average distance between points to determine clusters. 


®  Hierarchical Cluster Analysis > R

Hierarchical Clustering (average)

WONOWOY

member. c<-cutreehc.c,3)

member. a<-cutreelhc. a,3)

= table{member. c,member. a)
member. a

member.c 1 2 3

1700
2010
3002

Height

00 10 20 30

celld ——

hc.aé—thﬂst(aisténce,methud="averhge”)
plot(hc. a,hang=-1,labels=pcatcells)

Cluster Dendrogram

cell

cell3

= & ™ r-
i) i) i) i)
O O O O

distance

cells

celld
cell10


Presenter
Presentation Notes
This method uses the average distance between points to determine clusters. 


# Hierarchical Cluster Analysis > R

Cluster Mean

aggregate(z,list(member. c),mean)
Group.1l  factor.l factor.2

1 0.5827025 -0.612064

2 -1.9623783 1.190362

3 -1.0582695 1.547043

Wk = W

W

aggregate(pcal,-c(1.1)],1ist(member.c),mean)
Group.1l  factor.1 factor.2

1 0.8443243 0.005491429

2 -0.3356600 0.756920000

3 0.0835150 0.905620000

TN ]


Presenter
Presentation Notes
We can also calculate cluster means using the aggregate command. Here we did it for the complete method. Here are the standardized values . If there is not al lot of variation between the three averages, then the variable does not play a huge role in determining that cluster membership
This can also be done in original units



Hierarchical Cluster Analysis 2 R

Silhouette Plot

>
>

0w o~ M

[ B A R

10

[es]

1'|'brar;f(c1u5ter)
plot{silhouette(cutreelhc.c,3),distance))
]

o

Silhouette plot of (X = cutree(hc.c, 3), dist = distance)

n=10 3 clusters C;
jonylaveieg S
2:11000

l I I I I 1

0 02 04 06 08 1.0

Average silhouette width - 0.7

Silhouette width s,



Presenter
Presentation Notes
We can also visualize the graph using silhouette plot, using the cutree function. If cluster formation is good or if the members are close, then Si values will be high if not, Si values are low. If you have – Si values, then you have outliers, where that member does not belong to that group


Hierarchical Cluster Analysis 2 R

Optimal Number of Clusters

> Dendogram_Height=0

= for (i in 2:9) Dendogram_Height[i] <- hc.ctfheight[i-1]

= plot(9:1, Dendogram_Height, type="b", xlab = "# of clusters”,
vlab = "Dendogram Height™)

=

R —

1 Global Environment -

values

Dendogram_Height num [1:9] 0 0.06855 0.0754 0.2256 0.3768 ...

distance Class 'dist’ atomic [1:45] 0.3416 0.0655 0.3555% 3.1959 0.7224..
ibhc.a List of 7
@ hc.c List of 7

merge : int [1:9, 1:2] -1 -2 -9 -4 1 -8 -6 -57 -3 ...
height : num [1:9] 0.0655 0.0754 0.2256 0.3768 0.4722 ...
order : dint [1:10] 61 3 4 9 2 7 5 8 10

labels : NULL

method : chr “"comolete"

/

Dendogram Height
|

0.0
|
o
o

# of clusters


Presenter
Presentation Notes
How do we determine what is the optimal number of clusters? We can use a scree plot analysis. It requires within group sum of squares. This gives you a view of all possible clusters as related to within group variability. We want to reduce within group variability. When you go from one to 2 clusters, variability is very large, but at 6-7 there isn’t a lot of variability. This graph helps us determine that the best number of clusters is about 2 or 3. 
Dendogram Height is the within group variance 


HIERARCHICAL
CLUSTER
IN SAS




Hierarchical Cluster Analysis = SAS

Import Data

data pcr
title '"PCL EResults';
input cells:% factorl factorz:

cards;

celll 0.59354% 0D.07226
cellZ 0.81307 -0.0181
cell3 0.96315 0.08350
celld 0.595151 -0.0752
cells -0.33566 0.75692
cellé 0.60245 0.04040
cellT 0.8073 0.01290
cells -0.013531 0.595305
cells 0.8365 -0.07732
cellld 0.18234 0.8581%

»
r

¥

21 data pc;

22 title 'PCA Results’;

23 input cells$d factorl factor?;
24 cards;

MOTE: The data set WORK.PC has 10 obserwvations and 3 variables.
NOTE: DATA statement uvsed [(Total process time):

real time 0.06 seconds

cpu time 0.04 =econds



chical Cluster Analysis = SAS

Hierarchical Cluster (centroid)

Iproc clnster noeigen method=centroid rsguare nonorm out=tree data=pc;

id gells=:

wvar factorl factord:

run; guit;

Root-Mean-5Square Total-Sample Standard Deviation | 0440886

Number
of
Clusters

9
8
T
6
5
4
3
2

1

PCA Results

The CLUSTER Procedure
Centroid Hierarchical Cluster Analysis

Cluster History

Semipartial
Clusters Joined | Freq R-Square
celll | cell3 2 0.0001
cell2  cell7 2 0.0001
CL8 | celld 3 0.0012
CL7T | celd 4 0.0043
CL9 | CL6 6 0.0088
celld  cell10 2 0.0069
CL5 | cell6 7 0.0199
cells  CL4 3 0.0377

CL3 cL2 10 0.9210

R-Square
1.00
1.00
999
994
985
479
959
a1
000

Centroid
Distance

0.0293
0.0315
0.0794
01411
0.1522
0.2192
0.2851
0.4443
1.2387

Tie



Hierarchical Cluster Analysis = SAS

Hierarchical Cluster (centroid)

Cluster Analysis

cell10

celld

cells

celld

celld

celld

cellf ——

cell2 —

celld ——

celll — . . : : :
0.oo 0.25 0.0 075 1.00 1.25

Distance Between Cluster Centroids




Hierarchical Cluster Analysis = SAS

Hierarchical Cluster (centroid)

proc tree data=tree out=clus3 nclusters=3;
id cells;

copy factorl factorl:

ran; guit;

Cluster Dendrogram

| -
o
— o™
PCA Results £ 5
125 2 -
o h
D ©w = © = @ al - w w© =}
3 8 3 8 3 8 8 8 3 3
1.00 1 distance

0.75

0.50

0.00

celll cell3 cell2 cell? cells celld cellé cells celld cell10

mn.—o--——:m(')l-m-——wc—ﬂ So@oE~@oID ©oSw—+w—0

cells



Hierarchical Cluster Analysis = SAS

Hierarchical Cluster (centroid)

proc =gplot data=clus3;

scatter y=factorl xz=factor?2 / group=cluster:;
ran; oguit;

|

PCA Results

0.75 -

0.50 -

0.25 -

0.00 - o

-0.25

T T T T T T
0.0 0.2 04 0.6 0.8 1.0
factor2
CLUSTER o1 o2 o 3



Hierarchical Cluster Analysis = SAS

Hierarchical Cluster (centroid)

- ———

dproc sort data=clus3; by cluster:

Iproc print data=clus3; by cluster:

var cells factorl factor?:

ran; guit; I

Obs

= | & | ;| & L | R

PCA Results

CLUSTER=1

cells
cell

cell3

cell2
cell?
celld
celld
celle

factor1
0.93549
0.96315
0.81307
0.80730
0.83690
0.95191
0.60245

factor2
0.07226
0.08350
-0.01810
0.01290
-0.07732
-0.07520
0.04040

Obs

Obs
10

CLUSTER=2

cells factorl | factor2
celld  -0.01531 095304
cel10  0.18234 085819

CLUSTER=3

cells factorl factor2
cells  -0.33566 0.75692



K-MEANS CLUSTER




K-Means Cluster Analysis

K-Means Cluster

- Most widely used for extra large data
- Observations can switch cluster membership
- Less impacted by outliers

- Multiple passes through the data allows the final
solution to optimize within cluster homogeneity
and between cluster heterogeneity

- Algorithm breaks the data into K clusters

- K Is fixed



®  K-Means Cluster Analysis

K-Means Cluster

jab)

— — D Q —+~ 0O QO O O

Etc.


Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



# K-Means Cluster Analysis

K-Means Cluster

Y axis



Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray) 



# K-Means Cluster Analysis

K-Means Cluster

Y axis



Presenter
Presentation Notes
The way the algorithm works is that it randomly assigns points as seeds (seen in gray). Next step is to assign all the other points based on their proximity to the seeds. So how do we decide on the middle point? We need to use geometry. 




# K-Means Cluster Analysis

K-Means Cluster

Y axis

X axis


Presenter
Presentation Notes
First, lets isolate the seeds for simplicity. Then we connect the points and find the middle line. After which we draw a bisector 


# K-Means Cluster Analysis

K-Means Cluster

Y axis



Presenter
Presentation Notes
First, lets isolate the seeds for simplicity. Then we connect the points and find the middle line. After which we draw a bisector 


# K-Means Cluster Analysis

K-Means Cluster

Y axis



Presenter
Presentation Notes
First, lets isolate the seeds for simplicity. Then we connect the points and find the middle line. After which we draw a bisector 


# K-Means Cluster Analysis

K-Means Cluster

Y axis



Presenter
Presentation Notes
First, lets isolate the seeds for simplicity. Then we connect the points and find the middle line. After which we draw a bisector 


# K-Means Cluster Analysis

K-Means Cluster

Y axis



Presenter
Presentation Notes
First, lets isolate the seeds for simplicity. Then we connect the points and find the middle line. After which we draw a bisector 


# K-Means Cluster Analysis

K-Means Cluster

Y axis

X axis


Presenter
Presentation Notes
Now we have created a set number of clusters, but how do we know this is the most optimal cluster, because depending on the type of seed we get different 3 clusters. 

What the algorithm does in this case is to determine the centroid of each cluster and it will assign that as the seed for the next round


£ K-Means Cluster Analysis

K-Means Cluster

Y axis

X axis


Presenter
Presentation Notes
Now we have created a set number of clusters, but how do we know this is the most optimal cluster, because depending on the type of seed we get different 3 clusters. 

What the algorithm does in this case is to determine the centroid of each cluster and it will assign that as the seed for the next round



# K-Means Cluster Analysis

K-Means Cluster

Y axis

X axis


Presenter
Presentation Notes
Now we have created a set number of clusters, but how do we know this is the most optimal cluster, because depending on the type of seed we get different 3 clusters. 

What the algorithm does in this case is to determine the centroid of each cluster and it will assign that as the seed for the next round



# K-Means Cluster Analysis

K-Means Cluster

Y axis

X axis


Presenter
Presentation Notes
Now we have created a set number of clusters, but how do we know this is the most optimal cluster, because depending on the type of seed we get different 3 clusters. 

What the algorithm does in this case is to determine the centroid of each cluster and it will assign that as the seed for the next round



£ K-Means Cluster Analysis

K-Means Cluster

Y axis



Presenter
Presentation Notes
Now we have created a set number of clusters, but how do we know this is the most optimal cluster, because depending on the type of seed we get different 3 clusters. 

What the algorithm does in this case is to determine the centroid of each cluster and it will assign that as the seed for the next round



# K-Means Cluster Analysis

K-Means Cluster

Y axis

X axis


Presenter
Presentation Notes
Now we have created a set number of clusters, but how do we know this is the most optimal cluster, because depending on the type of seed we get different 3 clusters. 

What the algorithm does in this case is to determine the centroid of each cluster and it will assign that as the seed for the next round



£ K-Means Cluster Analysis

K-Means Cluster

Y axis

X axis


Presenter
Presentation Notes
Now we have created a set number of clusters, but how do we know this is the most optimal cluster, because depending on the type of seed we get different 3 clusters. 

What the algorithm does in this case is to determine the centroid of each cluster and it will assign that as the seed for the next round



K-Means Cluster Analysis

Limitations of K-Means Clustering

- Underlying structure of the sample is unknown
which makes it difficult to determine the number

of clusters (K) needed in advance

- Poor cluster assignments cannot be modifiec

- Unstable solutions with a small sample (neec
east 150 observations)

« Forces clusters to be round

« Qutliers can distort clusters

at



K-MEANS CLUSTER
IN R




K-Means Cluster Analysis 2 R

Cell Example

celll 0.93549 0.07226
cell2 0.81307 -0.0181
cell3 0.96315 0.0835
cell4 0.95191 -0.0752
cell5 -0.33566 0.75692
cellb 0.60245 0.0404
cell7 0.8073 0.0129
cell8 -0.01531 0.95305
cell9 0.8369 -0.07732

cell10 0.18234 0.85819



® K-Means Cluster Analysis 2 R

K-Means Cluster

> kce-kmeans(z,3)
= ke
K-means clustering with 3 clusters of sizes 3, 4, 3

Cluster means:

factor.1 factor. 2
1 0.8110274 -0. 5608240
2 0.4114588 -0.6504941
3 -1.3596391 1.4281494

Clustering vector:
111211322323

within cluster sum of squares by cluster:
[1] 0.0920484 0.2101224 0.7465117
(between_ss / total_s5 = 94.2 %)

Available components:

[1] "cluster" "centers" "totss"” "withinss"
[B] "iter™ "ifault”

-

= kcfcenters

factor.1 factor. 2
0.8110274 -0. 5608240
0.4114588 -0.6504941

-1.3596391 1.4281494
|

Vol R

"tot.withinss

wooar

betweenss"

"size"


Presenter
Presentation Notes
First cluster has 3 cells, second cluster has 4 and the third cluster has 3
Cluster vector  the membership of each cell, what cluster they belong to  first cell goes into cluster 1
Within cluster variability is 0.09 (cluster 1), 0.2 (cluster 2)  it means that members in cluster 1 are closer together than those in cluster 2
There are various components that you can analyze 


K-Means Cluster Analysis 2 R

K-Means Cluster

> plot(factor.l~factor.2, z, col=kc$cluster)

S

0 &
= 2 oo
L= o
- o
E _
L]
£ o | o
= |
o | | | | |
05 0.0 05 1.0 1.5

factor.2




K-Means Cluster Analysis 2 R

Remember?
Hierarchical Cluster (centroid)

proc =gplot data=clus3;

scatter y=factorl xz=factor?2 / group=cluster:;
ran; oguit;

|

PCA Results

0.75 -

0.50 -

0.25 -

0.00 - o

-0.25

T T T T T T
0.0 0.2 04 0.6 0.8 1.0
factor2
CLUSTER o1 o2 o 3



factor.1

K-Means Cluster Analysis 2 R

K-Means Cluster

AT T U T U T

0.0

-1.0

-2.0

p1nt(factnr:1~fattnr.2,-z, cn1=kc$c1u§ter)
kc<-kmeans(z,2)
plot(factor.l~factor.2, z, col=kc$cluster)
kc<-kmeans(z,4)
plot (factor.l~factor.2, z, col=kc3cluster)
kc<-kmeans{z,5)
plot(factor.l~factor.2, z, col=kc$cluster)
o & o & &
_':'QC, IDCO
_ s o o
o o
o

_ o ) o o

[ [ [ I | [ | | [ [ [ [ [ [

05 00 05 10 15 05 00 05 10 15 05 00 05 10 15
factor.2 factor.2 factor.2




K-MEANS CLUSTER
IN SAS




K-Means Cluster Analysis - SAS

K-Means Cluster

lproc fastcluos data=clus3 maxclusters=3 maxiter=10 list;
id cells;
wvar factorl factorZ;

. L .
Convergence criterion is satisfied.
PCA Results Cluster Listing
The FASTCLUS Procedure Distance from
Replace=FULL Radius=0 Maxclusters=3 Maxiter=10 Converge=0.02 Obs | cells | Cluster Seed
Initial Seeds 1 cell 2 01130
Cluster factor1 factor2 2 | cell3 2 0.1421
1 -.0153100000  0.9530500000 3| cell? 2 00392
2 0.9631500000  0.0835000000 4 cell7 2 0.0378
3 -.3356600000  0.7569200000
5 celd 2 0.0831
Minimum Distance Between Initial Seeds = | 0.375621 6| celld 2 0.1345
—— 7 cell 2 0.2444
Iteration History
Relative Change in Cluster Seeds 8 | celi8 1 0.1036
Iteration | Criterion 1 2| 3 9 cell10 1 0.1036
1 0.1245 0.2918 0.3784 0 10 | cells 3 0
2 00891 0 0 0

Criterion Based on Final Seeds = | 0.0851



K-Means Cluster Analysis - SAS

K-Means Cluster

Cluster  Frequency RMS 5td Deviation

1
2
3

2
7
1

Cluster Summary

Maximum Distance

from Seed | Radius
to Observation Exceeded  Mearest Cluster

0.1096 0.1096
0.1003 0.2444
0

Statistics for Variables

Pseudo F Statistic = | §1.14

Variable |Total STD | Within 5TD | R-Square | R5Q/{1-R5Q)
factor1 0.46363 012786 0940844
factor? 0.41690 0.06573  0.980667
OVER-ALL 0.44089 0.10166 = 0958648

15.904346
50.724959
23.162382

Approximate Expected Over-All R-5quared = | .

Cubic Clustering Criterion = | .

3
1
1

WARNING: The two values above are invalid for correlated variables.

Distance Between
Cluster Centroids

0.4445
1.1786
0.44445



GENERAL LIMITATIONS




®  Cluster Analysis

General Limitations

« NO test statistic available to validate the
significance of the result

- Cluster dimensions are often randomly chosen
and may not reflect real conditions - can be a
statistical artifact

- Cluster analysis is powerful enough that it will
provide a cluster even if no meaningful groups
are embedded in the sample


Presenter
Presentation Notes
You might have noticed that I didn’t mention any hypothesis, P value etc. this is because, unlike classical statistics like regression or analysis of variance, cluster analysis does not offer a test statistics (like F-statistics) that provides a clear answer regarding the support of lack of support of a set of results for a hypothesis. Instead, the researcher (using their background knowledge) administers meaning to the types of clusters.  

Cluster analysis is powerful enough that it will provide a cluster even if no meaningful groups are embedded in the sample  it has the potential to create inaccurate groupings in a sample and impose groupings where none exist



Cluster Analysis

General Limitations

- Choosing the variables used to group
observations is the most important and different
approaches may lead to different clusters

« How to select the variable
« Whether or not to standardize/normalize data

- How to address multicollinearity - use PCA

« High correlation among variables can be an issue because it may
overweight other important variables

- PCA s also controversial since low eigenvalues are dropped which may
exclude factors that represent unique and important information



Cluster Analysis

Best Practice

- Use Hierarchical first to determine the optimal
number of clusters followed by K-Means
Clustering to optimize the shape of the clusters



The End




- A good example of PCA and Cell Clustering can
be seen In this paper:

- Pollen et al. (2014). Low-coverage single cell mMRNA
sequencing reveals cellular heterogeneity and activated
signaling pathways in developing cerebral cortex. Nature.
Beiotech. 32:1053-1058

- doi:10.1038/nbt.2967



GENE TRANSCRIPTION

Obs | genes | celll  cell2  cell3 | celld  cell5 | cell6 | cell7 | cellg | celld | celllD | Factorl | Factor2 | Factor3  Factord | Factord  Factort | Factori | Factor@

1|a 12 g 12 g 20 8 g 20 g 24181714 113517 050815 1704260 89145 363432 133285 0 45435
2b 28 28 28 28 0 8 16 12 20 16 192681 211678 -0.50875  -3.60624 | -12.8978 -3.82623 | 17.6066 = -59.070
Jlc 16 16 16 12 16 16 16 16 16 12 -0.6b6145  -0.82913 036270 1.09924 | 46843 177916 | -74711 ) 19582
4/d 20 20 20 20 8 20 20 g 24 8 045281 -0.54510 | 0.75316  -0.46999 -1.2925 028286 2.8269  -5.344
5e 28 24 24 24 4 12 g 20 12 8| 0.93275 119706 | -0.77193 | -1.76390  -3.8704 | -2.37981 | 11.3183  -33.983
b f 4 32 12 12 28 0 g 16 16 4 | -1.64457 -2.06041 -0.54662 5H.87948 55946 3.09480 135101 45141
T|g 18 12 18 12 30 12 12 30 12 36 -0.560823 203144 -0.08878 -049679 06718 1.35217  -1.0036 5.940
8 h 42 42 42 42 0 12 24 18 30 24| 510768 6.90936  -0.09217 -5.46254 -32.0466 -9.83865 453991 -150.816
9 24 24 24 18 24 24 24 24 24 18 | 1.22530  2.49050  1.21650 | -1.40432 | -5.6734 143056 7.7824  -32.839
10 | j 30 30 30 30 12 30 30 12 36 12 2.89668 291655 1.80218 -3.75816 | -14.6387 -3.67502 | 232285 | -70.228
1k 8 12 g g 20 0 4 28 4 20 | -2.67918 -2.07466 | -1.31858 419442 152148 216522 -221464 74130
12 |1 7 7 7 T 0 2 4 3 5 4| -2.84450 507210 113611 3.67821 158254 518239 -24.0821 78.550
13 | m 8 8 8 B 8 8 8 8 8 6| -2.54819 414876 | -0.49110 | 3.80280 15.0420 | 4.98888 -22.7247 72.003
14 'n 15 15 15 15 12 30 30 12 36 12 017512 181687 2.04818 098160 | 4.7955 -0.51952 | -7.6067 | 24.694

-
on
o

eyl 21 21 21 0 B 12 9 15 12 033637  -0.27951 -0.71854 117809 | -3.3234 -0.82002 | 3.7104 | -13.196



PCA of gene transcription by different kinds of cells
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