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	5081	Seminar:	ANOVA	
		
This	document	includes	examples	of	independent	one-way,	two-way	and	repeated-
measures	ANOVA.	All	analyses	were	conducted	in	R	(R	Core	Team	(2017).	R:	A	
language	and	environment	for	statistical	computing).		For	each	test,	data	are	initially	
explored	for	relative	normality	and	variance	assessment.		
	
Using	the	same	data,	one-way,	two-way	ANOVA	analyses	were	also	conducted	in	
SAS®.	The	SAS	examples	(which	have	the	results	identical	to	R)	can	be	found	on	a	
separate	document.	
	
____________________________________________________________	
	
		
		 Prior	to	conducting	an	analysis,	it	is	important	to	know	the	number	per	
group	(n)	required	to	achieve	a	large	effect	size	with	at	least	80%	power.	This	can	be	
calculated	using	the	pwr()	function:		
	
library(pwr)		
	
Important	variables	are	k	=number	of	groups;	n=	number	of	observations	per	group;	
f=	effect	size	(Cohen);	sig.level;	and	power,	with	most	studies	aiming	for	80%	power	
to	reject	the	null	hypothesis.	Any	one	of	the	varibles	(k,	f,	power,	or	n)	can	be	
removed	to	arrive	at	the	relevant	estimate.	
	
For	example	for	these	variables,	and	as	configured	below,	the	requirement	is	n	=	21	
(per	group).	

pwr.anova.test(k=3,	sig.level	=	.05,	f=.40,	power=.80);		
	
	
	Our	sample,	data	has	only	an	n	of	7	(n=7),	so	it	would	be	too	under	powered	(~31%	
power)	for	an	actual	study,	though	this	would	not	make	it	invalid:		
		 	

pwr.anova.test(k=3,	sig.level	=	.05,	f=.40,	n=7)			power	=	0.3067576	
	
	
_________________________________________________________________________________________	
	One-way	independent	ANOVA	
	



Conceptually,	and	as	depicted	in	the	diagram	below,	one-way	ANOVA	can	be	viewed	
as	partitioning	the	total	sum	of	squares	(SST,	also	referred	to	as	the	total	variance)	
in	to	variance	accounted	for	by	the	explanatory	variable	(SSm)	and	the	
unsystematic,	unexplained	variance	(SSe)	(Field,	2012).		

	
	
	
These	are	the	“libraries”	that	R	requires	for	one-way	ANOVA	
	
library(car)	
library(compute.es)	
library(pastecs)	
library(multcomp)	
library(ggplot2)	
	
Generating	a	fictitious	dataset	
	
The	lines	below	were	executed	to	generate	a	simulated	dataset	using	the	runif()	
function:	
	
	R4S<-runif(7,	min=	2,	max=10)	
	RW<-runif(7,	min=	5,	max=13)	
	EC<-runif(7,	min=6,	max=12)	
	
This	dataset	will	be	used	in	the	one-way	ANOVA	example.	It	will	also	be	used	in	the	
repeated-measures	example,	though	the	repeated-measures	ANOVA	dataset	will	be	
augmented	by	the	addition	of	single	column	for	individual	subjects.	
	
	This	fictitious	scenario	and	data	involves	3	different	reading	compression	
programs.	The	dependent	(response)	variable	is	a	single	score	that	represents	a	
composite	of	correct	answer	response	and	speed	of	response	(in	minutes).		
	The	independent	(explanatory)	variable	is	reading	program	method.	The	method	is	
made	up	of	reading	programs	named	"Read	4	Speed"	(R4S),	"Read	Well"	(RW),	and	
"Eye	Candy"	(EC).		Fictitious	subjects	were	randomly	allocated	to	one	of	the	3	
different	reading	programs.	Each	program	involved	2	a	week	course,	with	3	hours	of	
daily	reading	practice	following	program	guidelines.		
	



Here	is	the	simulated	data:		
	

R4S<-c(8.249930,	3.851183,	5.166481,	5.819707,	8.554169,	2.519100,	
4.331016)	
length(R4S)	
RW<-c(10.466106,		6.934875,		5.192835,	11.630756,		9.662392,		7.690234,		
7.267778)	
length(RW)	
EC<-c(8.949562,		9.539441,		8.415509,		9.850214,		9.303608,	10.499970,	
10.221738)	
length(EC)	

	
	
	Testing	for	normality:	a	p-value	>	.05	indicating	relatively	normal	distribution	
	

shapiro.test(R4S)	
	Shapiro-Wilk	normality	test	
	data:		R4S	
	W	=	0.93525,	p-value	=	0.5964	
	
shapiro.test(RW)	
	Shapiro-Wilk	normality	test	
	data:		RW	
	W	=	0.96241,	p-value	=	0.8391	
	
shapiro.test(EC)	
	Shapiro-Wilk	normality	test	
	data:		EC	
	W	=	0.98454,	p-value	=	0.9786	
	

	
Residuals	should	be	normally	distributed	for	each	group	(here	R4S,	RW,	and	EC).	
These	are	small	groups,	so	we	expect	greater	variability	than	in	the	actual	
population	and	the	residuals	may	not	be	as	well	behaved	as	in	groups	with	a	larger	
n.	In	the	plots	below	the	residuals	(dots)	should	approximately	adhere	to	a	diagonal	
pattern;	off-diagonal	points	(residuals)	suggest	some	non-normal	distribution	of	
residuals.	A	more	elaborate	test	of	relative	normality	of	residuals	will	be	conducted	
using	the	ANOVA	model	that	is	created	after	we	have	completed	after	this	initial	
exploration	of	data	to	assess	relative	normality	(and	testing	of	the	assumption	of	
homogeneity	of	variance).		
	
	The	residuals	can	be	calculated	by	subtracting	the	outcome	from	the	mean	of	the	
outcome	(outcome	-	mean(outcome))	and	then	plotted.	
	

res_EC<-(EC-mean(EC))	
library(ggplot2)	



	
		
	Here	is	an	example	using	just	the	EC	(Eye	Candy	condition)	
	

qplot(sample=EC,	stat="qq")	
	

	
	
	Testing	for	homogeneity	of	variance	with	the	Levene	Test		
	
	Creating	a	grouping	factor	(aka	explanatory)	variable	for	testing	of	variance	with	
the	leveneTest()	function,	though	this	function	will	also	coerce	a	factor.	The	
leveneTest()	assesses	variance	between	levels	of	a	given	predictor	(explanatory	
variable);	such	variances	should	be	similar,	and	we	should	see	p-values	>	.05	which	
would	indicate	that	the	assumption	of	homogeneity	of	variance	has	not	been	
violated.		
	
Note,	the	leveneTest	requires	the	car	package,	which	was	called	at	the	outset	with		

library(car)	
		
Making	grouping/factor	“method”	which	includes	the	reading	programs	("Read	4	
Speed",	"Read	Well",	and	“Eye	Candy".	This	is	the	explanatory	variable	(“method”);	
the	response/dependent	variable	is	now	the	actual	score	values	in	“score”.	Note,	the	
table()	function	below	is	not	necessary	but	shows	that	“method”	has	three	levels	
and	the	number	of	subjects	in	each	level.	
	
	

score<-c(R4S,	RW,	EC)	
method<-rep(c(1,2,3),	c(7,7,7))	
method<-factor(method,	levels	=	c(1:3),	labels	=	c("Read	4	Speed",	"Read	
Well",	"Eye	Candy"))	
dat1<-data.frame(method,	score)	
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table(dat1$method)			
	

	
	
	The	Levene	test,	conducted	below	has	a	p-value	>	.05	(p=	.11)	indicating	the	
assumption	of	homogeneity	of	variance	was	not	violated;	variances	among	groups	
are	not	extreme	or	non-normal.		
	
	
leveneTest(dat1$score,	dat1$method)		
	Levene's	Test	for	Homogeneity	of	Variance	(center	=	median)	
								 Df		 	 F	value		 Pr(>F)	
	group		2			 	 2.4518		 0.1144	
								 18															
	
Always	look	at	the	dataset,	or	least	the	first	6	rows	of	the	dataset;	this	can	be	
indispensible	for	a	general	grasp	of	the	column	and	row	labels	and	perhaps	even	
some	insight	to	patterns	in	the	data.		

dat1	
method						 	 score	
1		Read	4	Speed		8.249930	
2		Read	4	Speed		3.851183	
3		Read	4	Speed		5.166481	
4		Read	4	Speed		5.819707	
5		Read	4	Speed		8.554169	
6		Read	4	Speed		2.519100	
7		Read	4	Speed		4.331016	
8					Read	Well	10.466106	
9					Read	Well		6.934875	
10				Read	Well		5.192835	
11				Read	Well	11.630756	
12				Read	Well		9.662392	
13				Read	Well		7.690234	
14				Read	Well		7.267778	
15				Eye	Candy		8.949562	
16				Eye	Candy		9.539441	
17				Eye	Candy		8.415509	
18				Eye	Candy		9.850214	
19				Eye	Candy		9.303608	
20				Eye	Candy	10.499970	
21				Eye	Candy	10.221738	

	
	Graphs	
	
The	box	plot	below	shows	the	quartiles,	including	the	medians	(middle	lines	in	the	
boxes).	Extending	from	the	bottom	of	each	box	is	whisker	to	first	line	is	first	



quartile(25%);	the	2nd	quartile	is	from	first	line	to	median	line	(50%);	the	3r	
quartile	is	from	median	line	to	the	top	of	the	upper	box;	the	upper	quartile	is	form	
the	top	of	a	box	to	the	end	of		the	upper	whisker.	The	length	of	the	whiskers	reflects	
variation	within	the	group.	Note	that	the	highest	median	score	occurred	in	the	Eye	
Candy	reading	group.		
	

ggplot(dat1,	aes(method,	score))	+	geom_boxplot()	
	

	
		
	
	Here	are	the	actual	quantiles	for	“Eye	Candy”	,	the	best	performing	reading	
programme:		

quantile(dat1$score[dat1$method=="Eye	Candy"],	c(.25,	.50,	.75))	
					25%								 50%								 75%		
	9.126585			 9.539441		 10.035976	

	
The	means,	variance	and	standard	deviation	can	be	easily	extracted	using	a	few	
methods.	One	approach	is	to	use	the	tapply()	function:	
	

tapply(dat1$score,	dat1$method,	mean)	
	Read	4	Speed				Read	Well				Eye	Candy		
	5.498798						 8.406425						 9.540006	
tapply(dat1$score,	dat1$method,	var)	
Read	4	Speed				Read	Well				Eye	Candy		
	5.0123978				5.0863527				0.5252534		
tapply(dat1$score,	dat1$method,	sd)	
	Read	4	Speed				Read	Well				Eye	Candy		
	2.2388385				2.2552944				0.7247437		

	
Note	that	“Eye	Candy”	has	the	highest	mean.	
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One-way	ANOVA	
	
Since	we	have	determined	that	the	dataset	is	relatively	normal,	a	standard	ANOVA	
procedure	can	be	conducted.	The	test	below	shows	a	significant	effect	of	Method,	
indicating	there	is	a	significant	difference	among	the	means	of	the	3	reading	
methods	(p=.0024)	
	
mod1<-aov(score~method,	data=	dat1)	
summary(mod1)	
	

															 Df		 Sum	Sq		 Mean	Sq		 F	value		 Pr(>F)				
			Method	 2			 60.83				 30.416				 8.589		 	 0.0024	**	
	Residuals	 18			 63.74				 3.541																	

	
		
This	is	a	is	an	alternative	ANOVA	calculation	approach	using	just	a	single	line:	
	

summary(aov(dat1$score~factor(dat1$method)))			
												 	 	 Df		 Sum	Sq		 Mean	Sq				F	value		 Pr(>F)				
factor(dat1$method)		2			 60.83				 30.416								8.589		 0.0024	**	
Residuals												 18			 63.74				 3.541																			
---	
Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	’	1		

	
	
Effect	size:		
	An	eta-squared	(SS	between	groups/	SST)	effect	size	can	be	easily	derived	using	the	
summary.lm()	function.	This	will	provide	an	r2	value	(labeled	multiple	R2	as	this	is	a	
regression	function).	An	adjusted	version	is	also	provided	that	conveys	the	extent	to	
which	this	model	generalizes	to	the	population.	The	adjusted	r2	value	is	.42	
	

summary.lm(mod1)	
.42	

	
	
Conducting	pairwise	tests	(which	method	significantly	differ):	
	

pairwise.t.test(dat1$score,	dat1$method,	p.adjust.method	=	"fdr"	)	
	
	Pairwise	comparisons	using	t	tests	with	pooled	SD		
		
	data:		dat1$score	and	dat1$method		

		
	 Pairwise	comparisons	using	t	tests	with	pooled	SD		
	

data:		dat1$score	and	dat1$method		



		
												 	 Read	4	Speed		Read	Well	
	Read	Well		 0.0292								 	 -									
	Eye	Candy		 0.0024								 0.8237		

	
	Effect	size;	using	the	mes()	function,	which	takes	the	form	mes(mean	group1,	mean	
group2,	sd	group1,	sd	group2,	n	group1,	n	group2)	
	
	

library(compute.es)		
	
		 Read	4	Speed	vs.	Read	Well	

mes(5.498798	,	8.406425,	2.2388385	,	2.2552944,	7,	7)			
	using	effect	size	of	r=	.54;		
r2	(-.54)^2		=	.29	

	
Read	4	Speed	vs.	Eye	Candy		
mes(5.498798,	9.540006	,	2.2388385,	0.7247437,	7,	7)	

		 r=	-0.75	
r2	(-.77)^2=	.59	

	
	
	Additional	test	of	normality	of	residuals	using	the	completed	model	

library(rcompanion)	
x=residuals(mod1)	
plotNormalHistogram(x)	
	

	
	
Statement:	
There	was	not	a	significant	difference	between	the	Read	Well	and	Eye	Candy	
programs.	However,	the	means	of	Read	4	Speed	(M=5.50,	SD=2.24),	and	Read	Well	
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(M=	8.4,	SD=2.25)	differed;	this	difference	proved	to	be	significant,	p	=.03,	r2=.29.	
Method	accounted	for	a	29%	of	the	variance	in	performance	(the	composite	score	
outcome).	The	means	of	Read	4	Speed	(M=5.50,	SD=2.24),	and	Eye	Candy	also	
differed	(M=	9.54,	SD=.72)	differed;	this	difference	proved	to	be	significant,	p	=.002,	
r2=.59.	Here,	method	accounted	for	59%	of	the	variance	in	performance.	Overall,	Eye	
Candy	had	the	highest	mean	result	and	contributed	to	59%	of	the	variance		in	
reading	performance.		
	
		
_____________________________________________________________________________________________	
Non-normal	dataset:	non-parametric	ANOVA		
	
The	code	below	was	used	to	generate	a	non-normal	data	set	appropriate	for	a	non-
parametric	or	robust	ANOVA.		Here	a	non-parametric	ANOVA	Kruskal-Wallis	test	
was	used.		
	
	Simulating	non-normal	data:	
	

nuts=rchisq(30,	df=3)	
	

c1<-sample(nuts,	size=10)	
	
c2<-sample(nuts,	size=10)	-	10	
	
c3<-sample(nuts,	size=10)	+	7	

	
		
	Making	a	grouping	variable	and	factor,	here	called	groupc:	
groupc<-rep(c(1,2,3),	c(10,10,10))	
groupc<-factor(groupc,	levels	=	c(1:3),	labels	=	c("c1",	"c2",	"c3"))	
	
Putting	all	generated	values	into	a	single	dataset	(actually	a	vector)	
reading<-c(c1,c2,c3)	
	
Combining	the	grouping	variable	and	data	in	a	data	frame:		
dat2<-data.frame(method1=groupc,	reading)	
	

head(dat2)	
		method1			reading	
1						c1	6.8267049	
2						c1	3.8972707	
3						c1	2.2951466	
4						c1	0.3787745	
5						c1	0.9271258	
6						c1	5.3481738	

	



Tests	of	normality	and	variance;	the	Levene	test		of	normality	as	conducted	first	
followed	by	the	Shapiro-Wilk	test;	
	

leveneTest(dat2$reading,	dat2$method1)		
Levene's	Test	for	Homogeneity	of	Variance	(center	=	median)	
							 Df		 F	value		 Pr(>F)	
group		2			 0.6238		 0.5435	

							 	 27																
	Assumption	of	homogeneity	of	variance	was	not	violated	(p	>	.05).	
	
Just	testing	one	group,	here	c2,	with	the	Shapiro-Wilk	test,	and	this	data	is	
significantly	non-normal.	This	is	also	conveyed	by	the	qplot()	of	residuals	that	
follows	the	Shapiro-Wilk	test.	The	qplot()	shows	lots	of	residuals	off	the	diagonal.	

	
shapiro.test(c2)		
	
Shapiro-Wilk	normality	test	

		
		 data:		dat2	c2	
		 W	=	0.67139,	p-value	=	0.0003972	
	
	
	

	
	
	
Here	is	a	box	plot	of	the	non-normal	datset;	it	clearly	shows	outliers.	
ggplot(dat2,	aes(groupc,	reading))	+	geom_boxplot()	
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Conducting	the	Kruskal-Wallis	test	
	
(mod2<-kruskal.test(reading~method1,	data=dat2))	p	>	.05,	ns	
		

Kruskal-Wallis	rank	sum	test	
		

	data:		reading	by	method	
		 Kruskal-Wallis	Χ2=	19.771,	df	=	2,	p-value	=	5.09e-05	
	
	
As	with	the	preceding	one-way	ANOVA	example,	a	statement	for	the	omnibus	
ANOVA	outcome	and	pairwise	tests	would	be	required	(but	we	will	skip	this	to	save	
time).	
	
__________________________________________________________________________________________	
Two-way	ANOVA	
	
Conceptually,	two-way	independent	ANOVA	is	similar	to	one-way	with	the	SST	
portioned	in	to	the	sum	of	squares	explained	by	the	model	SSm	and	the	error	(SSe).		
However,	the	SSm	or	model	is	partitioned	in	to	the	two	main	effects	(here	named	
SSA	and	SSB)	as	well	as	the	interaction	of	SSA	x	SSB.	
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	This	study	also	used	simulated	data.	The	aim	was	to	assess	if	1st	year	female	and	
male	university	students	had	differing	anxiety	levels	during	lectures	relative	to	
exams.		Factor	A	is	gender:	Male,	Female	(two	levels);	Factor	B	is	Anxiety	level	
during	lectures	vs.	exams.	Each	factor	therefore	had	2	levels.	The	Beck	Anxiety	
Inventory	(BAI)	scale	was	used	to	scale	anxiety:	0-9	is	minimal;	10-18	mild	
	19-29	moderate;	30-63	is	severe.	
	
Here	is	a	schematic	of	this	two-way	ANOVA		
	
	 	 Anxiety		
	 	 Lecture	 Exam	
Gender	 Male	 	 	
	 Female	 	 	
	 	 	 	
		
	
This	time	we	import	the	dataset	that	is	in	an	Excel	csv	format:	

	
two_way<-read.csv("5081_TwoWay.csv",	header=TRUE)	

	
Here	we	can	verify	that	R	automatically	set	the	correct	variable	formats,	where	the	
gender	and	status	(we	will	change	this	name	to	Event)	are	factors.	

is.factor(two_way$gender)		TRUE	
is.factor(two_way$status)		TRUE	
is.factor(two_way$Anxiety_level)		FALSE	

	
Changing	column	names:	
colnames(two_way)<-c("Gender",	"Event",	"Anxiety")			
	

(two_way)	
	

			Gender			Event	Anxiety	
1		female	lecture							5	
2		female	lecture							4	
3		female	lecture						11	
4		female	lecture						13	
5		female				exam						14	
6		female				exam						19	
7		female				exam						11	
8		female				exam							8	
9				male	lecture						16	
10			male	lecture							5	
11			male	lecture							3	



12			male	lecture							7	
13			male				exam						20	
14			male				exam						12	
15			male				exam						13	
16			male				exam						17	

	
	
	Testing	data	for	data	relative	normality	and	variance	
	
	
	Here	will	extract	both	the	Anxiety	outcome	across	gender	groups	as	well	as	create	
subsets	of	the	data	by	gender	to	allow	for	more	specific	assessments,	including	
separate	assessments	of	anxiety	variance	and	relative	normality	for	females	and	
males.		
	
		Extracting	a	subject	of	the	dataset	by	gender	using	the	subset()	function,	which	
employs	a	logical	operator	to	extract	specific	elements	of	the	data.	To	extract	study	
data	for	female	participants:	
		

female<-subset(two_way,	Gender=="female",	select=c("Event",	"Anxiety"))	
	female	
	Event	Anxiety	
	1	lecture							5	
	2	lecture							4	
	3	lecture						11	
	4	lecture						13	
	5				exam						14	
	6				exam						19	
	7				exam						11	
	8				exam							8	

	
	Here	we	do	the	same	for	male	participants:	

male<-subset(two_way,	Gender=="male",	select=c("Event",	"Anxiety"))	
	male	
	Event	Anxiety	
	9		lecture						16	
	10	lecture							5	
	11	lecture							3	
	12	lecture							7	
	13				exam						20	
	14				exam						12	
	15				exam						13	
	16				exam						17	

	
	



Testing	normality	using	the	Shapiro-Wilk	test:		first	for	females,	then	males,	then	
test	across	groups	without	differentiating	gender.	

	
	
	
	Testing	female	Anxiety	by	level:	lecture		
shapiro.test(female$Anxiety[female$Event=="lecture"])	
	Shapiro-Wilk	normality	test	
		
	data:		female$Anxiety[female$Event	==	"lecture"]	
	W	=	0.87832,	p-value	=	0.3315	
	
	Testing	female	Anxiety	by	level:	exam		
shapiro.test(female$Anxiety[female$Event=="exam"])	
	Shapiro-Wilk	normality	test	
		
	data:		female$Anxiety[female$Event	==	"exam"]	
	W	=	0.98403,	p-value	=	0.9252	
	

	
	Testing	male	Anxiety	by	level:	lecture		
shapiro.test(male$Anxiety[male$Event=="lecture"])	
	Shapiro-Wilk	normality	test	
		
	data:		male$Anxiety[male$Event	==	"lecture"]	
	W	=	0.86966,	p-value	=	0.2964	
	
	Testing	male	Anxiety	by	level:	exam		
shapiro.test(male$Anxiety[male$Event=="exam"])	
	Shapiro-Wilk	normality	test	
		
	data:		male$Anxiety[male$Event	==	"exam"]	
	W	=	0.92654,	p-value	=	0.5742	
	
	Testing	across	groups	without	differencing	gender		
shapiro.test(two_way$Anxiety)	
	
	Shapiro-Wilk	normality	test	
		
	data:		two_way$Anxiety	
	W	=	0.95404,	p-value	=	0.5563		
	

None	of	the	p-values	where	<	.05	suggesting	these	data	are	relatively	normal.		
	
The	final	test	of	normality	will	again	entail	using	the	qplot()	to	test	relative	
normality	of	residuals.	For	the	sake	of	brevity	we	will	use	qplot()	to	look	just	at	total	



Anxiety	without	differentiating	Anxiety	by	specific	levels	(lecture,	exam)	or	Anxiety	
or	Gender.	In	this	qplot	the	residuals	look	mostly	aligned	on	the	diagonal	suggesting	
that	the	dataset	is	relatively	normal.	
	

qplot(sample=two_way$Anxiety,	stat="qq")	
	

	
	
	
	

Conducting	the	Levene	Tests,	first	for	Anxiety	by	Gender,	then	Anxiety	by	Event,	and	
finally	for	the	interaction	of	Gender	and	Event.		

	
	

leveneTest(two_way$Anxiety,	two_way$Gender)		
	Levene's	Test	for	Homogeneity	of	Variance	(center	=	median)	
								 Df		 F	value		 Pr(>F)	
	group		1			 0.6173		 0.4452	
		 14																
leveneTest(two_way$Anxiety,	two_way$Event)	OK	
Levene's	Test	for	Homogeneity	of	Variance	(center	=	median)	
								 Df	 	F	value		 Pr(>F)	
	group		1			 0.1197		 0.7345	
		 14			

	
	Do	the	combinations	of	the	factors	(Gender	and	Event)	have	significant	interactions	
	such	that	significant	differences	in	Anxiety	variances	for	Gender	x	Event		
	might	result?				
	

leveneTest(two_way$Anxiety,	interaction(two_way$Gender,	
two_way$Event))		
Levene's	Test	for	Homogeneity	of	Variance	(center	=	median)	
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		 	 Df		 F	value		 Pr(>F)	
		 group		3			 0.0736			 0.973	
		 	 12		
	
	There	was	no	indication	of	significantly	different	variances	by	group	or	resulting	
	from	an	interaction:	all	p-values	were	>	.05	
	
	
Graphs	
This	graph	combines	both	female	and	male	with	Anxiety	levels	for	lecture	and	exam.	
Interestingly,	males	show	greater	exam	anxiety	but	less	lecture	anxiety	(at	least	in	
our	simulated	data).		
	

	
	
	
Looking	specifically	at	the	Anxiety	means,	variance	and	standard	deviation	for	
females	and	males,	it	is	apparent	that	males	do	indeed	have	higher	exam	Anxiety	
relative	to	females.	We	will	see	if	this	is	a	significant	difference	with	the	two-way	
ANOVA.		
	

tapply(female$Anxiety,	female$Event,	mean)			
	Event	
exam	lecture		
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	13.00				8.25	
tapply(female$Anxiety,	female$Event,	var)		
Event	
	exam		lecture		
	22.00	19.58		
tapply(female$Anxiety,	female$Event,	sd)		shows	mean	anxiety	based	on	
Event	
	exam		lecture		
	4.690416	4.425306	

	
	Male	Anxiety	levels	

tapply(male$Anxiety,	male$Event,	mean)	
	exam	lecture		
	15.50				7.75		
tapply(male$Anxiety,	male$Event,	var)	
	exam		lecture		
	13.67	32.92		
tapply(male$Anxiety,	male$Event,	sd)		
	exam		lecture		
	3.69				5.74	

	
This	is	the	mean,	variance	and	standard	deviation	of	anxiety	across	groups	without	
differentiating	by	gender:	
	

tapply(two_way$Anxiety,	two_way$Event,	mean)	
	exam	lecture		
	14.25				8.00		
tapply(two_way$Anxiety,	two_way$Event,	var)	
	exam		lecture		
	17.07	22.57143		
tapply(two_way$Anxiety,	two_way$Event,	sd)	
	exam		lecture		
	4.13	 	4.75	

	
Here	we	test	for	an	indication	of	a	possible	interaction;	this	provides	a	critical	early	
insight	to	a	potential	interaction	effect	(Gender	x		Event);	parallel	lines	for	males	
and	females	would	suggest	no	interaction	while	intersecting	or	non-parallel	lines	
suggest	there	is	an	interaction.	The	interaction	plot	below	clearly	displays	non-
parallel	lines,	suggesting	a	potential	interaction.	We	will	need	to	test	if	this	
interaction	is	significant	with	a	two-way	ANOVA.		
	
interaction.plot(two_way$Gender,	two_way$Event,	log(two_way$Anxiety))	
		



	
	
Conducting	two-way	ANOVA	
	

mod3<-aov(Anxiety~Event	+	Gender	+	Event:Gender,	data	=	two_way)	
	

summary(mod3)	
																													

Df		 Sum	Sq		 Mean	Sq		 F	value	Pr(>F)			
Event										 1			 156.2				 156.25				 7.089	0.0207	*	 	
Gender									 1					 4.0					 	 4.00				 	 0.181	0.6777			
Event:Gender		1					 9.0					 	 9.00				 	 0.408	0.5348			
Residuals					 12			 264.5				 22.04																		
---	
Signif.	codes:		0	‘***’	0.001	‘**’	0.01	‘*’	0.05	‘.’	0.1	‘	’	1	
	
	

Using	the	summary.lm()	function	just	to	extract	r2,		we	obtain	a	value	of	r2	(called	
multiple	R2)	as	well	as	an	adjusted	value.	Note,	as	mention	previously,	the	adjusted	
value	reflects	expected	contribution	to	variance	in	the	actual	population:	this	value	
was	.24.		
	

summary(mod3)	
.24	

	
Statement:		
The	two-way	ANOVA	revealed	that	there	was	not	a	significant	Gender	x	Event	
interaction	effect,	p	=	.40,	nor	was	there	a	significant	effect	of	Gender,	p=	.18.	
However,	there	were	differing	means	between	events	for	both	females	and	males:	
event-lecture	(females:		M=8.25	,	SD=	4.42;	males:	M=7.75	,	SD=	5.74)	and	event-
exam	(females:		M=13.00	,	SD=4.69;	males:	M=	15.50	,	SD=3.69).		Without	
differentiating	gender,	the	means	for	event-lecture	(M=8.00,	SD=4.75),	and	event-
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exam	(M=14.25,	SD=	4.13)	differed.	This	difference	between	events	proved	to	be	
significant,	with	a	significant	main	effect	of	Event,	p=	.02,	r2=.24,	which	indicates	
that	event	accounted	for	24%	of	the	variance	in	anxiety	levels.	
	
There	was	not	a	significant	effect	of	Gender	nor	was	there	a	significant	interaction	of	
Gender	x	Event.	Because	only	the	main	effect	of	Event	was	significant,	we	can	run	a	
pairwise	test	for	Event,	which	below	shows	a	significant	main	effect	of	Event	(p	
=.014)	
		
Pairwise	testing	for	Event	

pairwise.t.test(two_way$Anxiety,	two_way$Event,	p.adjust.method	=	"fdr")	
fdr=	false	discovery	rate	
	
		 Pairwise	comparisons	using	t	tests	with	pooled	SD		
		
	data:		two_way$Anxiety	and	two_way$Event		
		
										 	 exam		
	lecture		 0.014	

		
	P	value	adjustment	method:	fdr		
	
Effect	size	
	
Here	we	use	a	basic	Welch	t-test	to	facilitate	arriving	at	an	effect	size	using	r2	as	the	
measure	of	effect	strength;	this	t-test	shows	the	same	result	as	the	pairwise	test	
above,	but	running	this	t-test	provides	a	very	simple	method	of	assigning	a	the	t-test	
result	to	a	variable	(ta),	then	extracting	the	statistic	and	df	values	to	calculate	r2,	
which	we	find	is	.36.	
	

ta<-t.test(two_way$Anxiety~two_way$Event,paired=	FALSE,	var.equal	=	
FALSE)	
	Welch	Two	Sample	t-test		
	data:		two_way$Anxiety	by	two_way$Event	
	t	=	2.8076,	df	=	13.736,	p-value	=	0.01418	
	alternative	hypothesis:	true	difference	in	means	is	not	equal	to	0	
	95	percent	confidence	interval:	
			1.466933	11.033067	
	sample	estimates:	
			mean	in	group	exam	mean	in	group	lecture		
	14.25																		8.00		

	
	

t<-ta$statistic[[1]]		-2.8	
df<-ta$parameter[[1]]	13.73	
	



r2<-t2/(t2+df)	=	.36	
	
Statement:	
As	already	reported,	the	means	for	event-lecture	(M=8.00,	SD=4.75),	and	event-
exam	(M=14.25,	SD=	4.13)	differed.	This	difference	between	events	proved	to	be	
significant,	with	a	significant	main	effect	of	Event	lecture	and	Event	exam,	p=	.014,	
r2=.36,	which	indicates	that	event	alone	accounted	for	36%	of	the	variance	in	
anxiety	levels.	
	
	
_______________________________________________________________________________	
	Repeated	measures	one-way	ANOVA	
	
	In	repeated-measures	ANOVA	the	same	subjects	(or	entities)	participate	in	all	
treatments.	A	big	advantage	of	repeated-measures	ANOVA	is	the	variance	in	the	
response	variable	due	personal	or	individual	differences	is	removed	from	the	error	
term;	difference	between	treatments	then,	can	not	be	due	to	difference	between	
participating	subjects	given	the	same	subject	is	in	each	treatment.		
	
The	error	term,	then,	changes	in	the	repeated-measures	design.	As	conveyed	by	the	
schematic	below,	the	error	in	repeated	measures	ANOVA	now	includes	these	within-
subject	differences	and	any	other	variation	not	explained	by	the	treatment	effect.		It	
must	be	underlined	however,	that	within-subject	individual	differences	are	
measured	then	removed	from	the	denominator	of	the	repeated-measures	F-ratio.	
The	removal	of	the	variance	of	contributed	by	individual	differences	increases	the	
power	of	repeated	measures	ANOVA	relative	to	independent	measures	ANOVA	
	
	

	
	
	
The	dataset	used	in	this	repeated-measures	ANOVA	is,	as	noted	at	the	outset,	the	
same	as	dataset	used	in	the	one-way	ANOVA	example	analysis.		Details	of	the	
explanatory	(reading	program	method)	and	response	(reading	composite	score)	
variables	can	be	found	under	One-way	ANOVA		(independent,	unrelated	measures)	
at	the	start	of	this	document.		
	
For	the	repeated-measures	ANOVA	however,	a	single	column	of	individual	subjects	
was	added.	Here	is	the	dataset,	imported	for	Excel	as	a	csv.	
	



rep_m<-read.csv("dat1rm.csv",	header=TRUE)	
			subject							method					 		 score	
1							s1		 Read	4	Speed			 8.249930	
2							s2		 Read	4	Speed				 3.851183	
3							s3		 Read	4	Speed			 5.166481	
4							s4		 Read	4	Speed			 5.819707	
5							s5		 Read	4	Speed			 8.554169	
6							s6		 Read	4	Speed			 2.519100	
7							s7		 Read	4	Speed			 4.331016	
8							s1					 Read	Well		 	 10.466106	
9							s2					 Read	Well			 	 6.934875	
10						s3					 Read	Well			 	 5.192835	
11						s4					 Read	Well		 	 11.630756	
12						s5					 Read	Well			 	 9.662392	
13						s6					 Read	Well			 	 7.690234	
14						s7					 Read	Well			 	 7.267778	
15						s1					 Eye	Candy			 	 8.949562	
16						s2					 Eye	Candy			 	 9.539441	
17						s3					 Eye	Candy			 	 8.415509	
18						s4					 Eye	Candy			 	 9.850214	
19						s5					 Eye	Candy			 	 9.303608	
20						s6					 Eye	Candy		 	 10.499970	
21						s7					 Eye	Candy		 	 10.221738	
		
#	Looking	at	data	properties,	to	verify	that	R	correctly	formatted	the	data,	
distinguishing	the	factors	(method	and	now	subject	as	well).		
is.factor(rep_m$subject)		 TRUE	
is.factor(rep_m$method)			 TRUE	
is.factor(rep_m$score)		 FALSE	
		
	
	
Here	are	the	libraries	used	for	repeated-measures:		
library(TH.data)	
library(ez)	
library(pastecs)	
library(multcomp)	
library(nlme)	
library(ggplot2)	
library(reshape2)	
library(car)	
	
	
		
		
	



	
		
If	we	chose	to	create	the	data	rather	than	import	it,	we	could	do	so	as	follows:		
	(this	is	not	a	necessary	step	here,	as	we	have	imported	the	data,	and	R	has	
	automatically	determined	the	correct	data	formatting):	
		

	7	sets	(norally	levels)	of	3	scores	
	subj<-gl(7,	3,	labels=	c("s1",	"s2",	"s3",	"s4",	"s5",	"s6",	"s7")	)	
	meth<-gl(3,	1,	21,	labels	=	c("R4S",	"RW",	"EC"))	
	table(meth)	
	score1<-rep_m[,	"score"]	
	dat5<-data.frame(subj,	meth,	score1)	
	dat5[order(dat5$meth),]			just	reorders	by	method	

	
	Note,	that	because	this	is	the	same	dataset	(same	explanatory	and	response	
variables)	as	in	the	independent	ANOVA	example,	the	tests	of	normality	and	
variance	will	have	the	same	outcome;	graphs	will	be	the	same;	means	and	standard	
deviations	will	be	the	same	across	groups,	and	pairwise	tests	will	be	the	same.	As	
consequence	none	of	these	assessments	are	repeated	here.		
		
	What	will	differ,	however,	is	the	power	of	the	omnibus.	Also,	repeated-measures	
requires	a	change	in	assumptions.	With	repeated-measures	ANOVA	the	same	
entities	are	in	each	treatment.	But	this	violates	the	independent	ANOVA	assumption	
that	scores	are	independent	given	scores	across	treatment	conditions	will	be	likely	
related	by	virtue	of	being	derived	from	the	same	participant	or	entity.	Consequently,	
a	standard	F-ratio	will	be	inaccurate	(Field,	2012).			
	
The	new	assumption	that	arises	out	of	repeated-measures	version	of	ANOVA,	is	
referred	to	as	sphericity.	Sphericity	assumes	that	the	extent	of	dependence	between	
pairs	of	treatment	conditions	is	approximately	equal.	Mauchly’s	test	is	often	used	to	
assess	if	the	assumption	of	sphericity	has	been	met.	The	repeated-measures	
assumption	of	sphericity	is	akin	to	the	assumption	of	homogeneity	of	variance	in	
independent	ANOVA.		
	
		
library(ez)	
	
We	will	use	the	ezANOVA()	function	for	repeated-measures	initially,	where	
	dv=	dependent/response	variable;	wid=subject,	the	unique	case	identifier;		
	within=	method,	the	explanatory/independent	variable	
	DFn=	effect	df;	DFd=	error	df;	ges=	generalized	eta-squared		
	

mod5<-ezANOVA(data=rep_m,	dv=.(score),	wid=	.(subject),	within=	
.(method),	detailed=	TRUE,	type=2)	
mod5	
	$ANOVA	



$ANOVA	
							Effect		 DFn	DFd								SSn						SSd									F												p	p<.05								 	 ges	
1	(Intercept)			1				 6					1282.5		30.31		253.83		 3.881649e-06					*	0.9526534	
2			method				 2			 12			60.83	33.43					10.919		 1.989086e-03					*	0.4883104		
$`Mauchly's	Test	for	Sphericity`	
Effect								W									p		 	 p<.05	
2	method	0.887657						 0.7423572							

		
$`Sphericity	Corrections`	
Effect							GGe							p[GG]	p[GG]<.05						HFe							p[HF]	p[HF]<.05	
2	method	0.8990033		0.003023708									*	1.259646		0.001989086									*	

			
	Note	that,	using	the	very	same	data	used	for	one-way	independent	ANOVA	
	the	repeated-measures	ANOVA	had	a	higher	F-ratio:	10.92	for	repeated-measures	
one-way	compared	to	8.59	for	independent	one-way.	As	noted	at	the	start	this	
section,	this	increase	in	power	to	reject	the	null	hypothesis	is	because	repeated-
measures	removes	a	portion	of	the	error	from	the	denominator,	which	shrinks	the	
F-ratio	error.		
	
The	SSn	is	the	SS	of	the	repeated-measures	effect	(SSm	or	the	model)	and	this	value	
is	60.83,	and	this	is	the	same	as	in	the	independent	one-way	ANOVA	SSm.		The	SSd	is	
sum	of	squares	for	the	residual	(unsystematic,	unexplained	variance),	which	is	
33.43.	However,	in	the	independent	one-way	ANOVA	the	sum	of	squares	for	the	
residuals	was	63.74.	Obviously,	this	is	a	large	difference	in	total	residual.	Further	
look	at	the	steps	to	the	final	outcome	of	the	F-ratio	for	the	repeated-measures	and	
the	independent	ANOVA	respectively	as	it	illustrates	the	impact	of	the	reduced	error	
to	result	in	a	higher	repeated-measures	F-ratio:	
	
Repeated-measures	ANOVA	outcome	
SS	mean	square	residual:	SSd/df:	33.42687/12=		2.785	
SSn	(or	SSm)	mean	square:		60.83155/2=	30.41	
F-ratio:	30.41/2.785573=	10.919	
	
	Independent	ANOVA	outcome	
SS	mean	square	residual:	SSr/df:	63.74/18=		3.54	
SSm	mean	square:		60.83/2=	30.415	
F-ratio:	30.415/3.54=	8.589	
	
	
	
	
	
	
	Mauchly's	test	is	non-significant	(p=	0.74)	for	sphericity	indicating	that	sphericity	is	
likely	not	a	concern	with	this	data.	If	Mauchly's	test		was	significant	we	would	need	



to	consult	the	Greenhouse	and	Geisser	(1959)		or	Huynh	and	Feldt	(1976)	p-values	
which	are	corrected	for	sphericity.		
	
Finally,	a	final	omnibus	test	using	a	multilevel	model	was	conducted	mainly	to	
provide	additional	perspective	on	the	fit	of	the	model	(the	SSm	with	the	predictor)	
relative	to	baseline,	where	the	predictor	(explanatory	variable)	is	not	included.	The	
dataset	used	is	again	the	same	one	used	for	both	one-way	independent	and	
repeated-measures	ANOVA:	the	explanatory	variable	was	reading	“method”,	and	the	
response	variable	was	reading	“score”.			
	
	
library(nlme)	
		
	The	baseline	result	vs.	the	model	with	the	predictor		(mod6)	
	

baseline<-lme(score~1,	random=	~1|subject,	data=	rep_m,	method=	"ML")	
mod6<-lme(score~method,	random=	~1|subject,	data=rep_m,method="ML")	

	
	Comparing	the	baseline	model	with	no	predictor	to	the	model	the	predictor	method	

anova(baseline,	mod6)	
	
			Model	df							AIC							BIC				logLik			Test		L.Ratio	p-value	
			baseline					1		3	102.98361	106.11718	-48.49181																									
			mod6									2		5		92.04028		97.26289	-41.02014	1	vs	2	14.94333			6e-04	
	
	The	AIC	(Akaike	information	criteria)	measures	how	well	a	model	fits	the	data,	but	
also	penalizes	the	model	incrementally	as	predictors	are	added;	with	AIC	more	
predictors	will	earn	a	higher	penalty	so	parsimony	with	predictors	is	favored.		
	BIC	(Baysian	information	criterion)	and	it	too	penalizes	the	model	based	on	
number	of	predictors.		
	
The	model	(mod6)	including	the	predictor	(method)	has	lower	AIC	and	BIC	values	
than	the	baseline	model	without	the	predictor,	and	the	L.Ratio	(likelihood	ratio;	
(which	compares	the	two	tests:	baseline	and	mod6)	indicate	that	the	predictor	
model	(mod6)	is	a	significantly	better	fit	(p	<	.001)	relative	to	the	baseline	model.	
	
	
	End		
	
	
	
	
	


