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ABSTRACT: Chemoresistance, i.e., tumor insensitivity to chemotherapy, shortens
life expectancy of cancer patients. Despite the availability of new treatment options,
initial systemic regimens for solid tumors are dominated by a set of standard
chemotherapy drugs, and alternative therapies are used only when a patient has
demonstrated chemoresistance clinically. Chemoresistance predictors use labo-
ratory parameters measured on tissue samples to predict the patient’s response to
chemotherapy and help to avoid application of chemotherapy to chemoresistant
patients. Despite thousands of publications on putative chemoresistance predictors,
there are only about a dozen predictors that are sufficiently accurate for precision
oncology. One of the major reasons for inaccuracy of predictors is inaccuracy of
analytical methods utilized to measure their laboratory parameters: an inaccurate
method leads to an inaccurate predictor. The goal of this study was to identify
analytical challenges in chemoresistance-predictor development and suggest ways
to overcome them. Here we describe principles of chemoresistance predictor development via correlating a clinical parameter, which
manifests disease state, with a laboratory parameter. We further classify predictors based on the nature of laboratory parameters and
analyze advantages and limitations of different predictors using the reliability of analytical methods utilized for measuring laboratory
parameters as a criterion. Our eventual focus is on predictors with known mechanisms of reactions involved in drug resistance (drug
extrusion, drug degradation, and DNA damage repair) and using rate constants of these reactions to establish accurate and robust
laboratory parameters. Many aspects and conclusions of our analysis are applicable to all types of disease biomarkers built upon the
correlation of clinical and laboratory parameters.

Chemotherapy, i.e., administration of cytotoxic or
cytostatic agents targeting rapidly dividing cells, is the

oldest and most-widely used modality of systemic cancer
treatment.1,2 The effectiveness of chemotherapy is, however,
limited by chemoresistance, tumor insensitivity to cytotoxic
drugs, which cause the death of the dividing cells. Chemo-
resistance can be pre-existing, when the tumor does not
respond to the very first application of chemotherapy;3 it can
also be acquired during tumor exposure to chemotherapeutic
agents.4 Chemoresistance shortens the life expectancy of
cancer patients,5 and, eventually, may be responsible for up to
90% of cancer related deaths in the Western world.6 This
situation had been unavoidable for many decades when
chemotherapy was a key component of cancer treatment,
alongside radiation and surgery. However, recently, other
treatments have been developed, such as immunotherapy,
hormone therapy, molecularly targeted and signal transduction
inhibitors, heat ablation, and cryotherapy.7,8 Hence, selection
of the most appropriate therapy matched to the right tumor, in
the right patient, at the right time, known as precision
oncology, has become a major focus of cancer research.
Despite all the new treatment options, initial systemic

treatment regimens for solid tumors (which make up most
cancers) are dominated by a set of standard chemotherapy

drugs. Examples of such solid-tumor cancers are nonsmall cell
lung cancer (NSCLC), which is usually treated with a
combination of two drugs often including cisplatin or
carboplatin, and breast cancer, which is treated with chemo-
therapeutics such as anthracyclines and taxanes.9,10 Moreover,
some blood cancers, such as leukemia and lymphomas, are also
primarily treated with chemotherapy regimens, which include a
combination of different chemotherapeutics.11,12 Alternative
chemotherapeutics, systemic immuno-targeting or novel local
therapies are used when a patient has demonstrated clinical
resistance to their initial chemotherapy option (Figure 1).13,14

Confirming clinical chemoresistance in solid tumors requires
multiple rounds of chemotherapy, which inevitably exposes
patients to detrimental side effects of cytotoxic agents and
causes a potentially critical delay of several months in the use
of an alternative therapy. While standard first-line chemo-
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therapy regimens may remain the primary option for many
cancers for a long time, precision oncology calls for improved
methods to personalize treatments in order to improve clinical
outcomes. As one treatment no longer fits all patients, every
patient should be individually tested for chemoresistance
before the beginning of treatment to select the optimal
therapy.15 Predictive biomarkers of cancer are being developed
to guide the choice of therapies.16 Chemoresistance predictors
are predictive biomarkers which specifically predict resistance
to chemotherapy;17 other types of predictive biomarkers
predict the effectiveness of other types of cancer treatments.18

Predictive biomarkers for guiding cancer therapy have been
a research subject for decades.19 Many tentative predictors
have been suggested;20−23 however, only a few proved to be
clinically useful.18,24−27 In total, 17 predictive biomarkers have
been approved by FDA for guiding cancer therapy so far;
among them 11 are chemoresistance predictors.28 Evidently,
the effectiveness of efforts aiming at the development of
predictive biomarkers is alarmingly low, and there must be
fundamental reasons for this.
Some important issues in the development of predictive

biomarkers have been previously reviewed. Among them are
the small size of study designs,29 the lack of standardized
protocols across institutions,30 and inadequate state of
technologies necessary for predictor discovery and validation.25

Further, many predictors are reported in the form of odds or
hazard ratios, without providing performance characteristics
such as diagnostic sensitivity and specificity. There is, however,
only limited systematic analysis of fundamental challenges in
development of chemoresistance predictors and changes in
approaches and practices that are needed to improve the
effectiveness. This work is our attempt to provoke critical
discussion on the fundamental issues of chemoresistance-
predictor development. Many of these issues are common for
all predictive biomarkers as well as for diagnostic and
prognostic biomarkers.
Here, we describe the basic principles of chemoresistance

predictor development, classify predictors based on the nature
of a laboratory (lab) parameter utilized in them, and analyze

advantages and limitations of different predictors. We focus on
catalyst-based predictors (our term) with known mechanisms
of reactions involved in drug resistance and based on kinetic
lab parameters that have been proven to be accurate and
robust. We would like to emphasize that developing a catalyst-
based predictor requires the identification of a molecular
mechanism of the catalyzed reaction.

■ FUNDAMENTALS OF CHEMORESISTANCE
PREDICTORS

Concept of Chemoresistance Prediction. A chemo-
resistance predictor links a quantifiable clinical end point,
serving as an indicator of clinically manifested chemo-
resistance, with a lab parameter measured before the treatment
(see a schematic example in Figure 2). If there is a threshold

value of the clinical parameter that divides chemoresistance
from chemosensitivity, then measuring the lab parameter
before the treatment for individual patients can be used to
predict their chemoresistance.
To establish a clinically useful predictor, two basic

requirements should be satisfied: The first is biological: there
must be a sufficiently strong biological association between the
lab parameter and the clinical end point. The second is
technical: methods used for measuring the lab parameter and
quantifying the clinical end point must be reliable: precise,
accurate, robust, and rugged (see Note S1 for current
definitions by regulatory agencies). Importantly, a failure to
satisfy the technical requirement automatically makes it
impossible to know if the biological requirement is satisfied.
Establishing reliable approaches for finding the two correlated
parameters in Figure 2 must be step one in building a
chemoresistance predictor. It is also important to keep in mind
that the required performance parameters of chemoresistance
predictors depend on the effectiveness of alternative therapy
(see Note S2). In other words, biomarker development should
only proceed if there is a very clear and unmet clinical need to
guide therapy.

Analytical Performance of Methods. The requirement
for precision and accuracy of methods used to determine
clinical and lab parameters is self-evident. The key importance
of robustness and ruggedness becomes clear when statistics is
taken into consideration. The number of patients that should
be used in the training and validation sets to establish a reliable

Figure 1. Flowcharts for current (trial and error) and prospective
(predictor-based) cancer treatment paradigms. Blue boxes describe
diagnostic and chemoresistance-evaluation steps; red boxes describe
the chemotherapy steps. In the current paradigm, evaluation is done
after multiple rounds of chemotherapy. In the predictor-based
paradigm, evaluation is done prior to chemotherapy, preventing
useless chemotherapeutic treatment of chemoresistant patients.

Figure 2. Schematic graphical representation of a chemoresistance
predictor. A clinical parameter is a clinical end point such as time to
tumor progression, while a laboratory parameter is a parameter
measured on a biological sample obtained from a patient before
chemotherapy is applied.
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and accurate correlation between the lab parameter and the
clinical end point in Figure 2 depends on the strength of this
correlation and the quality of the analytical method. Very
strong correlation accompanied by a very accurate method
could allow a sample size of as few as tens of patients.
However, the problem of chemoresistance predictors is that
the methods are inaccurate, which precludes the assessment of
the goodness of correlation. Accordingly, the required sample
size may be as many as a thousand in each of the training and
validation sets.31 Even for common cancers, the required
number of patients often exceeds those available in a single
comprehensive cancer center. Developing reliable predictors
for less common cancers will certainly require pooling together
data across multiple institutions. Any systematic deviation in
the lab parameter and/or the clinical end point due to changes
in conditions, variability in commercial reagents and supplies,
or variations in practices will result in the inability to use the
data obtained in different facilities as a single set of parameters
to build the correlation in Figure 2.32

Methods used for quantifying clinical end points have some
limitations imposed by clinical practices and human nature.
For example, accurately quantifying time to tumor progression
requires precise timing of chemotherapy applications and
clinical assessments, which is impossible due to issues
associated with appointment scheduling and patient’s physical
fitness for treatments and assessments. To further complicate
the matter, short survival may not even provide sufficient time
for after-treatment assessments. Despite such limitations, these
methods are considered reliable at least to develop existing
clinically useful chemoresistance predictors. Based on this
criterion, there are reliable methods for quantifying at least
some clinical end points, e.g., progression free survival and
overall survival.20 For the purpose of this study, we assume that
these methods provide a sufficient toolset for quantifying
clinical end points; accordingly, we will focus solely on
methods used for measuring lab parameters. Analytical
methods used for measuring lab parameters are diverse, and
their majority is deemed not to satisfy at least one of the
necessary performance parameters (precision, accuracy, robust-
ness, ruggedness). Therefore, our critical analysis concentrates
on analytical performance of these methods. Moreover, here
we use the nature of the lab parameters as a basis for predictor
classification (Figure 3). The first level in this classification
distinguishes between (i) predictors based on whole-tumor
properties measured with in situ imaging and (ii) predictors
based on lab parameters obtained with biochemical analyses of
tissue samples or body-fluid specimens. Table S1 shows all
FDA-approved predictive biomarkers of cancer, including
chemoresistance predictors, and classifies them using the
principles described below.
Whole-Tumor Properties. In principle, any quantifiable

characteristic of a whole tumor, e.g., tumor size, levels of
contrast uptake, vascularization, and oxygenation, can be used
as a lab parameter to be correlated with a clinical end point in
Figure 2. Such tumor characterization can be obtained with in
situ imaging methods: ultrasound, X-ray, computed tomog-
raphy, magnetic resonance imaging, and positron emission
tomography.33 Chemoresistance predictors based on in situ
imaging have been studied in glioma,33 and breast,34 ovarian,35

and rectal cancers.36 While they can have clinical utility
potentially, none of them have been proven to be clinically
useful, and we do not consider them. Instead, we focus on
predictors developed with biochemical analyses of tissue

samples or body-fluid specimens. Such chemoresistance
predictors are versatile; they constitute a larger area of
research efforts,30 and all known clinically used predictors
belong to this category.

Genomic Aberrations. Biochemical predictors of chemo-
resistance can be divided into two major categories. The first
includes predictors based on genomic aberrations, e.g.,
mutations, single-nucleotide polymorphisms (SNPs), and
chromosome deletion or translocation. Although many of
these aberrations are quantifiable (e.g., the percentage of tumor
cells carrying a specific mutation is measurable), such
aberrations are typically listed as being either present or
absent. When dichotomized in this fashion, the aberrations can
be detected ruggedly with high precision, accuracy, and
robustness via DNA sequencing or fluorescence in situ
hybridization (FISH) for SNPs and chromosome abnormal-
ities, for instance.37,38 Dichotomization makes these predictors
appear to have low uncertainty, which suggests them as
methodologically ideal for the development of chemoresistance
predictors. However, each of these tests has a threshold; for
instance, FISH tests that indirectly measure the presence of an
ALK fusion protein (which is the product of an ALK gene
rearrangement) in the clinical setting utilizes a standard cutoff
of 15% of cells demonstrating the ALK-fusion to be labeled
ALK-fusion “present”, based on initial clinical trial data, and in
most cases, there is no doubt whether patients are positive or
negative according to this cutoff.39 However, there is a small
proportion of cases where the cutoff is 15% ± 5% where there
remains controversy over interpretation of positivity.40

Dichotomization is also complicated by other factors such as
the heterogeneity of cancerous tissues and errors in DNA
sequencing associated with this heterogeneity.41 Nonetheless,
if a reasonably accurate and precise clinical end point is used
along with a reasonably accurate, precise, robust, and rugged
discrete lab parameter, then the presence or absence of
sufficiently good correlation in Figure 2 can be interpreted
unambiguously as the presence or absence of a solid biological
link between the genomic aberration(s) and the clinical end
point, respectively.

Figure 3. Classification of chemoresistance predictors emphasizing
the branch of predictors based on lab parameters suggested by
molecular mechanisms of chemoresistance.
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Despite the analytical advantage of discrete lab parameters,
there are only a few reliable chemoresistance predictors based
on genomic aberrations.42 There are two reasons for relatively
modest progress with this apparently rugged approach. The
first reason is economical: the cost associated with accurate
whole-genome sequencing limits the amount of available data
for predictor development.43 It is, thus, reasonable to expect
that further advances in DNA sequencing will lead to more
chemoresistance predictors based on genomic aberrations. The
second reason is more fundamental: while the DNA sequence
represents a key element in control of cellular processes, there
are many other levels of cellular regulation, which can be
associated with chemoresistance, e.g., epigenetic, transcrip-
tional, post-translational, etc.44 Therefore, it is widely accepted
that predictors based on genomic aberrations are useful in a
small minority of cancer patients who often then receive
alternative therapies such as targeted agents or immunother-
apy. The remaining majority of cancer patients still have to
contend with standard chemotherapy agents and the potential
for chemoresistance.25

Quantities of Molecules and Rates of Cellular
Processes. The second large category of biochemical
predictors of chemoresistance (Figure 3) includes predictors
that measure quantities of molecules and rates of cellular
processes as lab parameters.25 Such lab parameters are
continuous in nature and are inevitably prone to random
and systematic errors. The extents of these errors depend on
the performance of the analytical method used to measure the
lab parameter.
Chemoresistance predictors in this large and diverse

category can be further divided into two groups: serendipitous
and rational. Serendipitous predictors are built with screening
technologies, which can analyze thousands of mRNAs,
proteins, post-translational modifications of proteins, miRNAs,
metabolites, etc. simultaneously.45 This approach can be
termed a nondiscrete omics approach as it utilizes analytical
tools of genomics, transcriptomics, proteomics, and metab-
olomics.46 Subsets of molecules whose quantities correlate
with a clinical end point are then identified, and these
quantities are considered as a lab parameter for a tentative
chemoresistance predictor. Most tentative chemoresistance
predictors belong to this category,30 but none of the FDA-
approved predictors, for example, have been discovered using
the nondiscrete omics approach.
Methods utilized for measuring lab parameters for

serendipitous predictors include wide-panel hybridization
assays (e.g., microarrays and Nanostring), nucleic acid
sequencing methods (e.g., RNA-Seq), 2D gel, and mass
spectrometry (MS).30 All of them suffer from poor perform-
ance in one or more of the four critical parameters. For
example, microarrays are semiquantitative and, thus, imprecise,
inaccurate, nonrobust, and nonrugged.47 Accordingly, they are
suitable for wide screening and initial identification of tentative
sets of molecules but not for populating Figure 2. Nanostring
can identify up to 800 gene transcripts in a single run by
detecting mRNA molecules with target-specific probe pairs;48

however, it is inherently irreproducible.49 Thus, it is also
suitable only for the identification of preliminary relatively
large sets of molecules. More accurate methods, such as RT-
qPCR and ELISA are typically used for quantitative measure-
ments of small sets of molecules identified from the wide
screens.50,51 However, RT-qPCR and ELISA have their own
sources of inaccuracy associated, in particular, with the need to

extract the molecules of interest from complex biological
samples, and the error-prone enzymatic amplification-based
mechanisms of detection.52 The errors in enzymatic
amplification-based detection are caused by multiple factors
including exponential error accumulation in PCR, enzyme
sensitivity to contaminants, and DNA thermal damage. RNA-
Seq can determine the differential expression of genes and
transcripts with very low amounts of RNA.53 However, it
suffers from issues associated with sample preparation
(quantity and quality of recovered RNA), resulting in high
variation of technical replicates. Additionally, analysis of genes
with low expression levels in pooled samples can produce a
false result of differential expression, when, in fact, this is due
to the already existing high expression variance of those
genes.54 A pipeline approach with gradual exclusion of poorly
performing serendipitous biomarker candidates and stronger
ones moving to the next stages, along with the development of
analytical methods for the most promising ones, was suggested
as a way of improving the output of the omics-based efforts.55

Overall, the current methods for measuring lab parameters in
the category of serendipitous predictors can be considered as
insufficiently precise, accurate, robust, and rugged for the
reliable development of predictors and, thus, examples of
robust and rugged markers using these methods are still to
come.
Despite the limitations of the analytical methods, promising

putative serendipitous chemoresistance predictors have been
proposed using omics strategies. In breast cancer, Smith et al.
utilized an antibody microarray composed of 224 antibodies to
identify differentially expressed proteins in sensitive and
doxorubicin-resistant cell lines.56 Decreased expression of
cyclin B1, cyclin D2, cytokeratin 18, and p-ERK were
correlated with doxorubicin resistance. Also in breast cancer,
tandem MS was able to identify a difference in the expression
of 15 proteins present in the basolateral plasma membrane of
parental and mitoxantrone-resistant cell lines.57 For NSCLC,
Pasini et al. investigated a panel of tumor suppressor genes and
genes related to stemness and drug resistance, and identified
genes involved in DNA damage repair as possible predictors.58

So far, the omics approach has been the most widely used and
productive in the development of tentative biochemical
predictors.59 However, we emphasize that none of such
predictors have proven to be clinically useful.
In contrast to the serendipitous predictors, which rely on

wide screening for the identification of lab parameters, the
rational predictors rely on molecular mechanisms which are
known to drive chemoresistance at the cellular level (Figure 3).
Some cytotoxic drugs induce DNA damage in rapidly dividing
cells and consequently trigger apoptosis in these cells. The
cytotoxic effect can be inhibited, i.e., tumor cells can exhibit
chemoresistance, if (i) the drug is extruded from the cells
before it reaches the nucleus, (ii) the drug is inactivated by
xenobiotic-metabolizing enzymes before reaching DNA, and
(iii) drug-induced DNA damage is rapidly repaired and does
not induce apoptosis. These three molecular mechanisms of
drug resistance are directly related to the chemotherapeutics
and its target, unlike other resistance mechanisms, such as
enhanced cell survival and decreased apoptotic signaling. Also,
these three mechanisms are driven by specific catalysts
(transporters or enzymes) that could be used to identify lab
parameters. For example, it is possible to develop assays that
measure the activities of molecular processes responsible for
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the three resistance mechanisms and use these activities as lab
parameters in Figure 2.
The rest of this perspective focuses on methodological

approaches for development of chemoresistance predictors
based on catalysts involved in drug extrusion, drug
degradation, and DNA damage repair. The catalysts that
participate in these three molecular mechanisms of chemo-
resistance are (i) multidrug-resistance (MDR) transporters
belonging to the ATP-binding cassette (ABC) family of
proteins and catalyzing drug extrusion;60 (ii) metabolizing
enzymes such as cytochrome P450 family (CYPs) catalyzing
drug degradation,61 and (iii) enzymes that participate in DNA
damage repair pathways to detect the damage, slice the lesion,
insert new bases to fill the gaps, and ligate the repaired DNA
strands.62

■ EFFORTS TO DEVELOP CATALYST-BASED
CHEMORESISTANCE PREDICTORS

Currently, there are no clinically reliable chemoresistance
predictors based on drug extrusion, drug metabolism, or repair
of drug-induced DNA damage. The reason for this absence
may be biological: there may be no good association between
the quantitative parameters characterizing these three
processes and clinical end points. The reason may also be
methodological: the current methods for measuring lab
parameters may be insufficiently precise, accurate, robust,
and rugged to facilitate collection of data required for
establishing the correlation shown in Figure 2. In the next
three sections, we categorize the methodological approaches
currently used in the development of catalyst-based chemo-
resistance predictors (Figure 4).

Quantity of Catalysis vs their Activity. Lab parameters
of catalytic processes of chemoresistance based on drug
extrusion, drug degradation, and DNA damage repair can be
categorized into abundance-based when the quantity (ex-
pression) of the catalyst is measured and activity-based when
the intensity of the process is assessed through a quantifiable
parameter (Figure 4). There are well-developed approaches for
assessing levels of gene expression (amount of mRNA) or gene
product (amount of the protein) with hybridization assays and
immunoaffinity assays, respectively. However, in general, the

amounts of mRNA and the protein are not enough to define
the rate of reaction catalyzed by this protein. The reaction rate
also depends on post-transcriptional and post-translational
regulation, such as alternative splicing and editing of expressed
transcripts and post-translational modifications to the
protein.63,64 Additional reasons for the functional insufficiency
of expression assays are variation in concentrations of effectors
and the dependence of reaction rate on the microenvironment,
e.g., membrane microenvironment for transporters.65,66 There-
fore, expression levels of mRNA or catalyst proteins are not
robust lab parameters. In contrast, the intensity of a catalytic
process, or the activity of a catalyst, may be a base for a robust
lab parameter assuming such a parameter is properly defined
and can be measured. Thus, our following consideration
focuses on catalytic activity of transporters and enzymes.
Before delving into the issue of defining a suitable quantitative
lab parameter based on catalyst activity, we will overview two
types of approaches for studying such activities: a population-
average approach and a single-cell approach.

Population-Average and Single-Cell Approaches. In
general, the activity of transporters and enzymes can be studied
with a population-average approach or with a single-cell
approach (Figure 4). The population-average approach is
inadequate for cancerous cells. Tumors are composed of cells
that differ in their genome, transcriptome, proteome,
metabolome, etc. resulting in heterogeneous cell populations.
In population-average studies, an average characteristic of the
entire cell population is measured and, thus, the heterogeneity
of the cell population is completely disregarded (Figure 5).67

As a result, population-average assays cannot detect minor
subpopulations of cells, e.g., a subpopulation with an elevated
level of drug resistance caused by higher activity of MDR
transporters or enzymes involved in drug degradation and
DNA damage repair. Accordingly, population-average assays
cannot measure the size of a subpopulation of drug-resistant

Figure 4. Methodological approaches utilized to measure a laboratory
parameter while developing catalyst-based predictors; the focus is on
the branch of catalyst-activity-based predictors.

Figure 5. Conceptual representation of population-average vs single-
cell assays. Population-average assays evaluate the average character-
istic of a heterogeneous population, losing the information on
heterogeneity, while single-cell assays can differentiate sensitive and
resistant cell subpopulations present in the tumor. In this example, the
heterogeneous population is composed of 30% of resistant cells and
70% of sensitive cells.
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cells, while knowing this size is important because it correlates
with clinical chemoresistance for an obvious reason: a greater
number of drug-resistant cells in the tumor will result in a
higher probability of some of such cells surviving chemo-
therapy and leading to disease relapse.68

Assessing population heterogeneity and measuring the size
of a subpopulation of drug-resistant cells requires a single-cell
approach. Single-cell assays analyze individual cells in the
context of a large cell population and can, thus, identify and
characterize small subpopulations of drug-resistant cells
(Figure 5). If the size of the drug-resistant population can be
measured, it can then be used as lab parameter to correlate
with a clinical parameter in Figure 2. Collectively, techniques
that can facilitate assessment of cell population heterogeneity
are called cytometry.
Kinetic Approach for Identifying Population Hetero-

geneity with Regards to Catalyst Activity. There are two
approaches for studying activity of catalysts at the single-cell
level: nonkinetic and kinetic (Figure 4). A nonkinetic
approach, such as measuring the amount of product formed
at a certain time point, can be used to assess reaction rates and,
therefore, characterize the subpopulation of drug-resistant
cells. However, the nonkinetic approach is not robust, e.g.,
small variations in the substrate concentration may lead to
significantly different results, i.e., different apparent reaction
rates. Nonrobust measurement of reaction rates using a
nonkinetic approach will, in turn, lead to nonrobust assess-
ments of the size of drug-resistant subpopulation.69 Flow
cytometry is a nonkinetic single-cell approach that has been
widely used to assess catalyst activity in order to determine the
size of the drug-resistant subpopulation.70 However, flow
cytometry interrogates every cell at only one time point.
Therefore, flow cytometry can only be used to determine
pseudokinetic parameters which are inaccurate and non-
robust.71

To measure the size of a drug-resistant cell subpopulation
and use it as a lab parameter, it is necessary to utilize a robust
truly kinetic measure of reaction activity. A chemical reaction
can be described through mechanisms that explain how
reactants become products. Rate constants are quantitative
parameters associated with reaction mechanisms, and they are
the most accurate quantitative descriptors of the reaction. If a
reaction is studied with a different instrument, a different
substrate concentration or in a different time scale, rate
constants will remain the same.
Reaction rate constants measured for drug extrusion, drug

degradation, and DNA damage repair can, thus, serve as a basis
for accurate, precise, robust, and rugged characterization of the
drug-resistant subpopulation. The size of the subpopulation of
drug-resistant cells is viewed as a suitable lab parameter for
correlation with the clinical parameter in Figure 2;68 rate
constants measured at the single-cell level can be used to
determine this size in an accurate and robust way. Other
parameters characterizing cell-population heterogeneity, such
as peak skewness or peak width in a histogram of cell
distribution, can be also assessed as lab parameters.72

A general approach in which the rate constant is used to
characterize cell-population heterogeneity is termed cytometry
of reaction rate constant (CRRC) (Figure S1).69,71−77 This
method is being developed using cancer cell lines with the final
goal of analyzing tumor primary cells and circulating tumor
cells. Unlike nonkinetic approaches, CRRC can provide a
robust kinetic lab parameter. Recent work, in which CRRC was

used to study cell population heterogeneity with respect to
MDR transport, have proved that CRRC is accurate78 and that
it can detect subpopulations of cells with elevated rate
constants.79 Additionally, it was shown that many phenotypes
do not change significantly in the first 96 h after cell dispersal
from three-dimensional clusters,80 suggesting that the kinetic
constant measured on tissue samples disintegrated into single-
cell suspension can be used to characterize MDR activity in
solid tumors. In the most recent work, it was directly proven
that cells obtained by disintegration of three-dimensional
clusters maintain their MDR activity for 24 h.81 These studies
indicate that if the size of a subpopulation with greater rate
constants of the three catalytic processes (drug-resistant
subpopulation) is measured with CRRC, it can represent a
reliable lab parameter for constructing correlation with the
clinical parameter in Figure 2.69

Enzyme activity with kinetic approaches in single-cell assays
has also been a subject of study by a few groups. Sunray et al.
used kinetic parameters to characterize activity of cytosolic
enzymes in peripheral blood mononuclear cells,74 which served
as a model for Blokh et al. in his study of cytosolic enzyme
activity in breast cancer patients.77 Blokh and colleagues used
kinetic characteristics of esterase activity to construct a
diagnostic model that provided the right diagnosis of breast
cancer for 44 out of 50 patients. Afrimzon et al. also evaluated
activity of esterases in lymphocytes from breast cancer patients
utilizing kinetic parameters.75 Their work reported a difference
in enzyme activity in breast cancer patients when compared to
healthy donors, and higher rate constant values were correlated
with better prognostic status of breast cancer patients,
indicating that this method could be an additional criterion
for prognosis and monitoring of breast cancer. Furthermore,
there are some studies evaluating enzymatic activity in single
cells originated from tumor samples. Schwab et al. evaluated
MDR activity in cells dispersed from colorectal tumors,
providing evidence for future kinetic analysis of freshly isolated
cells from solid tumors.82 Ricci et al. analyzed ALDH activity
and CD133 expression in cells from ovarian tumor samples;
however, they were not able to find a predictive value of
CD133 expression and ALDH activity since there was no
correlation between those parameters and clinical features of
the patients.83 Another example of a sample that could be
potentially evaluated by single-cell assays are circulating tumor
cells, which are implied in tumor metastasis and progression;
nevertheless, there are no reports on kinetic studies using this
type of cell. We can anticipate that single-cell kinetic
measurements of chemoresistance-driving processes by
CRRC will significantly improve precision, accuracy, robust-
ness, and ruggedness of predictors of clinical chemoresistance.
CRRC can facilitate the collection of measurements of the

lab parameters for many patients across different care centers
to populate the correlation graph in Figure 2 with a statistically
significant number of points. Even more, if it is found that
there is no correlation between the clinical and lab parameters,
the reason for the lack of correlation would fall in the
biological category. In addition, this method could show if
individual mechanisms of chemoresistance could be used to
build good predictors. If only one mechanism is being analyzed
and there is failure to generate a strong correlation of the lab
parameter with the clinical parameter, this will indicate that the
predictor should be based on a combination of chemo-
resistance mechanisms.
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■ FUTURE DIRECTIONS FOR CATALYST-BASED
CHEMORESISTANCE PREDICTORS

As discussed above, the best way to identify drug-sensitive and
drug-resistant subpopulations of cells in a heterogeneous
population is to use a kinetic approach based on molecular
mechanisms of chemoresistance: drug extrusion, drug degra-
dation, and DNA damage repair (Figure S2). CRRC is a
method that allows the identification of cells with differing
catalyst (transporter of enzyme) activity and can be applied to
these three cellular drug-resistance processes.
The first mechanism of chemoresistance analyzed by CRRC

has been drug extrusion. MDR transporters are responsible for
extrusion of chemotherapeutics, and they contribute to clinical
chemoresistance in a variety of cancers, for instance,
hematological malignancies and breast, ovarian, renal, and
pulmonary tumors.60 MDR transporters move a substrate
against its natural flux caused by the concentration difference
outside and inside the cell.84 Three most related to
chemoresistance transporters are P-glycoprotein (P-gp, also
known as MDR1/ABCB1), MDR-associated protein 1 (MRP1,
also known as ABCC1), and breast cancer resistance protein
(BCRP, also known as ABCG2).84 Feasibility of MDR activity
as a predictor of therapy response has been suggested in acute
myeloid leukemia,85 and this activity can be assessed with
fluorescent probes (fluorophores) with overlapping substrate
specificities.86 In studies of MDR with CRRC, a fluorophore
(fluorescein) is added to the cells and allowed to enter and
accumulate in the intracellular space. Further, the decrease in
intracellular fluorescence is followed over time as an indicator
of the transporters’ activity. CRRC has been able to correctly
identify subpopulations of cells with different MDR activity,
i.e., different rate constants,69 and the most recent work with
MDR transporters have also shown that CRRC can be applied
to cells from disintegrated multicellular spheroids, providing
the basis for future CRRC use in cells from disintegrated
tumor tissues.81

CRRC as a method to study MDR activity has been
extensively evaluated and demonstrated to be suitable for
attempts to develop chemoresistance predictors based on drug
extrusion; however, the other two mechanisms of chemo-
resistance, drug degradation and DNA damage repair, have yet
to be evaluated by CRRC. Cytotoxic drugs are metabolized by
enzymes, namely, cytochrome P450 (CYP) (Figure S2) and
transformed from lipophilic xenobiotics into water-soluble
products that are more easily transported out of the cell.61

CYPs have been linked with chemoresistance in various cancer
types (ovarian, breast, colon, and liver cancers, for
example),87−90 since the greater deactivation of chemo-
therapeutics results in insufficient drug concentration in the
interior of tumor cells. Additionally, there is evidence of the
relevance of CYP activity in tumor cells when we consider the
correlation between CYP expression and drug response.91

Evaluation of CYP activity differs from that of MDR in two
aspects: localization of the catalyst and type of the substrate.
While transporters are located in the cell membrane, CYPs are
intracellular enzymes, located in the inner membrane of the
endoplasmic reticulum or the mitochondria.92 As for the
substrate, a fluorophore is used for MDR transporters, because
there is no chemical transformation of the substrate into a
product. CYPs require a fluorogenic substrate, i.e., a non-
fluorescent molecule that converts into a fluorescent product.
There are many fluorogenic substrates for CYP assays:

different O-alkyl derivatives of resorufin, fluorescein, 7-
hydroxycoumarins, 6-hydroxyquinolines, and 4-methylsulfonyl-
phenyl furanones. Some of them are substrates for many
CYPs,93,94 suggesting their use for assessing overall CYP
activity required for kinetic measurements and identification of
drug-sensitive and drug-resistant subpopulations. This fluo-
rescence-based measurement of CYP activity has been vastly
used in cell lines and, thus, provides a good basis of adapting
this method for evaluation of CYP activity in tumor samples
originated from patients.
The third chemoresistance mechanism, DNA damage repair,

is utilized by cancer cells to repair the damage caused by
cytotoxic chemotherapeutic agents and, hence, avoid cell
apoptosis.95 One relevant effector of the DNA damage repair
machinery is ERCC1 (Figure S2). This endonuclease is
involved in removal of DNA adducts caused by platinum-based
chemotherapeutics. High ERCC1 expression levels have been
shown to correlate with chemoresistance in NSCLC,96

gastric,97 and ovarian98 cancers. Studies with colorectal,99

melanoma,100 and ovarian101 cancer cell lines have also
demonstrated a link between resistance to platinum-based
drugs and ERCC1 expression levels. Furthermore, gene
expression level of ERCC1 has been proposed as a predictor
of poor clinical response for colorectal cancer patients after
treatment with a fluoracil/oxaliplatin combination.102 The level
of ERCC1 protein has also been proposed as a predictor of
tumor response and overall survival for patients with squamous
cell carcinoma of the head and neck undergoing cisplatin-based
concurrent chemoradiotherapy.103 Moreover, it has been
demonstrated that lung cancer patients whose tumors did
not express ERCC1 presented better survival rates than
patients with tumors expressing ERCC1, after treatment with
cisplatin,104 and that enhanced ERCC1 expression correlates
with clinical resistance to platinum-based chemotherapeutic
treatment in epithelial ovarian cancer patients.105

ERCC1 is a critical member of the DNA repair machinery,
and its levels correlate with chemoresistance in several types of
cancer, making this protein a good candidate for chemo-
resistance predictor to be evaluated by CRRC. Nonetheless,
there are no fluorogenic substrates to evaluate ERCC1 activity
with CRRC. This calls for biological chemists to develop
fluorogenic substrates for this enzyme, so that ERCC1 can be a
part of drug resistance predictor development together with
MDR transporters and CYPs. One example of fluorogenic
substrates used to assess DNA damage repair protein activity
was developed by Beharry et al.106 This substrate, employed in
intact prostate immortalized cells, is specific for ALKBH3, a
protein that oxidizes aberrant alkyl groups and restores guanine
DNA bases after damage caused by alkylating agents.107

Although there are reports associating ALKBH3 levels with
increased tumor size in head and neck squamous cell
carcinoma,108 with an advanced tumor stage in pancreatic
cancer,109 and with drug resistance in prostate cancer,110 this
enzyme is not a pivotal effector of the DNA repair machinery
regarding chemoresistance. So far, there have been few reports
about ALKBH3 in studies related to chemoresistance, and
therefore, this enzyme is not a well justified catalyst candidate
for CRRC in predictor development. However, since there is a
fluorogenic substrate for ALKBH3, this enzyme could still be a
satisfactory testing system for CRRC in the DNA damage
repair context.
Altogether, MDR transporters, drug metabolizing enzymes,

and DNA repair enzymes are well studied, and mechanisms of
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their catalytic activity are understood. Thus, these three
processes catalyzed by these types of catalysts form a group of
chemoresistance mechanisms for which the catalyst-based
approach in predictor development can be utilized.

■ CONCLUSIONS

In order to develop a reliable chemoresistance predictor, not
only is good correlation of the clinical parameters and lab
parameters needed but also a method that allows the
measurement of both parameters in an accurate, precise,
robust, and rugged way. If the method to measure the lab
parameters follows these four requirements, then it can be used
to test whether there is a strong correlation between the lab
and clinical parameters. If the correlation is present and the
correlation coefficient is found to be sufficiently high, this
finding can be a starting point in the multistep development of
a clinically useful chemoresistance predictor.
Although the nature of genomic aberration provides a

theoretical analytical advantage, there are several post-tran-
scriptional steps of regulation of gene expression that can
impact the cells’ response to chemotherapeutics. Therefore,
genomic aberrations are not found to be the driver of
chemoresistance in most cases. Instead, assessment of potential
predictors that evaluate quantities of molecules (e.g., proteins)
and rates of reactions (e.g., enzymatic ones) should be actively
pursued. The most common approach for this evaluation is to
identify possible molecular candidates with omics techniques
and then quantify the candidate molecules using more robust
techniques, such as immunoassays. The caveats of this
approach are that (i) the quantity of molecules, e.g., proteins,
may not correlate well with their activities and (ii) the omics
approach is a brute-force one that does not rely on known
mechanisms of cellular resistance to cytotoxic agents. The
limitations of molecular quantity-based predictors emphasize
the importance of predictors based on known cellular
processes of resistance to cytotoxic agents, such as drug
extrusion, drug degradation, and DNA damage repair. These
mechanisms are driven by catalysts (transporters and enzymes)
and, hence, are termed catalyst-based predictors.
For catalyst-based predictors, the commonly used methods

that evaluate expression levels of genes and proteins, rather
than protein activity, have been criticized for providing
insufficiently high correlation with activity of drug-resistance
processes. In addition, population-average approaches dis-
regard characteristics of a drug-resistant cell subpopulation
(e.g., its size) as potential lab parameters. Cytometry
techniques, in contrast, provide single-cell resolution and
allow the development of chemoresistance predictors based on
the characteristics of the minor drug-resistance cell sub-
population as such subpopulation can give rise to tumor
relapse after chemotherapy. The extension of data analysis to
determination of rate constants (instead of nonkinetic rates)
will improve accuracy, precision, robustness, and ruggedness of
the assay required for studying combined multicenter patient
cohorts. Moreover, the development of CRRC-based pre-
dictors of chemoresistance, focused on drug extrusion, drug
degradation, and DNA damage repair, that is, catalyst-based
predictors, has the potential to improve the accuracy and
reliability of drug resistance prediction and eventually allow
rationalized decisions on the best treatment options for
individual cancer patients.
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Drug Metab. Dispos. 2004, 32, 699−706.
(95) Bouwman, P.; Jonkers, J. Nat. Rev. Cancer 2012, 12, 587−598.
(96) Lord, R. V.; Brabender, J.; Gandara, D.; Alberola, V.; Camps,
C.; Domine, M.; Cardenal, F.; Sańchez, J. M.; Gumerlock, P. H.;
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ABSTRACT 

Chemoresistance, i.e., tumor insensitivity to chemotherapy, shortens life expectancy of cancer patients. 
Despite the availability of new treatment options, initial systemic regimens for solid tumors are 
dominated by a set of standard chemotherapy drugs, and alternative therapies are used only when a 
patient has demonstrated chemoresistance clinically. Chemoresistance predictors use laboratory 
parameters measured on tissue samples to predict patient’s response to chemotherapy and help to avoid 
application of chemotherapy to chemoresistant patients. Despite thousands of publications on putative 
chemoresistance predictors, there are only about a dozen predictors that are sufficiently accurate for 
precision oncology. One of the major reasons for inaccuracy of predictors is inaccuracy of analytical 
methods utilized to measure their laboratory parameters: an inaccurate method leads to an inaccurate 
predictor. The goal of this study was to identify analytical challenges in chemoresistance-predictor 
development and suggest ways to overcome them. Here we describe principles of chemoresistance 
predictor development via correlating a clinical parameter, which manifests disease state, with a 
laboratory parameter. We further classify predictors based on the nature of laboratory parameters and 
analyze advantages and limitations of different predictors using the reliability of analytical methods 
utilized for measuring laboratory parameters as a criterion. Our eventual focus is on predictors with 
known mechanisms of reactions involved in drug resistance (drug extrusion, drug degradation, and 
DNA damage repair) and using rate constants of these reactions to establish accurate and robust 
laboratory parameters. Many aspects and conclusions of our analysis are applicable to all types of 
disease biomarkers built upon the correlation of clinical and laboratory parameters. 
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S-2 

Note S1: Current definitions of precision, accuracy, robustness and ruggedness by regulatory 
agencies 

Precision is defined as “the closeness of agreement (degree of scatter) between a series of 
measurements obtained from multiple sampling of the same homogeneous sample under the prescribed 
conditions”.1 Accuracy is defined as “the closeness of agreement between the value which is accepted 
either as a conventional true value or an accepted reference value and the value found”.1 The robustness 
of an analytical procedure is defined as “a measure of its capacity to remain unaffected by small, but 
deliberate variations in method parameters and provides an indication of its reliability during normal 
usage”.1 Ruggedness of an analytical method is defined as “the degree of reproducibility of test results 
obtained by the analysis of the same sample under a variety of normal test conditions, such as different 
laboratories, different analysts, different instruments, different lots of reagents, different elapsed assay 
times, different assay temperatures, different days, etc.”.2 
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Note S2: Consideration of effectiveness of alternative therapy 
Deciding to replace an established frontline chemotherapy with an alternative therapy in an 

individual patient requires that chemoresistance be very reliably predicted. False-positive results in a 
chemoresistance test may lead to unjustified replacement of chemotherapy with a less effective 
alternative therapy for non-chemoresistant (i.e. chemosensitive) patients.3 According to the definition of 
chemosensitivity, the effectiveness of frontline chemotherapy (Echemo) is equal to unity for 
chemosensitive patients: Echemo = 1. The effectiveness of the alternative therapy (Ealt) is lower than 
Echemo for chemosensitive patients, e.g. Ealt < 1. On the other hand, Ealt can be presumed to be the same 
for chemoresistant and chemosensitive patients as the alternative therapy has a mechanism of action 
different from the cytotoxicity mechanism of the first line chemotherapeutic agent. The value of Ealt will 
define the required quality of a chemoresistance test. Two parameters of a chemoresistance-predictor 
test define its quality: sensitivity and specificity. Sensitivity of a chemoresistance predictor is defined as 
a fraction of patients who are correctly predicted to be chemoresistant among those who are truly 
chemoresistant, and thus should be treated with the alternative therapy. Specificity, in turn, is a fraction 
of patients who are correctly predicted to be chemosensitive among those who are truly chemosensitive, 
and who should be treated with chemotherapy.4 The requirement for a predictor test is that for 
chemosensitive patients, Ealt should be higher than the negative likelihood ratio, which is a ratio 
between the probability of false-detection of chemoresistance (1 − assay sensitivity) and that of 
correctly ruling out chemoresistance (sensitivity),5 which can be summarized as: 

 
Ealt > (1 − sensitivity)/specificity 

 
Values for assay sensitivity and specificity can vary between 0 and 1. When applying real values of 

alternative therapy effectiveness (Ealt) to the above inequality, the need for high sensitivity and 
specificity becomes evident. For example, for metastatic colorectal cancer patients, the effectiveness of 
second-line therapy is 0.61;6 therefore, assay sensitivity and specificity must satisfy inequality 
(1 − sensitivity)/specificity < 0.61. When sensitivity is set at 1, the numerator is equal to zero, and any 
specificity value would make the statement true. In contrast, when specificity is set at 1, sensitivity 
needs to be higher than 0.39 to satisfy the inequality. In another example, for renal cell carcinoma 
patients, the effectiveness of second-line therapy is only 0.13;7 therefore, assay sensitivity and 
specificity must satisfy inequality (1 − sensitivity)/specificity < 0.13. Again, for sensitivity of 1, any 
specificity value would be sufficient; however, when specificity is set at 1, sensitivity should be higher 
than 0.87. The above examples are solely to illustrate how the effectiveness of an alternative therapy 
imposes requirements on the sensitivity and specificity of a chemoresistance-predictor test. Higher 
values of Ealt allow more tolerance for assay sensitivity while low values of Ealt impose very strict 
requirements on this characteristic. Assay specificity is a less restrictive parameter, but it is also 
important as low specificity must be compensated by the increase in sensitivity. In clinical practice, the 
actual threshold set for the negative likelihood ratio may also be influenced by factors other than 
treatment effectiveness: issues such as cost effectiveness, toxicity of chemotherapy versus alternative 
regimen, and patient preference may supersede or alter the specific thresholds; however, we will take 
the purist approach, assuming that all other non-effectiveness factors are equal between treatment 
options.  

It is important to emphasize that diagnostic sensitivity and specificity of a chemoresistance predictor 
depend on the choice of the threshold which divides cases presumed to be chemoresistant and 
chemosensitive (horizonal line in Figure 2 in the main text). When the threshold is lowered, more true-
chemoresistant cases are identified at the expense of a growing number of false-chemoresistant cases. 
Thus, lowering the threshold increases the sensitivity but decreases the specificity. A plot of sensitivity 
versus 1 – specificity is called receiving operating characteristic (ROC) curve, which can evaluate the 
diagnostic ability of a test to truly discriminate between the two different states of the patients,8 i.e. 
chemoresistance or chemosensitivity. The area under the curve (AUC) is an important performance 
characteristic of the predictor, and it can be interpreted as the average value of sensitivity for all possible 
values of specificity.8 AUC = 1.0 indicates perfect separability of chemoresistance from 



S-4 

chemosensitivity and corresponds to an ideal predictor. A predictor with AUC = 0.5 cannot separate 
chemoresistance from chemosensitivity, meaning that the predictor test yields chemoresistant or 
chemosensitive classifications at chance, without any correlation with the true status of the patient.9 

If a reliable chemoresistance predictor is available, a test for chemoresistance should take place 
before the first round of treatment for every patient considered for chemotherapy. Such a test should 
also be used before the subsequent rounds of treatment for patients who did not show pre-existing 
chemoresistance but had eventual cancer progression (i.e. tumor growth or development of new 
metastasis) at any time point after the start of therapy.10 Chemoresistance prediction, if reliable, is thus 
envisioned to benefit patients with both pre-existing and acquired resistance.   



S-5 

Table S1: Predictive biomarkers of cancer approved by FDA for clinical use.* 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abbreviations: ER, estrogen receptor; MSI-H, microsatellite instability high; NSCLC, non-
small-cell lung cancer; CML, chronic myeloid leukemia; GIST, gastrointestinal stromal 
tumors; CRC, colorectal cancer; APL, acute promyelocytic leukemia. 
* Prognostic biomarkers such as Mammaprint or Oncotype Dx that are not tied to the effectiveness 

of specific systemic therapies are not included in the table. 
** Chemoresistance predictors. 
*** Year in which the biomarker was either approved by FDA (with or without an 

accompanying drug) or was implemented for clinical use.  

Predictor classification Year*** Cancer type 

Genetic aberrations (11)   

ALK (gene rearrangement)** 2010 NSCLC 

BRAF (mutation)  2010 Melanoma 

BRCA (mutation)**  2011 Breast; ovarian 

BCR–ABL (chromosome translocation) 2001 CML 

c-KIT (mutation) 2002 GIST 

EGFR (mutation)** 2010 NSCLC 

IDH (mutation)  2013 Glioma 

KRAS (mutation)** 2008 NSCLC; CRC 

PDGFR (mutation) 2002 CML; GIST 

PML–RAR (chromosome translocation)  2001 APL 

ROS1 (gene rearrangement)** 2017 NSCLC 

Quantities of molecules (6)   

EGFR (protein expression)** 2004 CRC 

ER (protein expression)** 1977 Breast 

HER2 (protein expression)** 1998 Breast 

HER2 (gene amplification)** 1998 Breast 

PDL-1 (protein expression)** 2015 NSCLC; melanoma; bladder 

MSI-H (alteration in the number of 
repeated DNA bases in microsatellites)** 

2017 
Adult and pediatric unresectable 
or metastatic solid tumors with 
the biomarker. 
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Figure S1: Schematic representation of Cytometry of Reaction Rate Constant. 1) A fluorescent 
substrate is added to the cells. 2) The reduction in cellular fluorescence intensity as a result of the 
catalytic reaction is monitored over time as sequential images are captured. 3 and 4) Individual reaction 
rate constants are determined for each single cell. 5) The values of rate constants are plotted on a 
“number of cells vs. rate constant” histogram to determine cell-population heterogeneity. Adapted from 
Koshkin et al., Anal. Chem. 2019, 91, 4186–4194.  
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Figure S2. Three molecular mechanisms of chemoresistance. The three mechanisms directly 
related to the chemotherapeutic agent include: drug extrusion by MDR transporters, drug 
degradation by cytochrome P450, and repair of drug-induced DNA damage by ERCC1. 
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