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ABSTRACT: The equilibrium constant of a chemical reaction is
arguably the key thermodynamic parameter in chemistry; we
naturally expect that equilibrium constants are determined
accurately. The majority of equilibrium constants determined
today are those of binding reactions that form affinity complexes,
such as protein−protein, protein−DNA, and protein−small
molecule. There is growing awareness that the determination of
equilibrium constants for highly stable affinity complexes may be
very inaccurate. However, fundamental (i.e., method-independent) determinants of accuracy are poorly understood. Here, we
present a study that explicitly shows what the accuracy of equilibrium constants of affinity complexes depends on. This study reveals
the critical importance of the choice of concentration of interacting components and creates a theoretical foundation for improving
the accuracy of the equilibrium constants. The predicted influence of concentrations on accuracy was confirmed experimentally. The
results of this fundamental study provide instructive guidance for experimentalists independently on the method they use.

Equilibrium constants of chemical reactions are the corner-
stone of chemical thermodynamics. We have seen them
multiple times through the years of studies, starting with a
freshmen-chemistry course. We learn how to calculate them
using tabulated standard free energies of formation, typically
presented with three to four significant figures. Accordingly,
we naturally expect that equilibrium constants are accurately
determined parameters. The real world, however, is very far
from this utopia.
The vast majority of equilibrium constants that are

published in the scientific literature today are those of
binding reactions involving large biological molecules and
forming highly stable affinity complexes.1−4 These equili-
brium constants cannot be calculated because standard free
energies of formation of typical interactants, such as proteins,
DNA, drug leads, etc., are unknown. Therefore, equilibrium
constants of affinity complexes are determined experimentally
using a large scope of methods.5−9 Most of these methods
are supported by commercial instruments in which a
researcher essentially loads the solutions into the instrument,
pushes a button, and reads the resulting value with multiple
significant figures and a small standard deviation. While being
enormously powerful and informative tools, user-friendly
commercial instruments inadvertently create an illusion that
the determination of equilibrium constants is a trivial
technical step, which requires only following an instrument
manual. Accordingly, equilibrium-constant values published in
a single paper are typically determined with a single method
and presumed to be accurate values. However, discrepancies
between the values reported by different laboratories for the

same complex may reach orders of magnitude leading to
misconceptions and wrong conclusions, e.g., about the
potency of drug leads.10,11 Great variations are often observed
even for the values determined with the same method,
suggesting that fundamental (method-independent) sources
of inaccuracy play a critical role in inconsistencies of
equilibrium constants for highly stable affinity complexes.12,13

There is an understanding that the amount of inconsistent
data grows rapidly due to the use of high-throughput
methods.12,14,15 The described “crisis of inaccuracy” in the
field of thermodynamics of affinity complexes calls for a
systematic search for sources of inaccuracy and approaches
that could improve the accuracy. This work focuses on
fundamental sources of inaccuracy of the equilibrium
constants for affinity complexes.
In this study, we will use notations that are typically used

in the field of affinity interactions. The interacting species is
called a target and a ligand. Their binding with the formation
of the target−ligand complex will be characterized by the
equilibrium dissociation constant (Kd)
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Kd is defined as

K TL C/d = (2)

where T, L, and C are the equilibrium concentrations of the
target, ligand, and complex, respectively, in the binding
reaction (eq 1). Lower Kd values correspond to greater
complex stability and are typically desired.16−18 The values of
Kd define therapeutic concentrations of drugs and analytical
parameters of diagnostic methods.18−21 Therefore, they are
used not only for relative ranking of the ligands but also for
assessment of their suitability for intended applications.19,20,22

The most straightforward approach to Kd determination is an
equilibrium (i.e., nonkinetic) method. It involves preparing a
series of equilibrium mixtures of targets and ligands in which
the total concentration of the ligand (L0) is the same, while
the total concentration of the target (T0) varies. These
mixtures are used to build a binding isotherm (dots in Figure
1), i.e., the experimental dependence of a fraction R of the

unbound ligand (R = L/L0) on T0 for constant L0. The value
of Kd is then typically found by fitting the binding isotherm
with the theoretical dependence of R on T0

23−25

i
k
jjjjj

y
{
zzzzzR

K T L
L

K T L
L

K
L2 2

d 0 0

0

d 0 0

0

2
d

0
=

+
+

+
+

(3)

while varying Kd until the best fit (red line in Figure 1) is
obtained. It is important to emphasize that eq 3 is obtained
by solving a quadratic obtained from an expression for Kd

K
T L R

R
(1 )

(1/ 1)d
0 0=

(4)

which, in turn, is obtained from first principles: definitions of
Kd (eq 2) and R as well as mass balance for the target and
ligand (T0 = T + C and L0 = L + C). In other words, eqs 3
and 4 are fundamental, i.e., method-independent, and
obtained without assumptions, which would restrict the
generality.
There are two fundamental requirements for Kd accuracy:

(i) the binding reaction (eq 1) must approach the
equilibrium, and (ii) the study must be done in a so-called
binding regime, which is assured by satisfying a condition of
L0/Kd ≪ 1.12,26−28 According to a recent review by
Jarmoskaite et al.,12 of 100 publications dealing with Kd
determination, fewer than 10 and 5% of publications reported

the satisfying of these two requirements. Failure to satisfy
fundamental requirements may deem the vast majority of the
published Kd values to be greatly inaccurate. The alarming
level of researchers’ ignoring the fundamental requirement is
due to the lack of basic knowledge of how this can affect the
accuracy of Kd. There are a few important contributions to
the field, which assess Kd accuracy for specific methods,

29−34

e.g., isothermal titration calorimetry28,29 and capillary electro-
phoresis.30−32 However, there are no comprehensive studies
that would explain on what errors of Kd are fundamentally
dependent in the way that would further guide theorists and
instruct experimenters. Accordingly, the field of experimental
determination of Kd is largely an art in which researchers rely
mostly on mnemonic rules and intuition in designing
experiments and interpreting their results. The goal of our
work was to initiate a graduate maturation of this field into a
solid quantitative science through the understanding of what
fundamental errors of Kd depend on and what it means for
experimentalists.

■ MATERIALS AND METHODS
Chemicals, Materials, and Solutions. All chemicals

were purchased from Sigma-Aldrich (Oakville, ON, Canada)
unless otherwise stated. Fused silica capillaries with an inner
diameter of 75 μm and an outer diameter of 360 μm were
purchased from Molex Polymicro (Phoenix, AZ, USA) and
used throughout this work. His-tagged recombinant Thermus
aquaticus MutS protein (MW = 92.8 kDa) was purchased
from Prospec (Ness-Ziona, Israel). An Alexa488-labeled
MutS-binding aptamer was synthesized by Integrated DNA
Technologies (Coralville, IA, USA) with the following
sequence: 5′-Alexa488-CTT CTG CCC GCC TCC TTC
CTG GTA AAG TCA TTA ATA GGT GTG GGG TGC
CGG GCA TTT CGG AGA CGA GAT AGG CGG ACA
CT-3′.35 The aptamer stock solution was subjected to
annealing by incubating at 90 °C for 2 min before cooling
it to 20 °C at a rate of 0.5 °C/s prior to dilution and
preparation of equilibrium mixtures. One single sample buffer
(SB) was used for all experimental procedures: 50 mM Tris-
Acetate at pH 8.2 was supplemented with 0.1% Tween 20
and 0.1% Tween 80 to reduce the adsorption of DNA and
MutS protein to surfaces. All solutions were made using
double-distilled water deionized with Milli-Q and filtered
through a 0.22 μm filter (Millipore, Nepean, ON, Canada);
we termed it ddH2O.
Poly(vinyl alcohol) (PVA) Coating. To reduce sample

adsorption, the inner wall of all capillaries used in capillary
electrophoresis (CE) was coated with poly(vinyl alcohol)
(PVA) using a previously described procedure.36 PVA (5%,
w/v) was prepared by dissolving the polymer in boiling
ddH2O. Each time, two 130 cm long capillaries were coated
simultaneously. The two uncoated fused silica capillaries were
sequentially flushed with 0.1 M NaOH and ddH2O for 1 h
under a pressure of 12 psi. The pretreated capillaries were
then flushed with the PVA solution for 10 min at 15 psi and
emptied using a 10 psi nitrogen gas flow for 10 min. PVA
was immobilized on the capillary surface by drying overnight
in an oven set at 140 °C and continuously flushed with
nitrogen at a pressure of 5 psi. The detection window on the
capillary was made by removing the outer polyimide layer
with a fuming solution of H2SO4.
Experimental Procedure. All CE experiments were

performed with a P/ACE MDQ apparatus (SCIEX, Concord,

Figure 1. Example of determining Kd with a binding isotherm. A
binding isotherm is the experimental dependence of the fraction of
the unbound ligand (R) on the total target concentration (T0),
which is represented by black dots. The value of Kd is determined
by the best fit (red line) of the isotherm with eq 3.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.3c03557
Anal. Chem. 2023, 95, 15826−15832

15827



Ontario, Canada) equipped with a laser-induced fluorescence
(LIF) detection system. Fluorescence was excited with a blue
line (488 nm) of a solid-state laser and detected at 520 nm.
All capillaries were PVA-coated and had a length of 50 cm
(approximately 40 cm from the capillary inlet to the
detector). Prior to each run, the capillary was rinsed with
running buffer at a pressure of 20 psi for 3 min.
All dilutions of sample components were made using SB.

All equilibrium mixtures were prepared to final volumes of 40
μL in SB and incubated at an ambient temperature of 23 ± 1
°C for a minimum of 1 h prior to injection. A sample plug
was injected into a capillary by pressure at 1.0 psi for 10 s
(sample plug’s length = 1.3 cm and volume = 59 nL) and
then propagated at 0.9 psi for 30 s (propagation distance =
3.6 cm) with SB to pass the uncooled region of the capillary.
The sample was then electrophoresed at 25 kV for 15 min
with a negative electrode in the capillary inlet. The capillary
coolant was set to 15 °C.

■ RESULTS AND DISCUSSION
Theoretical Problem. Kd values are not measured; they

are determined using eqs 3 or 4 from known values of T0, L0,
and R (in the case of eq 3, we also need to use nonlinear
regression). Accordingly, a deviation of the determined Kd
value (Kd,det) from the true Kd value (Kd) is a result of errors
of T0, L0, and R. So, the answer to the question of what the
accuracy of Kd depends on is simple: it depends on the
accuracy of T0, L0, and R. However, there is a second
important question: how does the error of Kd depend on the
errors of T0, L0, and R? If the errors of T0, L0, and R are not
zero, which is always the case, then the error of Kd is the
result of propagation of errors of T0, L0, and R. Therefore,
the answer to the second question is also conceptually
simple: the dependence of the accuracy of Kd on the errors of
T0, L0, and R is defined by the rules of error propagation.
Accordingly, we will apply error propagation rules to eq 4 to
find how the deviation of Kd,det from Kd (ΔKd = Kd,det − Kd)
depends on deviations of T0, L0, and R (ΔT0, ΔL0, and ΔR,
respectively, defined similarly to ΔKd) from their true values.
Note that deviations ΔT0, ΔL0, and ΔR are not random

errors with a given error distribution; they can be both
positive and negative. ΔKd is a systematic error, which
defines the accuracy of Kd,det. ΔKd may be much greater than
the random error of Kd,det. Furthermore, ΔKd is virtually
impossible to determine since the true Kd value is
fundamentally unknown owing to the absence of standard
reference instruments for determination of Kd or standard
reference Kd values.
Propagation of Correlated Errors. Since the sample

preparation processes for both targets and ligands are similar
and R values are determined from the signals of bound and
unbound ligands, the error sources for T0, L0, and R are
linearly correlated in Kd determination experiments. There-
fore, to investigate the error of Kd propagated from the errors
of T0, L0, and R, we can write the general dependence of ΔKd
on ΔT0, ΔL0, and ΔR as
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By applying the error propagation rule (eq 5) to eq 4, and
with a series of mathematical transformations (Note S2), we
finally obtain
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where t = |ΔT0/T0|, l = |ΔL0/L0|, and r = |ΔR/R|. Equation 6
reveals that, when the error sources for T0, L0, and R are
strongly correlated, the relative error of Kd is a linear function
of L0/Kd with an intercept dependent only on relative errors
of T0 and R and slope-dependent on relative errors of all
three variables: T0, L0, and R. In the mathematical analysis
(Note S2), we made a single simplifying assumption that the
determined (from measured signals) value of R is equal to
0.5, which leads to the least erroneous Kd;

25 thus, we are
considering the best-case scenario and are finding the lower
limit for the error of Kd.
Equation 6 explicitly shows the role of L0/Kd in the relative

error of Kd. The value of L0/Kd is important only when the
second term is greater than the first, i.e., when L0/Kd > a/b.
In other words, in contrast to a commonly used requirement
of L0/Kd ≪ 1, it is unnecessary to decrease L0/Kd much
below a/b. Rather, using L0/Kd ≪ a/b will likely cause the
opposite effect, namely, it will lead to an increase in |ΔKd/Kd|
due to the increase in r when L0 is too low, causing an
unacceptable signal-to-noise ratio (S/N), which will be briefly
discussed later. On the other hand, when L0/Kd > a/b, the
increase in L0/Kd plays a crucial role in increasing the relative
error of Kd; an order of magnitude increase in L0 will lead to
an order of magnitude increase in |ΔKd/Kd|. One should
appreciate that if L0/Kd ≫ a/b, then Kd,det may differ from
true Kd by orders of magnitude.
For a large range of L0 values, which is typically the case, it

is more convenient to present the dependence of |ΔKd/Kd|
on L0/Kd on a double-log scale. A graph of log(|ΔKd/Kd|)
versus log(L0/Kd) is triphasic: two asymptotically linear
ranges flank a nonlinear transition range (Figure 2a and
Figure S1a). For small values of L0/Kd, i.e., for L0/Kd ≪ a/b,
the dependence is a linear function with no dependence on
L0/Kd: log(|ΔKd/Kd|) = log(a) = const. For a large value of
L0/Kd, i.e., for L0/Kd ≫ a/b, the dependence is a linear
function log(|ΔKd/Kd|) = log(b) + log(L0/Kd) with an
intercept with the ordinate equal to log(b) and a slope equal
to unity. The abscissa of the intersection of the two
asymptotic lines is defined by log(L0/Kd) = log(a/b).
Using eq 6 and ΔKd = Kd,det − Kd, we can show that (for

strongly correlated error sources) not only |ΔKd/Kd| depends
linearly on L0/Kd, but Kd,det is also a linear function of L0
(Note S3)
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If presented in a double-log scale, then this dependence is
expectedly triphasic (Figure 2b) and has features similar to
the dependence of log(|ΔKd/Kd|) on log(L0/Kd) (Figure 2a).
Propagation of Uncorrelated Errors. In some exper-

imental cases, the error sources of L0, T0, and R may be
weekly correlated. For example, stock concentrations of the
ligand and target may largely differ from the labeled values in
the opposite direction. In these cases, the errors from the
stock reagents are uncorrelated (independent of each other)
and might be much larger than the errors caused by the
instruments or methods used in sample preparation. In
addition, using an uncalibrated instrument to detect ligand
signals can cause the errors in determined R values to be
uncorrelated to the errors of T0 and L0. To study the error
propagation with uncorrelated (orthogonal) error sources, we
should write the dependence of ΔKd on ΔT0, ΔL0, and ΔR
as
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Then, we apply the error propagation rule of eqs 8−4 and
obtain (Note S4)
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Here, as explained in the previous section, t = |ΔT0/T0|, l =
|ΔL0/L0|, and r = |ΔR/R| and we only investigate the case
with the determined R being equal to 0.5 to simplify the
study.
Although the forms of eqs 6 and 9 are very different, eq 9

shows a significant similarity to eq 6 regarding the triphasic
dependence of |ΔKd/Kd| on L0/Kd. For small L0/Kd values,
eq 9 approaches a linear function of |ΔKd/Kd| = α = const
that shows no dependence on L0/Kd. For large L0/Kd values,
eq 9 approaches a linear function of |ΔKd/Kd| = β(L0/Kd)
that shows a high sensitivity of |ΔKd/Kd| to L0/Kd. There is a
nonlinear transition range between these two linear lines.
Moreover, both eqs 6 and 9 suggest that the minimum |ΔKd/
Kd| value depends on a parameter (a in eq 6 or α in eq 9)
that is defined only by t and r, while the sensitivity of |ΔKd/
Kd| to L0/Kd mainly depends on a parameter (b in eq 6 or β
in eq 9) that is defined by t, l, and r.
To show the dependence of |ΔKd/Kd| on L0/Kd in a large

range of L0/Kd for uncorrelated error sources, we
demonstrate “log(|ΔKd/Kd|) versus log(L0/Kd)” in Figure
2c. In the double-log scale (Figure 2c), the asymptotic lines
for small and large L0/Kd values are approximated with
functions of log(|ΔKd/Kd|) = log(α) and log(|ΔKd/Kd|) =
log(β) + log(L0/Kd), respectively. Figure 2c suggests that, to
avoid a significant increase in r caused by an unacceptably
low signal-to-noise ratio, it is unnecessary to decrease L0/Kd
much below a certain value α/β that is defined by the
abscissa of intersection of the two asymptotic lines (i.e.,
log(L0/Kd) = log(α/β)). According to the results in Figure 2
and Figure S1, with the same t, l, and r, the value of α/β is
slightly greater than a/b because |ΔKd| obtained with eq 8 is
smaller than that determined with eq 5.
Now, let us discuss how Kd,det depends on L0 when the

error sources are uncorrelated. With eq 9 and the definition
of ΔKd (i.e., ΔKd = Kd,det − Kd), we obtain (Note S5)

Figure 2. General trends in dependencies of log(|ΔKd/Kd|) on
log(L0/Kd) (a, c) and log(Kd,det) on log(L0) (b, d). In all panels,
reasonable relative errors of L0, T0, and R were used: |ΔT0/T0| =
|ΔL0/L0| = 0.05 and ΔR/R = 0.02 (the results corresponding to
ΔR/R = −0.02 are shown in Figure S1a,c). In panels (b, d), we set
Kd = 1 (unitless) and ΔKd ≥ 0 (the results corresponding to ΔKd <
0 are shown in Figure S1b,d). With these conditions, parameters a,
b, c, and d were calculated to be 0.089, 0.058, 1.1, and 0.058,
respectively; α, β, and γ were calculated to be 0.064, 0.036, and 1.1,
respectively.
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Equation 10 shows that the dependence of Kd,det on L0 is also
triphasic. For small L0 values, Kd,det is insensitive to the
change of L0 and eq 10 approaches a linear function of Kd,det
= γ (γ = (1 + α)Kd when ΔKd ≥ 0 and γ = (1 − α)Kd when
ΔKd < 0) (Note S5). For large L0 values, eq 10 approaches
another linear function of Kd,det = βL0 that shows high
sensitivity of Kd,det to L0 (only applicable for ΔKd ≥ 0 since
Kd,det has to be greater than zero) (Note S5). A nonlinear
transition range exists between the two linear lines. Figure 2d
shows an example of the dependence of Kd,det on L0 for
uncorrelated error sources of T0, L0, and R on a double-log
scale, which has the expected triphasic feature.
Experimental Validation. The dependence shown in

Figure 2b,d has two known variables, L0 and Kd,det, and
therefore, it can be tested experimentally, which we have
undertaken in this work. Experimentally, we used a well-
established solution-based method of nonequilibrium capillary
electrophoresis of equilibrium mixtures (NECEEM) as the
Kd-determination method and MutS-aptamer as the binding
pair.25,37−39 In NECEEM, the unbound ligand and complex
(bound ligand) are separated by an electric field in a capillary
due to their different charge-to-size ratios.37−39 In six
NECEEM experiments, the aptamer concentration (L0) was
kept constant at 0.02, 0.05, 0.1, 0.5, 2, and 10 nM; the MutS
concentration (T0) varied from 0 to 312.5 nM (all
concentrations are given as nominal values with no
significance to the number of digits). The lowest value of
L0 (i.e., 0.02 nM) was chosen to be equal to the limit of
quantitation (LOQ) (Figure S2) linked to S/N as discussed
below. The influence of L0 on binding isotherms and the
dependence of Kd,det on L0 are shown in Figure 3. Figure 3b
shows that (in a double-log scale) Kd,det is insensitive to the
change of L0 when L0 is at low concentrations (e.g., ≪ ∼0.1
nM), and Kd,det is sensitively dependent on L0 when L0 is at
high concentrations. The results in Figure 3b are consistent
with the theoretical predictions shown in Figure 2b,d, which
confirm the validity of our theoretical analysis.
Instructive Guidance for Experimentalists. Although

Figure 2 suggests that, with any type of experimental error
sources (correlated or uncorrelated), we can always use an as-
low-as-possible L0 to avoid the error of Kd,det being greatly
magnified, the choice of the lowest experimentally suitable L0
is dictated by the limit of quantitation (LOQ) of an
instrument used to measure the signal. The value of LOQ is,
by definition, the analyte concentration (ligand concentration
L0 in our case) for which S/N is equal to a certain value X ≫
1, which guarantees that the noise does not affect
quantitation significantly. If the noise is independent of the
signal and the value of LOQ is known, then S/N can be
calculated for any given concentration of the ligand as S/N =
XL0/LOQ (Note S6). The minimum acceptable ligand
concentration that satisfies this equality is L0 = LOQ. Since
R values are determined based on the measured signals S,
using L0 < LOQ is counterproductive as it will cause a
significant increase in the relative error of R (r), and,
accordingly, in the relative error of Kd,det.

Based on the above analysis, to achieve good accuracy of
Kd,det in an experiment, if LOQ/Kd < a/b (or α/β for
uncorrelated error sources), then L0/Kd should satisfy
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where a, b, α, and β are defined by the absolute values of
relative systematic errors of T0, L0, and R (i.e., t, l, and r) as
shown in eqs 6 and 9. Because t, l, and r are relatively
difficult to determine, practically, the LOQ can be
determined and used as the sole determinant of the ligand
concentration to minimize the error of Kd,det in a Kd-
determination experiment. It is important to emphasize that
using L0 = LOQ does not imply that L0/Kd < a/b (or α/β)
and thus does not guarantee the accuracy of Kd. Therefore,
with the current state of affairs, the only way to confirm
(indirectly) that L0/Kd < a/b (or α/β) is to conduct
experiments not only at L0 = LOQ but also at L0 > LOQ
(e.g., the experiments corresponding to L0 = 0.02 and 0.05
nM shown in Figure 3). If Kd is not affected by the value of
L0, then one can assume that L0/Kd < a/b (or α/β) and
deem Kd accurate.

■ CONCLUDING REMARKS
To conclude, in this study, we investigated the theoretical
dependence of the relative deviation of Kd,det from Kd (|ΔKd/
Kd|) on the ratio of L0/Kd with error propagations. Our
analysis shows that with fixed correlated or uncorrelated

Figure 3. Influence of L0 on binding isotherms (a) and the
dependence of Kd,det on L0 (b). In panel (a), all nonlinear
regressions were conducted using OriginPro software with the
iteration algorithm of Levenberg−Marquardt. See the Supporting
Information for other details.
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errors of T0, L0, and R, |ΔKd/Kd| always presents a triphasic
dependence on L0/Kd in a double-log scale: When L0/Kd is
small, |ΔKd/Kd| is insensitive to the change of L0/Kd and
approaches a constant that is defined by the errors of T0 and
R. When L0/Kd is large, |ΔKd/Kd| is sensitive to the change of
L0/Kd, i.e., an order of magnitude increase in L0 will lead to
an order of magnitude increase in |ΔKd/Kd|. There is a
nonlinear transition range between the two linear phases. We
also theoretically demonstrated that the dependence of Kd,det
on L0 should also show the triphasic features on a double-log
scale, which was experimentally confirmed with NECEEM
experiments using MutS-aptamer as the binding pair. The
results of this work suggest that, without knowing the errors
of T0, L0, and R, experimentalists should use L0 = LOQ (i.e.,
the smallest ligand concentration that does not sacrifice the
accuracy of R) in an equilibrium Kd-determination method
and conduct an extra experiment with L0 > LOQ to confirm
the accuracy of the determined Kd. To emphasize, we foresee
that our findings (e.g., eqs 6 and 9 and the triphasic
dependence of |ΔKd/Kd| on L0/Kd in Figure 2) can help to
create an approach of assessing Kd accuracy from a single-
binding isotherm if the ranges of relative errors in T0, L0, and
R can be estimated.
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Section S1: Derivation of equations

Note S1: Derivation of the theoretical dependence of fraction of unbound ligand (R) on total
target concentration (T0)
The definition of equilibrium dissociation constant Kd and mass balance for the target and ligand show:

d
TLK
C

 (S1)

0 0T T C T T C     (S2)

0 0L L C C L L     (S3)
where T, L, and C are equilibrium concentrations of the target, ligand and complex, respectively; T0 and L0

are the total concentrations of target and ligand, respectively. The definition of fraction of unbound ligand
R (0 ≤ R ≤ 1) is:

0
0

LR L RL
L

   (S4)

By inserting Eq S4 into Eq S3, we have:

0 0 0(1 )C L RL L R    (S5)
By replacing C in Eq S2 with Eq S5, we obtain:

0 0(1 )T T L R   (S6)
With inserting Eqs S4, S5 and S6 into Eq S1, we obtain:

 

 

0 0 0
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
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
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


(S7)

By rearranging Eq S7, we obtain a quadratic equation for R:

 2
0 d 0 0 d 0L R K T L R K     (S8)

With the quadratic formula, the expression of R is solved as
2

d 0 0 d 0 0 0 d

0

( ) ( ) 4
2

K T L K T L L K
R

L
      

 (S9)

with two solutions. Now, let’s discuss which solution should be picked to satisfy 0 ≤ R ≤ 1.
When (Kd + T0 ‒ L0) ≥ 0, the only solution that satisfies R ≥ 0 is:

2
d 0 0 d 0 0 0 d

0

( ) ( ) 4
2

K T L K T L L K
R

L
      

 (S10)

since the other solution leads to negative values for R.
When (Kd + T0 ‒ L0) < 0,

d 0 0 d 0 0( )  | |K T L K T L      (S11)

2 2
d 0 0 0 d d 0 0 d 0 0 0 d( ) 4 ( )  | |, since 0 and 0K T L L K K T L K T L L K           (S12)
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Therefore, the only solution that satisfies R ≥ 0 is also Eq S10:
2

d 0 0 d 0 0 0 d

0

( ) ( ) 4
2

K T L K T L L K
R

L
      



since the other solution leads to R < 0.
To sum up, the theoretical dependence of R on T0 is Eq S10 or rearranged to:

2
d 0 0 d 0 0 d

0 0 02 2
K T L K T L KR

L L L
    

    
 

(S13)

which is Eq 3 in the main text.

Note S2: Derivation of the dependence of relative systematic error of Kd (|Kd/Kd|) on L0/Kd

ratio for correlated (parallel) error sources
Eq S7 shows:

0 0
d

(1 )
(1/ 1)

T L RK
R

 




When the error sources of T0, L0 and R are strongly correlated, the systematic error of Kd can be calculated
with the error propagation rule:

d d d
d 0 0

0 0

K K KK T L R
T L R

                       
(S14)

which gives,
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Apparently, both R/(1 ‒ R) and R are greater than zero since R  (0, 1) when we use Eq S7 to determine
Kd. Now, to expand and rearrange Eq S15, let’s determine the sign of “‒L0 + T0/(1 ‒ R)2”:
From Eq S7, we obtain,

   0 d 01/ 1 1T R K R L    (S16)

Then,
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Eq S17 clearly shows that the term “‒L0 + T0/(1 ‒ R)2” is greater than zero since both Kd and L0 are greater
than zero and R  (0, 1). Hence, we rewrite Eq S15 as:

 
0

d 0 0 0 21 1
TRK T R L L R

R R

 
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   
(S18)

To simplify the analysis, we only focus on the scenario of determined R equal 0.5, which is close to the
least erroneous case.1 Then, the actual R is:

0.5 ,  0.5 0.5R R R      (S19)
Insert Eq S19 into Eq S16, we can express T0 with L0 and ΔR,
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0 0
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Now, divide Kd for both sides of Eq S18 to analyze the relative systematic error of Kd:
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Or rewrite as:
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By inserting Eq S19 and Eq S20 into Eq S22, we have:
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If we set the absolute value of relative error of R, |ΔR/R| = r at R = 0.5 ‒ ΔR (Eq S19), then:
When 0 ≤ R < 0.5,
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When −0.5 < R < 0,
( 0.5)

0.5
( 1) 0.5

0.5
1

R Rr R r
R r R r

r R r
rR
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If we also set the absolute values of relative errors of T0 and L0 as |ΔT0/T0| = t and |ΔL0/L0| = l, respectively,
Eq S23 is rearranged to (we omit some intermediate steps here):
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When 0 ≤ R < 0.5,
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When −0.5 < R < 0,
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K r r K r

   
      
                 

(S28)

 d 0

d d

1 0.5( ) 0.5
0.5 1 0.5
r rK Lt l r rt

K r r r K
                

(S29)

Or we can write Eq S27 and Eq S29 as:

 

 

d 0

d d
,

1 0.5( ) 0.5,   when 0 0.5
0.5 1 0.5

1 0.5( ) 0.5,   when 0.5 0
0.5 1 0.5

K La b
K K

r r t l r ra t b R
r r r

r r t l r ra t b R
r r r


 

  
      

  
  

       
  

(S30)

which is Eq 6 in the main text.

Note S3: Derivation of the theoretical dependence of determined Kd (Kd,det) on L0 for
correlated (parallel) error sources
The definition of Kd is (with Kd,det representing the determined Kd value),

d d,det dK K K   (S31)
By inserting Eq S31 into Eq S30, we get:

d,det d 0

d d

K K La b
K K


  (S32)

By multiplying Kd on both sides of Eq S32, we have:

d,det d d 0K K aK bL   (S33)
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When Kd ≥ 0,

d,det d d 0

d,det d 0(1 )

K K aK bL

K a K bL

  

    (S34)

When Kd < 0,

d d,det d 0

d,det d 0(1 )

K K aK bL

K a K bL

  

    (S35)

Or we can combine Eqs S34 and S35 to be:

d,det 0 d d

d d

,  (1 ) ,     when 0

                           (1 ) ,   when 0

K c dL c a K d b K

c a K d b K

      

      (S36)

Eq S36 (Eq 7 in the main text) suggests that the dependence of Kd,det on L0 is linear in the whole range of
L0.

Note S4: Derivation of the dependence of relative systematic error of Kd (|Kd/Kd|) on L0/Kd

ratio for uncorrelated (orthogonal) error sources
When the error sources of T0, L0 and R are uncorrelated, the systematic error of Kd can be calculated with
the error propagation rule:

2 2 2
2 2 2d d d

d 0 0
0 0

| | K K KK T L R
T L R

                       
(S37)

By applying Eq S37 to Eq S7 and square both sides, we have,

 

22
2 2 2 2 20

d 0 0 0 21 1
TRK T R L L R

R R

                  
(S38)

By replacing T0 with Eq S16, we obtain:

22
2 2 2 2 2d

d 0 0 0
1

1 1
KRK T R L RL R

R R R
                       

(S39)

Now, divide Kd
2 for both sides of Eq S39 to analyze the relative systematic error of Kd:
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22 2 22
2 2d 0 0 0

d d d d
22 2 2 22

2 20 0 0 0 0

0 d 0 d d

2

1 1
1 1

1 1
1 1

1

K T L LR R R R
K R K K R R K

T T L L LR R R R
R T K L K R R K

TR
R

                                         

                                              

    

    22 2 2 2
2 2d 00 0 0 0

0 d 0 d d
22 2 2 2

2 20 0 0 0 0

d 0 0 d d

1/ 1 1 1 1
1

1 11
1

R K R L L L LR R R
T K L K R R K

L T L L LR R R R
K T L K R R K

                                         

                                         
(S40)

After setting |ΔT0/T0| = t and |ΔL0/L0| = l, Eq S40 can be expanded and rearranged to be:

 

22 22 2
2 2 2 2 2 2d 0 0

d d d
2 2

1 1 1
K L LR R R Rt Rt R t R l

K R R R K R K

                                                    
(S41)

When 0 ≤ R < 0.5, by inserting Eqs S19 and S24 into Eq S41, we obtain:
2 22 2 2 22

2 2 2d 0 0

d d d

(1 ) 0.5 0.5 0.52
0.5 1 0.5 1 0.5

K L Lr r t r rt t l
K r r r K r r K

                                                               
(S42)

or
22 2 2 22

2 2 2d 0 0

d d d

(1 ) 0.5 0.5 0.52
0.5 1 0.5 1 0.5

K L Lr r t r rt t l
K r r r K r r K

                                                            
(S43)

When −0.5 < R < 0, by inserting Eqs S19 and S25 into Eq S41, we obtain:
2 22 2 2 22

2 2 2d 0 0

d d d

(1 ) 0.5 0.5 0.52
0.5 1 0.5 1 0.5

K L Lr r t r rt t l
K r r r K r r K

                                                               
(S44)

or
22 2 2 22

2 2 2d 0 0

d d d

(1 ) 0.5 0.5 0.52
0.5 1 0.5 1 0.5

K L Lr r t r rt t l
K r r r K r r K

                                                            
(S45)

We can combine Eqs S43 and S45 as:
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2 22
2 2 2

2 22
2 2 2

2
2 2d 0 0

d d d

22

2

0.5 0.5
,  , =  when 0 0.5

0.5 1 0.5

0.5 0.5
,  , =

0.5 1 0.5

,

0.52
1 0.5

0.52
1 0.5

r r r
t t l R

r r r

r r r
t t l

r r r

K L L
K K K

t r
r r

t r
r r

  

  

  


       

  


    

  

 
    

 

                 

            

2
 when 0.5 0R   

 
 
 

(S46)

Note S5: Derivation of the theoretical dependence of determined Kd (Kd,det) on L0 for
uncorrelated (orthogonal) error sources
By inserting Eq S31 into Eq S46, we get:

2
d,det d 2 20 0

d d d

K K L L
K K K

  
  

    
 

(S47)

By multiplying Kd on both sides of Eq S47, we have:
2 2 2 2

d,det d d d 0 0K K K K L L      (S48)

When Kd ≥ 0,
2 2 2 2

d,det d d d 0 0

2 2 2 2
d,det d d d 0 0

K K K K L L

K K K K L L

  

  

   

    
(S49)

From Eq S49, we can infer that, at low L0 range, Kd,det approaches a constant:

d,det d d d(1 )K K K K     (S50)
Or we can write,

d,det d, (1 )K K     (S51)
At high L0 range, the dependency of Kd,det on L0 approaches a linear equation:

d,det 0K L (S52)

When Kd < 0,
2 2 2 2

d d,det d d 0 0

2 2 2 2
d,det d d d 0 0

K K K K L L

K K K K L L

  

  

   

    
(S53)

From Eq S53, we can infer that, at low L0 range, Kd,det approaches a constant:

d,det d d d(1 )K K K K     (S54)
Or we use the same parameter γ to express Eq S54 as,
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d,det d, (1 )K K     (S55)
The dependency of Kd,det on L0 at high L0 range is unavailable because Kd,det is required to be greater than
zero.

Figure S1: General trends in dependencies of log(|ΔKd/Kd|) on log(L0/Kd) and log(Kd,det) on
log(L0)
Panels (a) and (c) show the general trends in dependency of log(|ΔKd/Kd|) on log(L0/Kd); panels (b) and (d)
show the general trends in dependency of log(Kd,det) on log(L0). In all panels, reasonable relative errors of
L0, T0 and R were used: |ΔT0/T0| = |ΔL0/L0| = 0.05 and ΔR/R = ‒ 0.02. In panels (b) and (d), we set Kd = 1
(unitless) and ΔKd < 0. With these conditions, the parameters a, b, c and d were calculated to be 0.011,
0.040, 0.99 and ‒0.040, respectively; α, β and γ were calculated to be 0.064, 0.037 and 0.94, respectively.

With Eqs S30, S36, S46 and S51, we produced representative graphs to show the dependence of |ΔKd/Kd|
on L0/Kd and the dependence of Kd,det on L0 in double-log scale. The graphs corresponding to 0 ≤ R < 0.5
and ΔKd ≥ 0 are shown in Figure 2 in the main text, and the graphs corresponding to −0.5 < R < 0 and ΔKd

< 0 are shown in Figure S1. Figures 2a, 2c (in main text) and Figures S1a, S1c show the same general trends
in dependency of log(|ΔKd/Kd|) on log(L0/Kd). Although Figures S1b and S1d cannot show the part at high
L0 range (where Kd,det equals physically unfeasible negative values), the results in Figure S1b and S1d
suggest a dependency of Kd,det on L0 that is similar to the trend shown in Figures 2b and 2d (in main text):
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Kd,det is insensitive to the change of L0 when L0 is at low concentrations, while the sensitivity of Kd,det to L0

increases with the increase of L0.

Note S6: Derivation of the relationship between signal to noise ratio (S/N) and the limit of
quantitation (LOQ)
The limit of quantitation (LOQ) of an instrument is defined as the analyte concentration (ligand
concentration in our case) for which the signal to noise ratio (S/N) is equal to a certain value X >> 1 (e.g.,
X = 10) which guarantees that the noise does not affect quantitation significantly, which can be expressed
as:

LOQ
LOQ

S
X S XN

N
   (S56)

where SLOQ is the signal measured at LOQ. For one instrument and a specific ligand, since the measured
signal S is proportional to the ligand concentration, we can assume:

LOQ
LOQ LOQ

LOQ LOQ
S XNS k k     (S57)

where factor k is the ratio of measured signal to ligand concentration. Now, if the noise N is independent of
the signal S, the signal to noise ratio for any total ligand concentration L0 can be calculated as:

0 0

0

LOQ

LOQ

k L LS XN
N N N

LS X
N


  

 
(S58)

The minimum acceptable ligand concentration which satisfies Eq S58 is L0,min = LOQ.
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Section S2: Experiments

Figure S2: Determination of limit of quantitation (LOQ)
a) Electropherograms of the measurements for samples of MutS-binding aptamer with concentrations of
0.1, 1, 10, 20, 50, and 100 pM. The instrumental setup and experimental procedure are described in
“Materials and Methods” section in the main text. b) An example ([aptamer]0 = 20 pM) of determining
signal and noise for an electropherogram: the intensity difference between the highest noise peak and the
lowest noise peak was determined as the noise height h, which equals 2 times noise N; the midline of the
noise peaks was determined as the baseline; the intensity difference between the highest signal of the signal
peak and the baseline was determined as signal height H, which equal the signal S. c) Determining LOQ
based on the linear plotting of “signal versus [aptamer]0”.

To determine the LOQ of our laser-induced fluorescence (LIF) detection system for the fluorescently
labeled MutS-binding aptamer, we measured the aptamer samples with concentrations (L0 or [aptamer]0) of
0.1, 1, 10, 20, 50, and 100 pM. In the measurements, the instrumental setup and experimental procedure
were identical to that used in the NECEEM (nonequilibrium capillary electrophoresis of equilibrium
mixtures) experiments as explained in “Materials and Methods” section in the main text. The obtained
electropherograms are shown in Figure S2a. Based on the electropherograms, the signals of aptamer at each
concentration were determined to be 0.0020, 0.0031, 0.022, 0.039, 0.072, and 0.20 RFU, respectively. By
analyzing all six electropherograms, the average noise was determined to be 0.0025 RFU. One example of
determining signal (S), noise (N), and S/N is demonstrated in Figure S2b. Then, the results of “signal versus
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[aptamer]0” were plotted (Figure S2c), and a linear fitting was applied to the data points. Conventionally,
the analyte concentration corresponding to signal to noise ratio (S/N) of 10 (i.e., X = 10 in Eq S56) is defined
as LOQ.2‒4 In this work, considering the signal of unbound aptamer decreases with the increase of protein
concentration, we chose the [aptamer]0 corresponding to S/N = 15 as LOQ. For different applications, one
can choose different values for X in Eq S57 to achieve a desired accuracy and precision of measured signals
at LOQ. By inserting the signal equal 15 times of average noise plus the intercept of the fitting line (for
correcting the signal offset caused by background signal) into Figure S2c, LOQ for this work was
determined to be 20 pM (i.e., 0.02 nM).

Figure S3: Electropherograms of the NECEEM experiments
Panels a–f show the electropherograms of the NECEEM experiments with L0 ([aptamer]0) of 0.02, 0.05,
0.1, 0.5, 2, and 10 nM, respectively. The instrumental setup and experimental procedure are explained in
“Materials and Methods” section in the main text.
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Based on the electropherograms shown in Figure S3, the areas of the peaks for unbound aptamer and
complex were measured with NECEEM Area Analysis Program (NAAP) that can be downloaded from
https://www.yorku.ca/skrylov/resources.html. In each set of NECEEM experiments, since the
corresponding highest MutS concentration was much greater than the expected Kd value range of ≤ 0.1nM,
we presumed that the highest MutS concentration in each set of NECEEM experiments saturated the
binding to the aptamer, and the remaining unbound aptamer was the impurity (i.e., non-binders) in the
aptamer sample. Therefore, from each unbound aptamer area, we subtracted the unbound aptamer area in
corresponding “aptamer + highest MutS concentration” electropherogram to obtain the actual unbound
aptamer area. Then, the determined areas were corrected by dividing them by their migration times.1 Based
on the corrected areas, the actual fractions of unbound aptamer (R values) at different T0 ([MutS]0) were
calculated, and the results are shown in Table S1. The binding isotherms for the NECEEM experiments are
shown in Figure 3a in the main text.

Table S1: Results of R values at different T0 ([MutS]0) for the NECEEM experiments with
different L0 ([aptamer]0)

T0

(nM)
R

(L0 = 0.02 nM)
R

(L0 = 0.05 nM)
R

(L0 = 0.1 nM)
R

(L0 = 0.5 nM)
R

(L0 = 2 nM)
R

(L0 = 10 nM)
0 1.0 1.0 1.0 1.0 1.0 1.0
0.004 0.96 N/A N/A N/A N/A N/A
0.02 0.81 0.86 1.0 N/A N/A N/A
0.1 0.42 0.45 0.89 0.94 N/A N/A
0.5 0.17 0.11 0.52 0.73 0.92 0.99
2.5 0.0 0.066 0.073 0.15 0.65 0.97
12.5 N/A 0.0 0.0 0.053 0.10 0.84
62.5 N/A N/A N/A 0.0 0.041 0.098
312.5 N/A N/A N/A N/A 0.0 0.0

https://www.yorku.ca/skrylov/resources.html
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