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Binding of multiple proteins to DNA is crucial in many regulatory cellular processes. The kinetics of
assembly and disassembly of DNA-multiple protein complexes is very difficult to study in detail due to
the lack of suitable experimental approaches. A separation-based approach has been recently proposed
to resolve disassembly kinetics of such complexes. While conceptually simple, the separation-based
approach generates experimental data with very complex patterns. The analysis of these patterns is a
challenging problem on its own. Here we report on a mathematical approach that can extract a solu-
tion for the experimental data obtained in separation-based analysis of sequential dissociation of a DNA
complex with multiple proteins. This case describes the dissociation of proteins one-by-one from the
complex. Generally speaking, a mathematical solution of such problems requires calculations of mul-
tiple integrals. Our approach reduces this procedure to taking double integrals and constructing their
superposition. We tested this approach with the experimental data obtained for three-step sequential
dissociation of complexes of DNA with two protein copies.
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1. Introduction

Binding of multiple proteins to a single DNA molecule is com-
mon in cell biology and plays a key role in regulation of gene
expression, DNA replication, DNA integrity control, and viral repli-
cation [1,2]. Understanding the dynamics of these fundamental
biological processes often requires knowledge of the kinetic and
thermodynamic parameters for each individual step of formation
and dissociation of the relevant complexes between multiple pro-
teins and DNA [3-5]. In these complexes, proteins can be bound
to the DNA directly or indirectly through other proteins. Typically,
the knowledge of complexes of multiple proteins with DNA does
not exceed the identities of the interacting proteins and DNA [6].
Some information on kinetics and thermodynamics can be obtained
with conventional experimental methods such as surface plasmon
resonance (SPR) [7,8], microcalorimetry [9], gel electrophoresis
[10], analytical ultracentrifugation [11,12], stopped flow technique
[13,14], and affinity capillary electrophoresis (ACE) [15-18]. The
applicability of these methods to kinetic studies on the forma-
tion and dissociation of DNA-multiple protein complexes can be
limited due to the difficulties of distinguishing kinetics of multi-
ple interconnected processes. Such distinction is especially difficult
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when the rates of the processes are of the same order of magnitude
[19,20].

Kinetic capillary electrophoresis (KCE) methods use a
separation-based approach for studying kinetics and thermo-
dynamics of non-covalent complexes of biological molecules
[21-28]. We recently implemented a similar approach for the
analysis of dissociation kinetics of DNA complexed with multiple
proteins [29]. The approach is based on our general understanding
that the kinetics of all processes that occur during the formation
and/or dissociation of DNA-multiple proteins complexes can be
easier distinguished if different complexes move with differ-
ent velocities, or, in other words, are spatially separated. As a
practical means of introducing differential mobilities of different
DNA-protein complexes we used capillary electrophoresis (CE)
[23]. CE simply provides an efficient way to accomplish the
separation-based analysis of simultaneous dissociation processes
involving DNA-multiple protein complexes. The resultant exper-
imental data encompass a complex interplay of mass transfer
with dissociation kinetics; the analysis of such data is a significant
challenge. While such data can always be analyzed numerically,
the numerical approaches often lack the transparency in problems
with a large number of parameters that have to be determined.
In contrast, analytical solutions are often more transparent and
allow general conclusions to be drawn. Therefore, it is important
to find exact mathematical solutions that can be used to analyze
data obtained through separation based dissociation of multiple
proteins bound to DNA. Here we describe the analytical solution
for the separation-based kinetic analysis of multi-step sequential
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dissociation of DNA-multiple protein complexes. A straightfor-
ward solution for N dissociation steps would require taking an
integral of the Nth order, which is not feasible for large N. We
propose areduction approach that presents the solution as a super-
position of N integrals of the second order, which is always feasible.
We tested our approach with experimental data obtained from
the three-step sequential dissociation of DNA-protein complexes
with two protein copies. The further progress in separation-based
kinetic analysis of DNA-multiple protein complexes depends on
inventiveness in the development of practical mathematical tools
for data analysis.

2. Results and discussion
2.1. Basic equations of sequential-dissociation kinetics

In general, to study the sequential dissociation kinetics of
DNA-multiple protein complexes the following two-step operation
should be performed. In step 1, N DNA-protein complexes (Cy, ...,
Cy) are formed by incubating free DNA (Cp) with protein (P), long
enough to ensure each binding reaction approaches equilibrium:

P.Kq1  P.Kq2 P,Kq N
0= CG & C--- = Cy
Co=D, Cy=DP, C,=DPP, ..., Cy=DP..--P 1a
0 1 2 N ( )
N

Inreaction(1a),Kq1,Kq2, . . .. Kqy are equilibrium dissociation con-
stants of N sequential reactions. DNA is assumed to have enough
binding sites for multiple protein molecules. In the second step,
unbound proteins are continuously removed from the complexes
so that the rates of the forward processes in reaction (1a) become
zero and the complexes are forced to dissociate:

- oy oy, 2 B 2)
where ky, kn_1, ..., k1 in reaction (2) are the dissociation rate
constants for N DNA-protein complexes. In the separation-based
approach, all complexes and unbound DNA should undergo con-
tinuous separation in this step, resulting in spatial segregation of
the dissociation kinetics (hereafter DNA is also referred to as “com-
plex” Cp that contains zero proteins). The described operation can
also be applied to protein-DNA complexes involving several differ-
ent proteins if such complexes dissociate consequently, as shown
in (2). In this case, reaction (1a) should be rewritten as follows:

P1.Kq1  P2.Kgo Pn.Kan
0 < 1 20— N (1b)
Co=D, C =DPy, C,=DP{P,, ..., Cy=DP;---Py

where proteins are numbered (with subscripts 1,2, .. .,N)according
to the order of protein association during formation of complexes.
Thus, in theory, all proteins may be different. Furthermore, the
separation-based approach works in the presence of conforma-
tional changes in protein-DNA complexes if such transformations
can occur only consequently, after the separation of complexes.
For example, in the case of a conformational change in the complex
with only one protein, reaction (1a) should be modified as follows:

PKyy  Kap  PKgs PKqg
0 = CG2CG & G- & Cy .
Co=D, C;=(DP) C,=(DP), C3=DPP, ..., Cy=DP---P
0 1=(DP) 2 = (DP) 3 N

N-1

Here, protein-DNA complexes in two conformations, a and b, are
numbered according to the transition between them in sequential
reactions (2). In this case, subscript n=1, 2, ..., N denotes a serial
number of complex C; in sequential dissociation (2) (in the reverse
order) and may not coincide with the number of proteins bound
to DNA in complex Cy. All results obtained below are applicable
to reactions (1a)-(1c) as long as mainly sequential reactions (2)
take place after removing the unbound protein from the complexes.

(@) t=0
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Crna —> Yy
Co — v
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Fig.1. Schematicillustration of the separation-based approach for studying sequen-
tial dissociation of complexes Cy, Cy_1, ..., C; formed by DNA (Co) and multiple
proteins. (a) The initial mixture of complexes introduced at t =0 (the plug is shown
between two vertical lines). (b) Separation of complexes at t>> tsepn ~ W/Av, (n=1,
..., N) where W is the initial plug length and Av,=|vy —vy_1] is the difference
between velocities of complexes that are “neighbors” in the sequential dissocia-
tion (2). Dashed lines denote approximate boundaries between the complexes. A
cumulative signal from all complexes and DNA is measured by a detector. (c) A typ-
ical signal from the mixture of DNA and two complexes when most of DNA in the
initial plug is bound to proteins.

Many other processes can be described by models similar to (2)
[30,31].

The implementation of our method using CE can be described
as follows. In step 1, the equilibrium mixture of the complexes (see
reactions (1a)-(1c)) is prepared in solution and a short plug of it
is introduced into a narrow and long capillary that is coaxial with
the x coordinate (Fig. 1a). The velocities vy, v1, . .. and vy and initial
concentrations of each component does not change significantly
across the capillary. The longitudinal Peclet number is very large.
Such a reactor can usually be considered as a one-dimensional infi-
nite reactor, in which longitudinal diffusion is negligible. In step
2, complexes Cy, Cq, ... and Cy are continuously separated from
unbound proteins and each other by moving with different veloci-
ties (Fig. 1b). The dissociation kinetics of individual complexes are
spatially separated and cumulative signal acquires N+ 1 peaks cor-
responding to complexes Cg, Cq, ... and Cy that were present in the
initial mixture. Fig. 1c shows a typical electropherogram for a mix-
ture of Cy, Cq, and C;, (N =2) with two-step sequential dissociation.

Since the rates of the forward processes in reaction (2) are neg-
ligible, the multistage dissociation of each and every complex in
the initial equilibrium mixture defined by equation (1a) (or (1b)
and (1c)) can be considered independent of the dissociation of all
other complexes. As a result, kinetics of multistage dissociation
of complexes, starting from any complex n in the initial mixture

(1¢)

(0 <n<N) and continuing to complex 0, can be described by the
following system of n+ 1 partial differential equations:

(8¢ + vndx + kn)Ch(x, t) = Agé(x)é(t) (n=N,...,0;kg=0) 3)

(0t + vq0x + kq)Cy(x, ) = quC(';H(x, t) (g=n-1,...,0;n>0)

(4)
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Here, A9 is the total amount of the initial complex n added at t=0,
Cy is the current linear concentration of the initial complex n, Cj
(at g<n) is the linear concentration of a part of complex Cq that
formed as a result of dissociation started from the initial complex
Cn, vj and k; = ks j are the velocity and the dissociation rate constant
of complex j (0 <j < n). Linear concentrations of the complexes are
defined as their amounts per unit length of the capillary. At n=0,
equation (3) describes the propagation of free DNA (“complex” Cp).
Concentrations of complexes present in (3) and (4) depend on the
distance from the point where separation started, x, and on the time
interval, t, passed from the beginning of separation. In (3), we use
Dirac’s é-functions to define distributions of initial complexes in
the sample plug. This approach allows us to simplify mathemati-
cal transformations in the process of solving equations (3) and (4).
In the final solution, these functions should be approximated by
using normal distributions. It is also assumed that before t=0, all
concentrations are equal to zero, and that the modeled system has
an infinite length in both directions, so that there is no influence
from boundaries.

Finally, the multistage dissociation of whole initial mixture (1a)
(or(1b)and (1c))is described by equations (3) and (4) at all possible
values of n. This corresponds to the superposition of dissociation
processes that start with each complex in the initial mixture. As a
result, the total concentration Cy of any complex q is determined
through the summation of its concentrations resulting from the
dissociation of all complexes present in the initial mixture:

N
H=>» Clx.t) (g=N,...,0) (5)

Relations (3)-(5) contain concentrations of complexes whereas
the experimental data, such as electropherograms, operate with
signals (optical, electrochemical, etc.). The signal Sq generated by
the complex q is usually proportional to its total concentration Cj.
As a result, we have

Sq(x, t) = gqCq(x, 1), S(x, t)

N N
= qu = qucq(x, t) (6)
q=0 q=0

where S is a total signal generated by all complexes and free DNA.
Coefficients g4 can be different and are determined by the nature
of signals used to detect complexes. The rate constants of disso-
ciation can be determined by fitting the total experimental signal
with a curve S(t) found from (6) at a value of x corresponding to the
detector’s position. To do this, one needs to know functions Cq4(x, t)
which can be expressed in terms of Cg(x, t) according to relations

(5).
2.2. Analytical solutions for concentrations of complexes

The major goal of this work was to find an analytical solution
for system (3) and (4) which is n+1 dependencies of the concen-
trations, Cjj, on time, spatial coordinate, as well as velocities, v;,
and dissociation rate constants, k;, of corresponding complexes:
Cy(x,t, kg, ..., kn, Vg, ..., Vn) where g=n, ..., 0. One of the ways
to solve the system of equations (3) and (4) is to obtain the
right-hand side of the equation for concentration of each complex
with number g by integrating the concentration equation for the
corresponding complex with number g + 1. In this way, expressions
describing concentrations of later (in sequence (2)) complexes will
be high order multiple integrals; they would be very difficult to
solve directly. Here, we explain a simpler alternative, which can
calculate the concentrations of later complexes without the need
of computing multiple integrals. In essence, we found a way of
solving the system of equations (3) and (4) which requires com-
puting only double integrals. This approach leads to expressions

for Cf which are linear superpositions of double integrals that, in
turn, can be easily calculated.
By using the Fourier transform:

1
n
Cq = 2

/C”(w e Mdwdg, q<n (7

differential equations (3) and (4) can be reduced to the following
linear algebraic equations:

diCix, 6) = ) 'AY, deCx, ) =kgn Ty (@<m)  (8)
where
dg=iw+ivgs+kq (g<n) (9)

Solution to (8) has a form

G = 271 H erd

r=q+1 j=q

6”—£' <n) (10)
T 2mdy’ (@

The calculation of integral in (7) at g=n gives:
Cl(x, t) = AQS(x — vnt) exp(—knt)A(t) (11)

where 6(t) is the O-function (6(t)=1 at t>0 and 6(t)=0 at t<0).
Direct substitution of (11) into the first equation in (3) also shows
that (11) is a solution of this equation. To find Cf at g <n, it is useful
to present the product in expression (10) for Cj in the form:

Hd Zd

nzj>p=q
where the sum is taken over all pairs of indexes (j, p) that satisfy
condition n >j>p > q. Coefficients Qj';q must satisfy the following
equations:

(@ < n), (12)

n

Z Zq H d| =1 (g<n) (13)

nzj>p=q S=q;s #J,p

for relation (12) to be valid. The product in (13) does not contain
multipliers d; and dp. Conditions (13) can be easily obtained from
(12) by multiplying its both sides by dqdg+1. . .dn. Since quantities
ds depend on independent variables ¢ and w, the left-hand side of
(13) is a polynomial with respect to variables ¢ and w. Its terms are
proportional to products £%a®. Powers a and b (should not be con-
fused with the DP conformations inreaction(1c))satisfy a condition
O<a+b<n-q-1 that follows from (9) and (13). Coefficients at
products ¢%w? in this polynomial can be expressed in terms of sums
of various products of vg, kg, and Qj';q. Obviously, equations (13) can

be satisfied only if coefficients at all products ¢?w® are the same at
both sides of (13). As aresult, we have obtained the following linear
algebraic equations which determine Qj';q

b
Z ( r;q‘/](;an nq)_ a08b,n—q—l

nzj>p>q (14)
g<n, O<a+b=<n-q-1
Vj‘;“q: Z Vr Vry b, at a>0

r1,I2-Ta #J,P (15)
q<ri<m<--<rg=n, Vg"=0 at a=0
Kif= )" kskeyoks,, at b>0

$1,52Sp #J,p (16)
q<si<Sp<---<s,<n, Kjl;nq=0 at b=0

Here a and b are indexes rather than powers. For each fixed
pair of indexes nq, the number L,q of unknown coefficients er;q
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(n>j>p=>q) coincides with the number of equations in (14) and is
determined by the following relation:

an=1+2+--~+(nfq)=1(nfq+l)(nfq) (g<n<N) (17)

2

As a result, the expression for Cff at g<n can be presented in the
following form:

n
Cl(x, £) = AY H kr Z G, (g<mn) (18)
r=q+1 nzj>pzq
1 ell@t+sX) dwpdg
Gjp(x, t) = // (19)
"’ (2m)? didy
Functions Gj,(x, t) satisfy a simple equation:
(0 4 vj0x + k)0t + vpdx + kp)Gjp(x, £) = 8(x)8(t) (20)

They are determined by expression:

X; X kiXp — kpX;
Gjp(x, 1) = L 0( ] >0( P )exp<’p pl)
p — vl \ vp — vi—p Up —
21

where X; =x —vst (s=J, p) and 0 is the 6-function.

Thus, a general solution of equations (3) and (4) governing
multistage dissociation of complexes is given by relation (11)
for Cjj(x, t) and by expressions (18) and (21) for Cj(x, t) at g<n.
Unknown quantities Qj';q can be found from the system of linear
algebraic equations (14) if:

det ||V 0 (22)

for each pair of indexes nq. Here, det denotes the determinant of
system (14) calculated at fixed values of indexes ngq. Pairs of indexes
ab and jp denote, respectively, rows and columns of matrix in (22).
The determinant value depends on arguments listed in (22). Condi-
tions (22) are usually satisfied since the opposite case where det=0
means that some relations between velocities and dissociation rate
constants should take place. For example, such a relation would
require an exact proportionality between the dissociation rate con-
stants and the velocity differences in the case of n=2 (see equation
(31) in the next subsection):

ki = x(v1 —vo), ka = x(v2 —vo) (23)

where x is an arbitrary constant. Obviously, conditions similar to
(23) cannot be satisfied rigorously due to the approximate nature
of velocities and dissociation rate constants. Nevertheless, such
special cases need additional consideration. In particular, if the
parameters are approximately satisfy the relation det =0, the accu-
racy of the present approach can be affected.

According to expressions (18) which describe an arbitrary mul-
tistage dissociation (2), the corresponding mathematical solution
canbe expressed as alinear superposition of all terms Gj, associated
with the following type of processes:
¢5.c, (24)
A single term, Gj,, determined by (21) includes only four param-
eters: vj, Up, kj, and kp. In essence, any multistage dissociation can
be presented as a linear superposition of one or more dissociations
of the type depicted by (24). The formal dissociation in (24) can
include real processes (e.g. C,_1 — C,_») and virtual processes (e.g.
Cn—1 — C,_3) that are not experimentally feasible. Our linear super-
position approach allows us to significantly simplify solutions of
equations for the multistage dissociation of complexes with differ-
ent stoichiometries.

It is worth noting that equations (3) and (4) will describe any
sequential reactions of the type (2) if the latter can be considered

as reactions of the first order. Obvious examples include sequen-
tial conformation change of components Cy, Cy_1, ..., C; or their
sequential association with another component (for example, lig-
and) that is present in a significant excess relative to Cy, Cn_1, - . -,
C;.In such cases, the obtained analytical solutions of equations (3)
and (4) can be used to find concentrations of all components in (2).

2.3. Simplified solutions for two- and three-stage reactions

We consider the application of the developed generalized theory
to the first three stages of the multi-stage sequential dissociation of
complexes (including possible conformation changes) as follows:

k k,_ Ky ki
Crs o1 250 C 2, 353 (25)

Dissociation (25) has n stages (since ko =0) and can start from any
complex C, present in the initial mixture. If n=0, sequence (25)
has only one term Cy and no dissociation stages. Atalln (0 <n <N)
concentration CJ} of the complex Cj itself is given by (11).

If n>1, there is the second complex C,,_; in (25) and its concen-
tration C}_, is determined by relations (18) at g=n—1:

CP (X 1) = A%knQu ™ | Grn1 = A%knGnno1 (QUa={ =1)  (26)

Here we took into account that equations (14) give Qr'l’:_’: =1 for
g=n-1.

If n>2, there is the third complex C,_, in (25) and its concen-
tration, C}_,, is determined by relations (18) at g=n —2:

C,?,z(x’ t) = Agknkn—l X ( n:,:l:lzcn,n—l + Q,T:rr,l:zzcn,n—Z
+Q 2 5Gro1n2) (27)

In this case equations (14) reduce to the following system for the

coefficients Q,:','::lz , n’,?:zz,arld n’,r;_ziz

n,n—-2

kn_2 kn_1 kn Qn,n—l2 1

Vn-2 Vn-1 Un ma | =(0 (28)
,n—=2

1 1 1 Qr',"_”],n_z 0

Their solution is given by:

nn-2 _ Vn-1—"n nn-2 _ Vn—Un_2
Gin1="der »© Gn2T " qer
_ Un—2 — Un—
oz, = ezt 29)
det = (kn_1 — kn—2)(vn — vp—2) — (kn — ky_2)(Vn_1 — Vn_2) (30)

At n=2 the expression (30) becomes simpler since Cy does not
dissociate further and, therefore, kg = 0:

det = kq(v2 —vo) — ka(v1 —vo) (31)
Given (31), we see that condition det=0 at n=2 is equivalent to
relations (23).

If n>3 there is the forth complex C,_3 in (25) and its concen-
tration C}|_, is determined by relations (18) at g=n —3:

n,n-3 n,n-3
Ch_s(x,t) = Agknkn—lkn—z X (Qn,n—l Gnn1 + Qn,n—z Gn,n2
,n-3 ,n-3
+ Q,;l,r;,n,zcn—l,n—z + Q,T,,?,3 Gn,n—3

,n-3 ,n-3
+Q,t,1_nl,n_3cn—1,n—3 + Q,’:_nz’n_gcn—Z,n—B) (32)
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Now equations (14) can be presented as the following linear alge-
braic system of the sixth order:

115

Q:,n—3

1 1 1 1 1 1 n-1 0

Vn2+Vp-3 Vn1+Vn-3 Vn+Vn_3 Vn1+Vn2 VUn+Vp2 Vn+Vn_ Qn" -2 0
Vn2Vn3  Vno1Vp3  VYaUn3  Vpo1Vp2  VYnUn2  VnVpi Qi o (33)

kn_o+kn_3 kn_1+kn_3s kn+kn3 Kkn1+kno kn+kno kn+knq Q:’::g - 0

Vin-2kn-3)  Vin-1kn-3)  Vkn-3)  Vinoiknoz)  Vikn2)  Vinkno1) QM3 0

kn_2kn_3 kn_1kn_3 knkn_3 kn_1kn_2 knkn_o knkn_1 Q;’_”i%_ 1

-2,n-3

where we used a notation viakgy=vakp +Vgka. At n=3 equations
(33) become simpler since the terms with kg vanish. An explicit
solution for (33) is too cumbersome and it is easier to numerically
find coefficients Oj';’”’3 (n>j>p>n-3)directly from (33). In the
case of two- and three-stage dissociation kinetics (N=2 and 3), rela-
tions (11), (21), and (26)-(33) allow one to calculate all terms Cj
present in expression (5) for the total concentration of each com-
plex. After that, the cumulative signal can be determined by using
expression (6) with values for coefficients g; measured experimen-
tally. These calculations require velocities vy, the rate constants ky,
and the total amounts A9 of all complexes in the initial mixture to
be known. Usually, this is not the case in studying sequential disso-
ciation kinetics. Alternatively, these parameters can be determined
to satisfy the condition of the best fit between the theoretical signal
and the one measured experimentally.

2.4. Examples of method application to experimental data
analysis

Let us test the developed theory by applying it to the study of
dissociation kinetics of complexes formed by a 79-nt long single

stranded DNA and single-strand DNA binding (SSB) protein from
Escherichia coli. This SSB protein plays an important role in DNA
replication, recombination, and repair and has been studied exten-
sively by both pure biochemical and crystallographic methods
[32-40].

Fig. 2 demonstrates signals with four peaks that can be assigned
to free DNA (Co=D) and three complexes (C; =(DP)?, C, =(DP)b,
and C3 =DPP) that were present in the initial mixture. Such assign-
ments of peaks in Fig. 2 are based on the following considerations.
First of all, the migration time of pure DNA (Cgp) is known from a
CE run of DNA only, which allows us to assign the slowest peak
to DNA. The 79-nt single-stranded DNA can bind a maximum of
two tetramers of SSB protein. When a single protein is bound, two
binding modes with different DNA conformations are possible
under the same experimental conditions [34]. These modes differ
in the number of protein-bound nucleotides; the more nucleotides
bound, the more restricted the conformation of DNA. Finally, the
DNA-protein complex should move to the detector faster when
the number of bound proteins increases. Indeed, a negatively
charged complex with a larger number of proteins has a smaller
electrophoretic mobility and, therefore, is slowed down to a lesser

C C
(a) P =200 nM 0 04 - ! (d) P=530 nM
03 -
C, 0.3 -
02 -
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01 A
014 ¢
3C
: /J ¥
£ o "l : L £, l : ©
3 03 Cy 5 03 C,
g C, (b) P =254 nM g (e) P=636 nM
£ =
2 g
@ 024 @ 02 A
S S g
o v
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.l ALE R
— _ C
a 0 2 L. - - : - L 2
& g & C
(c) P =424 nM ol (f) P =848 nM
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Fig. 2. Experimental (black line) and theoretical (red line) signals for three-stage dissociation kinetics (N=3). The theoretical curves correspond to the best-fit model with
relative errors of less than 5.6%. The experimental curves are obtained for mixtures of a 79-nt long single stranded DNA and a single-strand DNA binding (SSB) protein from
E. coli. Six mixtures of DNA and protein were used with varying concentrations P of the SSB protein (shown in the figure) and a single concentration of DNA (D =200 nM)
before the formation of complexes. The detector was placed at a distance of 40 cm from the initial plug. Peaks Co, C;, C, and C3 correspond to D, (DP)?, (DP)?, and DPP,
respectively. In panels (a)-(c), the peaks of C3 are not detectable since the concentration of DPP in the initial plug is too small at lower values of P. DPP almost completely
dissociated before it reached the detector. This dissociation resulted in the exponential-like curves to the left of the peaks of C,. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of the article.)
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extent by an electric field that is directed to the detector along the
electroosmotic flow. In Fig. 2, for example, C3 =DPP moves faster
and contains more proteins than C, = (DP)? and C; =(DP)?. C, and
Cy, in turn, move faster and contain more proteins than Co =D. Out
of the two complexes with the same number of proteins (C; and
C; in Fig. 2), the one with a more restricted conformation of DNA
should have a smaller electrophoretic mobility and move to the
detector faster than the one with a less restricted conformation.
Therefore, C, corresponds to a more restricted DNA conformation
with more nucleotides bound. Using these facts, one can easily
determine the number of complexes that are present in the reac-
tion mixture by qualitatively studying data in Fig. 2 and, therefore,
determine the parameter N in model (1c).

Calculated theoretical signals for three-stage dissociation are
depicted by red lines in Fig. 2. Again, the peaks correspond to
the complexes that populate the initial mixture. The exponential-
like curves between the peaks result from dissociation of these
complexes. Table 1 shows the dissociation rate constants, kc, of
complexes C=(DP)?, (DP)?, and DPP found from the best fit proce-
dure applied to data in Fig. 2. This table also contains the association
rate constants, kop ¢, of complex C, the equilibrium dissociation con-
stants, K4 ¢, of complex C, and equilibrium concentrations D° and P°
of free DNA and unbound SSB protein in the initial plug. The values
of K4, D, and PO were calculated using: (i) the initial equilibrium
amounts,Aﬂ, of complexes that were also determined from the best
fit, (ii) a known total amount of free and bound DNA in the initial
plug, (iii) a known total amount of free and bound protein in the
initial plug, and (iv) the volume of the initial plug. Values of kop ¢
were obtained from the following relationship between the rate
and equilibrium constants:

k

onC = —= where C=(DP)% (DP)’, DPP (34)
’ Kd,C

k

Inalmostall the cases, the rate constant for conformation change
of (DP)? into (DP)? is significantly higher than that for the reverse
reaction (Table 1) and, therefore, the latter can be neglected in
calculations of the (DP)? concentration (except for P=848 nM).
Generally speaking, this reverse conformation change should be
taken into account in calculations of the (DP)“ concentration. How-
ever, the latter will not be affected significantly due to small values
of corresponding rate constants.

The main purpose of experiments shown in Fig. 2 was to illus-
trate mathematical methods developed for studying sequential
dissociation kinetics by the separation-based approach. Neverthe-
less, some important conclusions can be derived directly from these
experiments even without the use of obtained analytical solutions
of equations (3) and (4). These conclusions also allow one to check
and confirm the developed mathematical methods.

Firstly, the increase in the concentration of SSB results in smaller
DNA peaks and more prominent peaks denoted by C;=(DP)%,
C, =(DP)?, and C3 =DPP in Fig. 2. Therefore, the peaks of C1, C, and
Cs should, indeed, correspond to DNA-protein complexes.

Secondly, peaks in Fig. 2 are clearly distinguishable. This is possi-
ble only if tsep ¢ < teq,c, Where the separation and equilibration times,
tsep,c and teq c, of complex C are defined as follows:

tsep.c = Aﬂw atC = (DP)%, (DP)’, DPP (35)
- — a

fea.C = F o Pafonc atC = (DP)’, DPP (36)
_ _ b

teac = for e 2C=(OP) (37)

Here, Pyep is the depleted concentration of the free protein after
applying an electric field and removing the unbound protein from
the plug; W is the initial plug length, and Avc is the difference

Table 1

Equilibrium and rate constants determined from experimental data and corresponding best fit models shown in Fig. 2.

D° (nM)

PO (nM)

DPP

C

C=(DP)’

C=(DP)

P (nM)

10%konc (NM)~1s71)

0.2

10%kc (s-1)
89.1

104k0n,C (541 )

10%kc (s71)

30.0

1OAkon,C ((HM)AI 54])

0.01
0.01

0.2

10%kc (s71)
1.2
1.7
23
25

Kqc (nM)

543.0

Kac

Kqc (nM)

1329
128.8

82.6

116.2
153.7
243.6

34
4.2

8.9
8.8
8.4

6.3

200
254
424
530
636
848

71.2

0.1

78.0

536.3
486.4

36.9

7.9

0.1

59.9

4.6

39.0

133

0.6
0.3

285.5

0.2

30.0

130.1

6.3

40.0

1.9

2.0
2.0

1.3
13
14

367.4
510.6

0.3

25.0

76.8
36.1

41.0 7.6
33.7

5.4
1.9

2.6
29

0.06

0.6

21.0

64.1

Pis the initial (i.e. before the formation of complexes) concentration of E. coli SSB protein in the mixtures. The corresponding concentration of a 79-nt long single stranded DNA is 200 nM in all cases. P° and D° are the equilibrium

concentrations of protein and DNA, respectively, in the mixtures.
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between velocities of complex C and complex resulting from the
dissociation of C (Fig. 1). Condition tep,c <teqc gives kc<10-1s71,
Pgepkcon<1071s~1 at C=(DP)® (in this case Avc=0.05cms~!)
and kc<1072s71, Pyepkcon<10-2s~1 at C=(DP)®, DPP (in this
case Avc=(0.003-0.007)cms™1) for a values of W=0.5cm used
in experiments shown in Fig. 2. These inequalities are satisfied
(with large margin) by values obtained from the best-fit procedure
(Table 1).

Thirdly, dissociation constants, K ¢, of complexes C can be esti-
mated directly from experimental data (Fig. 2) using areas, Ac, of
corresponding peaks (C=(DP)?, (DP)?, DPP) and relation P° ~ P

POA

POAp,
Ky (opy~ v— Kq4,ppp~

oy

A b
Ky opye™ A(Dp)a ’ -
’ (DPY

(38)

Such direct estimates also agree with results presented in Table 1.

Finally, fitting the mathematical model into experimental data
is possible with small relative errors of 5.6% (Fig. 2). This fact also
suggests that the developed theory adequately describes processes
of separation and sequential dissociation of DNA complexes with
multiple proteins.

According to results shown in Table 1, the equilibrium constants
and some of the rate constants appear to depend on SSB concen-
tration. This dependence is especially pronounced for the (DP)?
complex. Such effect can be attributed (at least partially) to the
influence of charges of free SSB protein molecules even though
Ap <L, I~ (NaPOY /2 (39)
Here, Ap is the Debye length of the buffer (Ap ~ 10~7 cm for 25 mM
Borax), N is Avogadro’s number, and [ is a characteristic dis-
tance between each complex (including free DNA) and the nearest
molecules of free SSB protein (I~ 10~°cm at PY=500nM). Let us
consider, for example, a free DNA molecule that binds a protein
molecule. Electric charges of almost all other protein molecules
(located at distances ~ or > [ from this DNA molecule) are screened
due to relation (39). Nevertheless, there is always a small prob-
ability that other protein molecules are positioned at distances
much closer than [, in particular, at distances ~ rp. Of course, such
protein molecules account for only a small fraction of all protein
molecules. Therefore, they could affect protein binding by only a
small fraction of DNA molecules if the equilibrium concentrations
of free DNA and free protein were of the same order of magnitude
(D9~ P%). However, the ratio D°/P? decreases from 0.7 down to
1.2 x 104 with an increase in the initial protein concentration P
from 200 nM up to 848 nM (Table 1). As aresult, even a small fraction
of protein molecules at P> 424 nM (i.e. ones that are positioned at
distances ~ rp) would be enough to affect protein binding by almost
all DNA molecules. Similarly, the concentration of (DP)? decreases
to approximately one hundredth of P® when P reaches 848 nM. In
contrast, the concentration of DPP complex is much smaller than
that of free protein at P=200 nM and becomes of the same order of
magnitude as P° at P= 848 nM. Because of that, the influence of free
protein molecules on DPP kinetics should vanish at higher protein
concentrations. These described effects could lead to a dependence
of the rate and equilibrium constants on the initial protein concen-
tration. The presence of charged protein molecules in proximity
to each of the following complexes: D, (DP)?, and (DP)?, seems to
increase the value of kop for the previous (in sequence (2)) com-
plex, i.e. the value of kon for (DP)?, (DP)?, and DPP, respectively.
Similarly, the presence of charged protein molecules in proximity
to the (DP)? and DPP complexes appears to increase values of k
for the same complex (for the DPP complex, the last effect occurs
at lower initial concentrations of SSB protein). In total, such influ-
ence of the charged protein molecules on rate constants results in
decreasing values of all K4 with an increase in the initial protein
concentration (Table 1).

Interestingly, rate constants presented in Table 1 are consid-
erably smaller than previously reported values; kop ~ 1 (nM)~1s-1
and k~5 x 10~2s~! for the DP complex of SSB protein [37]. Such
large rate constants were obtained for oligonucleotide (dT)q
by means stopped flow studies. This oligonucleotide consists of
70 identical dT nucleotides, whereas we used a specific 79-mer
oligonucleotide composed of all four nucleotides (see Section 3).
Experimental conditions (10 mM Tris, pH 8.1) [37] were also dif-
ferent from ours. Obviously, we would not see a separation and
multiple peaks in CE experiments at all for kon~1(nM)~1s-1,
Experimental data presented in Fig. 2 lead to an inequality
Pgepkcon <1071 571 for C=(DP)* (as we pointed out earlier in this
subsection) and, therefore, to an estimate kcon <1073 (nM)~1s~1
even at Pgep =100nM. It is worth noting that a direct measure-
ment of rate constants is impossible and therefore one has to use
appropriate mathematical models to calculate rate constants based
on signals observed experimentally. Thus, oligonucleotides, exper-
imental methods and conditions and corresponding mathematical
models, that resulted in larger rate constants for SSB protein [37],
differ significantly from ours. This makes comparison of results
a difficult task and we suggest using theoretical arguments for
estimation of an upper limit for possible values of ko. Obviously,
characteristic binding time ton =(P%kon)~! cannot be smaller than
diffusion time tg4; required for the nearest protein molecule to
reach a DNA molecule. During this time, a protein molecule has
to travel the distance of ~I if D9~ PO (in this case, the number of
protein molecules positioned at distances much closer than [ is neg-
ligible in comparison to the number of free DNA molecules). Using
the well known expression for diffusion distance corresponding to
time tgir [41,42]:

I ~ +/Dyifqit (40)

and the second relation (39) we have

2

. ~2/3
dif 5 N
Dgit Dt

NAPY) “°, 14~ 103s at P°=100nM

(41)

Here Dy is the diffusion coefficient of protein molecules
(Dgir~5 x 10~7 cm?2 s~1).If each collision between protein and DNA
molecules resulted in formation of the (DP)? complex, characteris-
tic binding time would be the same order of magnitude as diffusion
time (Ton ~ Tgif). Maybe such a situation is possible under specific
physiological conditions, if nucleotides exhibit some cooperative
binding effect. However, we should have 7o, > T4;rin a general case
when they lose such ability. Indeed, the crystallographic structure
of the complex between a 28-nt long ssDNA and SSB protein (PDB
code 1EYG) shows that this DNA positions itself on the surface of
SSB protein tetramer in a specific conformation, with the oligonu-
cleotide center being in close proximity to the K62 binding residue
[35]. The total solvent accessible area of all four K62 residues in the
tetramer accounts for a small fraction (~10~2) of the solvent acces-
sible area of the tetramer asitis evident from its structure (PDB code
1QVC) [36]. Actually, this fraction should be even smaller since SSB
protein in the structure was truncated to 145 residues from 177
residues of the native E. coli SSB protein. Thus, the probability of
binding (without cooperativity of nucleotides), during a collision
between the 28-mer oligonucleotide and the SSB protein tetramer,
can be estimated as less than 1072 C,ops~ !, where C opris the number
of possible conformations of the oligonucleotide on the tetramer
surface. Of course, longer oligonucleotides can be bound to the K62
residue at any point in their central section but they will also have a
larger number of conformations, Ccops. Obviously, Ceone > 1, though
it is difficult to estimate this number more precisely. As a result,
the characteristic binding time should be significantly greater than
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the diffusion time (Ton ~ or > 102CponsT4ir). Finally, we can write the
following estimation for kon

1 - 1
PO%on ™ 102 CeonPO14it

(42)

kon =

For example, at C.ope=103 and P2 =100 nM (given g5~ 103 s), we
have an estimate of ko ~or< 104 (nM)~1 s~ that agrees with the
results presented in Table 1.

3. Materials and methods
3.1. Preparation of protein-DNA complexes

We produced complexes of SSB protein and a 79-nt long sin-
gle stranded DNA. SSB proteins bind to single-stranded DNA with
high affinity and are important in DNA functions [32-34,40]. A
fluorescently labeled 79-mer oligonucleotide 5-FAM/CTC CTC TGA
CTG TAA CCA CGA GAA ATT GGT ACT GTA TGA AAC GGC AGC TGC
ACG TCG CGG CAT AGG TAG TCC AGA AGC C (IDT Technologies,
Coralville, 1A, USA) was mixed with the SSB protein. Six mixtures
were prepared (with DNA to protein ratios of approximately 1:1,
1:1.3, 1:2.1, 1:2.6, 1:3.2, and 1:4.2) in which the DNA concentra-
tion was 200 nM and the SSB protein concentrations were 200 nM,
254nM, 424 nM, 530nM, 636 nM, and 848 nM (before the forma-
tion of complexes). The mixtures were incubated for sufficiently
long time so that further incubation did not influence the results.
All buffer components were from Sigma-Aldrich (Oakville, ON). All
aqueous solutions were made with deionized water and filtered
through a 0.22-pum filter (Millipore, Nepean, ON). SSB protein was
purchased from Interscience (Markham, ON, Canada). The protein
and DNA stock solutions as well as equilibrium mixtures were pre-
pared in the incubation buffer (25 mM Borax, pH 10).

3.2. Capillary electrophoresis

A short plug of the equilibrated mixture was then injected into
the capillary by pressure and a high voltage CE run was performed
to separate the SSB protein and the DNA-protein complexes with
different velocities. A single-point detector was used to record
cumulative electropherograms. CE experiments were performed
with a CE instrument (P/ACE MDQ, Beckman-Coulter, USA) with
thermo-stabilization of the capillary (the outer walls of the capillary
were washed with a liquid heat exchanger maintained at 15 °C) and
sample vials were kept at 15°C. The instrument employed laser-
induced fluorescence detection with a 488 nm line of an argon-ion
laser for fluorescence excitation. An uncoated fused silica capillary
(Polymicro, Phoenix, AZ) with a 20-pm inner diameter and a length
of 50 cm was used. The length L from the injection end to the detec-
tion window was 40 cm. Electrophoresis was run with a positive
electrode at the injection end and an electric field E of 600V cm~!.
The run buffer was identical to the incubation one. The length W of
sample plugs was 0.55 cm.

4. Concluding remarks

In this work we considered the kinetics of the sequential disso-
ciation of DNA-multiple protein complexes in a separation based
approach. All complexes, unbound proteins and DNA move with
different velocities and the free protein is quickly removed from
the mixture (Fig. 1a). As a result, the formation of complexes due
to association with free protein is negligible in comparison to the
dissociation of the complexes (Fig. 1b). We found exact analyti-
cal solutions (11), (18), and (21) of the mass transfer equations (3)
and (4). The latter describe the processes of migration and sequen-
tial dissociation in the general case of N complexes, where N is

an arbitrary integer. These analytical solutions allow one to calcu-
late concentrations (5) of complexes and their cumulative signal
(6) at any point x and moment t. For the first three stages in the
sequential dissociation of complexes, the complex concentrations
were presented in a simplified form (26)-(33). Theoretical results
were tested with data obtained for three-stage dissociation of DNA
complexes with SSB protein. Calculated signals were in a good
agreement with the experimentally measured ones (Fig. 2). Ana-
lytical solutions describing sequential dissociation of complexes
moving with different velocities can be used in numerical simu-
lations of experiments and in studies of dissociation kinetics using
a separation based approach.
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