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Binding  of  multiple  proteins  to  DNA is crucial  in many  regulatory  cellular  processes.  The  kinetics  of
assembly  and  disassembly  of DNA–multiple  protein  complexes  is  very  difficult  to study  in detail  due  to
the  lack  of  suitable  experimental  approaches.  A  separation-based  approach  has  been  recently  proposed
to resolve  disassembly  kinetics  of  such  complexes.  While  conceptually  simple,  the  separation-based
approach  generates  experimental  data  with  very  complex  patterns.  The  analysis  of  these  patterns  is  a
challenging  problem  on  its  own.  Here  we  report  on  a mathematical  approach  that  can  extract  a solu-
rotein–DNA interaction
rotein machines
inetics
apillary electrophoresis

tion  for the  experimental  data  obtained  in  separation-based  analysis  of  sequential  dissociation  of  a  DNA
complex  with  multiple  proteins.  This case describes  the  dissociation  of  proteins  one-by-one  from  the
complex.  Generally  speaking,  a  mathematical  solution  of such  problems  requires  calculations  of mul-
tiple integrals.  Our  approach  reduces  this  procedure  to taking  double  integrals  and  constructing  their
superposition.  We  tested  this  approach  with  the  experimental  data  obtained  for  three-step  sequential

s  of  D
dissociation  of  complexe

. Introduction

Binding of multiple proteins to a single DNA molecule is com-
on  in cell biology and plays a key role in regulation of gene

xpression, DNA replication, DNA integrity control, and viral repli-
ation [1,2]. Understanding the dynamics of these fundamental
iological processes often requires knowledge of the kinetic and
hermodynamic parameters for each individual step of formation
nd dissociation of the relevant complexes between multiple pro-
eins and DNA [3–5]. In these complexes, proteins can be bound
o the DNA directly or indirectly through other proteins. Typically,
he knowledge of complexes of multiple proteins with DNA does
ot exceed the identities of the interacting proteins and DNA [6].
ome information on kinetics and thermodynamics can be obtained
ith conventional experimental methods such as surface plasmon

esonance (SPR) [7,8], microcalorimetry [9],  gel electrophoresis
10], analytical ultracentrifugation [11,12],  stopped flow technique
13,14], and affinity capillary electrophoresis (ACE) [15–18].  The
pplicability of these methods to kinetic studies on the forma-

ion and dissociation of DNA–multiple protein complexes can be
imited due to the difficulties of distinguishing kinetics of multi-
le interconnected processes. Such distinction is especially difficult

Abbreviations: CE, capillary electrophoresis; SPR, surface plasmon resonance;
SB, single strand DNA binding.
∗ Corresponding author. Tel.: +1 416 7362100x22345; fax: +1 416 736 5936.

E-mail address: skrylov@yorku.ca (S.N. Krylov).

003-2670/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.aca.2012.01.057
NA with  two protein  copies.
© 2012 Elsevier B.V. All rights reserved.

when the rates of the processes are of the same order of magnitude
[19,20].

Kinetic capillary electrophoresis (KCE) methods use a
separation-based approach for studying kinetics and thermo-
dynamics of non-covalent complexes of biological molecules
[21–28].  We  recently implemented a similar approach for the
analysis of dissociation kinetics of DNA complexed with multiple
proteins [29]. The approach is based on our general understanding
that the kinetics of all processes that occur during the formation
and/or dissociation of DNA–multiple proteins complexes can be
easier distinguished if different complexes move with differ-
ent velocities, or, in other words, are spatially separated. As a
practical means of introducing differential mobilities of different
DNA–protein complexes we  used capillary electrophoresis (CE)
[23]. CE simply provides an efficient way  to accomplish the
separation-based analysis of simultaneous dissociation processes
involving DNA–multiple protein complexes. The resultant exper-
imental data encompass a complex interplay of mass transfer
with dissociation kinetics; the analysis of such data is a significant
challenge. While such data can always be analyzed numerically,
the numerical approaches often lack the transparency in problems
with a large number of parameters that have to be determined.
In contrast, analytical solutions are often more transparent and
allow general conclusions to be drawn. Therefore, it is important

to find exact mathematical solutions that can be used to analyze
data obtained through separation based dissociation of multiple
proteins bound to DNA. Here we  describe the analytical solution
for the separation-based kinetic analysis of multi-step sequential

dx.doi.org/10.1016/j.aca.2012.01.057
http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:skrylov@yorku.ca
dx.doi.org/10.1016/j.aca.2012.01.057
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Fig. 1. Schematic illustration of the separation-based approach for studying sequen-
tial dissociation of complexes CN , CN−1, . . .,  C1 formed by DNA (C0) and multiple
proteins. (a) The initial mixture of complexes introduced at t = 0 (the plug is shown
between two  vertical lines). (b) Separation of complexes at t � tsep,n ∼ W/�vn (n = 1,
.  . .,  N) where W is the initial plug length and �vn = |vn − vn−1| is the difference
between velocities of complexes that are “neighbors” in the sequential dissocia-
tion (2). Dashed lines denote approximate boundaries between the complexes. A
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issociation of DNA–multiple protein complexes. A straightfor-
ard solution for N dissociation steps would require taking an

ntegral of the Nth order, which is not feasible for large N. We
ropose a reduction approach that presents the solution as a super-
osition of N integrals of the second order, which is always feasible.
e tested our approach with experimental data obtained from

he three-step sequential dissociation of DNA–protein complexes
ith two protein copies. The further progress in separation-based

inetic analysis of DNA–multiple protein complexes depends on
nventiveness in the development of practical mathematical tools
or data analysis.

. Results and discussion

.1. Basic equations of sequential-dissociation kinetics

In general, to study the sequential dissociation kinetics of
NA–multiple protein complexes the following two-step operation

hould be performed. In step 1, N DNA–protein complexes (C1, . . .,
N) are formed by incubating free DNA (C0) with protein (P), long
nough to ensure each binding reaction approaches equilibrium:

C0
P,Kd,1� C1

P,Kd,2� C2· · ·
P,Kd,N� CN

C0 ≡ D, C1 ≡ DP, C2 ≡ DPP, . . . , CN ≡ DP· · ·P︸︷︷︸
N

(1a)

n reaction (1a), Kd,1, Kd,2, . . .,  Kd,N are equilibrium dissociation con-
tants of N sequential reactions. DNA is assumed to have enough
inding sites for multiple protein molecules. In the second step,
nbound proteins are continuously removed from the complexes
o that the rates of the forward processes in reaction (1a) become
ero and the complexes are forced to dissociate:

N
kN−→CN−1

kN−1−→CN−2
kN−2−→· · · k1−→C0 (2)

here kN, kN−1, . . .,  k1 in reaction (2) are the dissociation rate
onstants for N DNA–protein complexes. In the separation-based
pproach, all complexes and unbound DNA should undergo con-
inuous separation in this step, resulting in spatial segregation of
he dissociation kinetics (hereafter DNA is also referred to as “com-
lex” C0 that contains zero proteins). The described operation can
lso be applied to protein–DNA complexes involving several differ-
nt proteins if such complexes dissociate consequently, as shown
n (2).  In this case, reaction (1a) should be rewritten as follows:

C0
P1,Kd,1� C1

P2,Kd,2� C2· · ·
PN ,Kd,N� CN

C0 ≡ D, C1 ≡ DP1, C2 ≡ DP1P2, . . . , CN ≡ DP1· · ·PN
(1b)

here proteins are numbered (with subscripts 1, 2, . . .,  N) according
o the order of protein association during formation of complexes.
hus, in theory, all proteins may  be different. Furthermore, the
eparation-based approach works in the presence of conforma-
ional changes in protein–DNA complexes if such transformations
an occur only consequently, after the separation of complexes.
or example, in the case of a conformational change in the complex
ith only one protein, reaction (1a) should be modified as follows:

C0
P,Kd,1� C1

Kd,2� C2
P,Kd,3� C3· · ·

P,Kd,N� CN

C0 ≡ D, C1 ≡ (DP)a, C2 ≡ (DP)b, C3 ≡ DPP, . . . , CN ≡ DP· ·︸︷
N−

ere, protein–DNA complexes in two conformations, a and b, are
umbered according to the transition between them in sequential
eactions (2).  In this case, subscript n = 1, 2, . . .,  N denotes a serial
umber of complex Cn in sequential dissociation (2) (in the reverse

rder) and may  not coincide with the number of proteins bound
o DNA in complex Cn. All results obtained below are applicable
o reactions (1a)–(1c) as long as mainly sequential reactions (2)
ake place after removing the unbound protein from the complexes.
(1c)

cumulative signal from all complexes and DNA is measured by a detector. (c) A typ-
ical  signal from the mixture of DNA and two complexes when most of DNA in the
initial plug is bound to proteins.

Many other processes can be described by models similar to (2)
[30,31].

The implementation of our method using CE can be described
as follows. In step 1, the equilibrium mixture of the complexes (see
reactions (1a)–(1c)) is prepared in solution and a short plug of it
is introduced into a narrow and long capillary that is coaxial with
the x coordinate (Fig. 1a). The velocities v0, v1, . . . and vN and initial
concentrations of each component does not change significantly
across the capillary. The longitudinal Peclet number is very large.
Such a reactor can usually be considered as a one-dimensional infi-
nite reactor, in which longitudinal diffusion is negligible. In step
2, complexes C0, C1, . . . and CN are continuously separated from
unbound proteins and each other by moving with different veloci-
ties (Fig. 1b). The dissociation kinetics of individual complexes are
spatially separated and cumulative signal acquires N + 1 peaks cor-
responding to complexes C0, C1, . . . and CN that were present in the
initial mixture. Fig. 1c shows a typical electropherogram for a mix-
ture of C0, C1, and C2 (N = 2) with two-step sequential dissociation.

Since the rates of the forward processes in reaction (2) are neg-
ligible, the multistage dissociation of each and every complex in
the initial equilibrium mixture defined by equation (1a) (or (1b)
and (1c)) can be considered independent of the dissociation of all
other complexes. As a result, kinetics of multistage dissociation
of complexes, starting from any complex n in the initial mixture

(0 ≤ n ≤ N) and continuing to complex 0, can be described by the
following system of n + 1 partial differential equations:

(∂t + vn∂x + kn)Cn(x, t) = A0ı(x)ı(t) (n = N, . . . , 0; k0 = 0) (3)
n n

(∂t + vq∂x + kq)Cn
q (x, t) = kq+1Cn

q+1(x, t) (q = n − 1, . . . , 0; n > 0)

(4)
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ere, A0
n is the total amount of the initial complex n added at t = 0,

n
n is the current linear concentration of the initial complex n, Cn

q
at q < n) is the linear concentration of a part of complex Cq that
ormed as a result of dissociation started from the initial complex
n, vj and kj ≡ koff,j are the velocity and the dissociation rate constant
f complex j (0 ≤ j ≤ n). Linear concentrations of the complexes are
efined as their amounts per unit length of the capillary. At n = 0,
quation (3) describes the propagation of free DNA (“complex” C0).
oncentrations of complexes present in (3) and (4) depend on the
istance from the point where separation started, x, and on the time

nterval, t, passed from the beginning of separation. In (3), we use
irac’s ı-functions to define distributions of initial complexes in

he sample plug. This approach allows us to simplify mathemati-
al transformations in the process of solving equations (3) and (4).
n the final solution, these functions should be approximated by
sing normal distributions. It is also assumed that before t = 0, all
oncentrations are equal to zero, and that the modeled system has
n infinite length in both directions, so that there is no influence
rom boundaries.

Finally, the multistage dissociation of whole initial mixture (1a)
or (1b) and (1c)) is described by equations (3) and (4) at all possible
alues of n. This corresponds to the superposition of dissociation
rocesses that start with each complex in the initial mixture. As a
esult, the total concentration Cq of any complex q is determined
hrough the summation of its concentrations resulting from the
issociation of all complexes present in the initial mixture:

q(x, t) =
N∑

n=q

Cn
q (x, t) (q = N, . . . , 0) (5)

Relations (3)–(5) contain concentrations of complexes whereas
he experimental data, such as electropherograms, operate with
ignals (optical, electrochemical, etc.). The signal Sq generated by
he complex q is usually proportional to its total concentration Cq.
s a result, we have

q(x, t) = gqCq(x, t), S(x, t) ≡
N∑

q=0

Sq =
N∑

q=0

gqCq(x, t) (6)

here S is a total signal generated by all complexes and free DNA.
oefficients gq can be different and are determined by the nature
f signals used to detect complexes. The rate constants of disso-
iation can be determined by fitting the total experimental signal
ith a curve S(t) found from (6) at a value of x corresponding to the
etector’s position. To do this, one needs to know functions Cq(x, t)
hich can be expressed in terms of Cn

q (x, t) according to relations
5).

.2. Analytical solutions for concentrations of complexes

The major goal of this work was to find an analytical solution
or system (3) and (4) which is n + 1 dependencies of the concen-
rations, Cn

q , on time, spatial coordinate, as well as velocities, vj,
nd dissociation rate constants, kj, of corresponding complexes:
n
q (x, t, kq, . . . , kn, vq, . . . , vn) where q = n, . . .,  0. One of the ways
o solve the system of equations (3) and (4) is to obtain the
ight-hand side of the equation for concentration of each complex
ith number q by integrating the concentration equation for the

orresponding complex with number q + 1. In this way, expressions
escribing concentrations of later (in sequence (2))  complexes will
e high order multiple integrals; they would be very difficult to
olve directly. Here, we  explain a simpler alternative, which can

alculate the concentrations of later complexes without the need
f computing multiple integrals. In essence, we found a way  of
olving the system of equations (3) and (4) which requires com-
uting only double integrals. This approach leads to expressions
ca Acta 724 (2012) 111– 118 113

for Cn
q which are linear superpositions of double integrals that, in

turn, can be easily calculated.
By using the Fourier transform:

Cn
q = 1

2�

∫
Ĉn

q (ω, �)ei(ωt+�x)dωd�, q ≤ n (7)

differential equations (3) and (4) can be reduced to the following
linear algebraic equations:

dnĈn
n (x, t) = (2�)−1A0

n, dqĈn
q (x, t) = kq+1Ĉn

q+1 (q < n) (8)

where

dq ≡ iω + ivqς + kq (q ≤ n) (9)

Solution to (8) has a form

Ĉn
n = A0

n

2�dn
; Ĉn

q = A0
n

2�

n∏
r=q+1

kr

n∏
j=q

1
dj

, (q < n) (10)

The calculation of integral in (7) at q = n gives:

Cn
n (x, t) = A0

nı(x − vnt) exp(−knt)�(t) (11)

where �(t) is the �-function (�(t) = 1 at t ≥ 0 and �(t) = 0 at t < 0).
Direct substitution of (11) into the first equation in (3) also shows
that (11) is a solution of this equation. To find Cn

q at q < n, it is useful
to present the product in expression (10) for Cn

q in the form:

n∏
j=q

1
dj

=
∑

n≥j>p≥q

Q nq
jp

djdp
(q < n), (12)

where the sum is taken over all pairs of indexes (j, p) that satisfy
condition n ≥ j > p ≥ q. Coefficients Q nq

jp
must satisfy the following

equations:

∑
n≥j>p≥q

⎛
⎝Q nq

jp

n∏
s=q;s /=  j,p

ds

⎞
⎠ = 1 (q < n) (13)

for relation (12) to be valid. The product in (13) does not contain
multipliers dj and dp. Conditions (13) can be easily obtained from
(12) by multiplying its both sides by dqdq+1. . .dn. Since quantities
ds depend on independent variables � and ω, the left-hand side of
(13) is a polynomial with respect to variables � and ω. Its terms are
proportional to products �aωb. Powers a and b (should not be con-
fused with the DP conformations in reaction (1c)) satisfy a condition
0 ≤ a + b ≤ n − q − 1 that follows from (9) and (13). Coefficients at
products �aωb in this polynomial can be expressed in terms of sums
of various products of 	q, kq, and Q nq

jp
. Obviously, equations (13) can

be satisfied only if coefficients at all products �aωb are the same at
both sides of (13). As a result, we have obtained the following linear
algebraic equations which determine Q nq

jp
:∑

n≥j>p≥q

(Q nq
jp

Vanq
jp

Kbnq
jp

) = ıa,0ıb,n−q−1

q < n, 0 ≤ a + b ≤ n − q − 1

(14)

Vanq
jp

=
∑

r1,r2···ra /=  j,p

	r1 	r2 · · ·	ra at a > 0

q ≤ r1 < r2 < · · · < ra ≤ n, Vanq
jp

= 0 at a = 0
(15)

Kbnq
jp

=
∑

s1,s2···sb /=  j,p

ks1 ks2 · · ·ksb
, at b > 0

(16)
q ≤ s1 < s2 < · · · < sb ≤ n, Kbnq
jp

= 0 at b = 0

Here a and b are indexes rather than powers. For each fixed
pair of indexes nq,  the number Lnq of unknown coefficients Q nq

jp
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n ≥ j > p ≥ q) coincides with the number of equations in (14) and is
etermined by the following relation:

nq = 1 + 2 + · · · + (n − q) = 1
2

(n − q + 1)(n − q) (q < n < N) (17)

s a result, the expression for Cn
q at q < n can be presented in the

ollowing form:

n
q (x, t) = A0

n

n∏
r=q+1

kr

∑
n≥j>p≥q

Q nq
jp

Gjp (q < n) (18)

jp(x, t) = 1

(2�)2

∫ ∫
ei(ωt+ςx)dωdς

djdp
(19)

unctions Gjp(x, t) satisfy a simple equation:

∂t + vj∂x + kj)(∂t + vp∂x + kp)Gjp(x, t) = ı(x)ı(t) (20)

hey are determined by expression:

jp(x, t) = 1
|vp − vj|

�

(
Xj

vp − vj

)
�

(
Xp

vj − vp

)
exp

(
kjXp − kpXj

vp − vj

)
(21)

here Xs ≡ x − vst (s = j, p) and � is the �-function.
Thus, a general solution of equations (3) and (4) governing

ultistage dissociation of complexes is given by relation (11)
or Cn

n (x, t) and by expressions (18) and (21) for Cn
q (x, t) at q < n.

nknown quantities Q nq
jp

can be found from the system of linear
lgebraic equations (14) if:

et ||Vanq
jp

Kbnq
jp

|| /= 0 (22)

or each pair of indexes nq.  Here, det denotes the determinant of
ystem (14) calculated at fixed values of indexes nq.  Pairs of indexes
b and jp denote, respectively, rows and columns of matrix in (22).
he determinant value depends on arguments listed in (22). Condi-
ions (22) are usually satisfied since the opposite case where det = 0

eans that some relations between velocities and dissociation rate
onstants should take place. For example, such a relation would
equire an exact proportionality between the dissociation rate con-
tants and the velocity differences in the case of n = 2 (see equation
31) in the next subsection):

1 = 
(v1 − v0), k2 = 
(v2 − v0) (23)

here 
 is an arbitrary constant. Obviously, conditions similar to
23) cannot be satisfied rigorously due to the approximate nature
f velocities and dissociation rate constants. Nevertheless, such
pecial cases need additional consideration. In particular, if the
arameters are approximately satisfy the relation det = 0, the accu-
acy of the present approach can be affected.

According to expressions (18) which describe an arbitrary mul-
istage dissociation (2),  the corresponding mathematical solution
an be expressed as a linear superposition of all terms Gjp associated
ith the following type of processes:

j

kj−→Cp
kp−→ (24)

 single term, Gjp, determined by (21) includes only four param-
ters: vj, vp, kj, and kp. In essence, any multistage dissociation can
e presented as a linear superposition of one or more dissociations
f the type depicted by (24). The formal dissociation in (24) can
nclude real processes (e.g. Cn−1 → Cn−2) and virtual processes (e.g.
n−1 → Cn−3) that are not experimentally feasible. Our linear super-
osition approach allows us to significantly simplify solutions of

quations for the multistage dissociation of complexes with differ-
nt stoichiometries.

It is worth noting that equations (3) and (4) will describe any
equential reactions of the type (2) if the latter can be considered
ca Acta 724 (2012) 111– 118

as reactions of the first order. Obvious examples include sequen-
tial conformation change of components CN, CN−1, . . .,  C1 or their
sequential association with another component (for example, lig-
and) that is present in a significant excess relative to CN, CN−1, . . .,
C1. In such cases, the obtained analytical solutions of equations (3)
and (4) can be used to find concentrations of all components in (2).

2.3. Simplified solutions for two- and three-stage reactions

We consider the application of the developed generalized theory
to the first three stages of the multi-stage sequential dissociation of
complexes (including possible conformation changes) as follows:

Cn
kn−→Cn−1

kn−1−→Cn−2
kn−2−→Cn−3

kn−3−→·  · · (25)

Dissociation (25) has n stages (since k0 = 0) and can start from any
complex Cn present in the initial mixture. If n = 0, sequence (25)
has only one term C0 and no dissociation stages. At all n (0 ≤ n ≤ N)
concentration Cn

n of the complex Cn itself is given by (11).
If n ≥ 1, there is the second complex Cn−1 in (25) and its concen-

tration Cn
n−1 is determined by relations (18) at q = n − 1:

Cn
n−1(x, t) = A0

nknQ n,n−1
n,n−1 Gn,n−1 = A0

nknGn,n−1 (Q n,n−1
n,n−1 = 1) (26)

Here we  took into account that equations (14) give Q n,n−1
n,n−1 = 1 for

q = n − 1.
If n ≥ 2, there is the third complex Cn−2 in (25) and its concen-

tration, Cn
n−2, is determined by relations (18) at q = n − 2:

Cn
n−2(x, t) = A0

nknkn−1 × (Q n,n−2
n,n−1 Gn,n−1 + Q n,n−2

n,n−2 Gn,n−2

+ Q n,n−2
n−1,n−2Gn−1,n−2) (27)

In this case equations (14) reduce to the following system for the
coefficients Q n,n−2

n,n−1 , Q n,n−2
n,n−2 , and Q n,n−2

n−1,n−2(
kn−2 kn−1 kn

vn−2 vn−1 vn

1 1 1

)⎛⎝ Q n,n−2
n,n−1

Q n,n−2
n,n−2

Q n,n−2
n−1,n−2

⎞
⎠ =

(
1
0
0

)
(28)

Their solution is given by:

Q n,n−2
n,n−1 = vn−1 − vn

det
, Q n,n−2

n,n−2 = vn − vn−2

det
,

Q n,n−2
n−1,n−2 = vn−2 − vn−1

det
(29)

det = (kn−1 − kn−2)(vn − vn−2) − (kn − kn−2)(vn−1 − vn−2) (30)

At n = 2 the expression (30) becomes simpler since C0 does not
dissociate further and, therefore, k0 = 0:

det = k1(v2 − v0) − k2(v1 − v0) (31)

Given (31), we see that condition det = 0 at n = 2 is equivalent to
relations (23).

If n ≥ 3 there is the forth complex Cn−3 in (25) and its concen-
tration Cn

n−3 is determined by relations (18) at q = n − 3:

Cn (x, t) = A0k k k × (Q n,n−3G + Q n,n−3G
n−3 n n n−1 n−2 n,n−1 n,n−1 n,n−2 n,n−2

+ Q n,n−3
n−1,n−2Gn−1,n−2 + Q n,n−3

n,n−3 Gn,n−3

+Q n,n−3
n−1,n−3Gn−1,n−3 + Q n,n−3

n−2,n−3Gn−2,n−3) (32)
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N
b⎛
⎜⎜⎜⎜⎝

1
n + 	n−1
	n	n−1

n + kn−1
	(nkn

knkn

⎞
⎟⎟⎟⎟

⎛
⎜⎜⎜⎜⎜

Q n,n−3
n,n−1

Q n,n−3
n,n−2

Q n,n−3
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Q n,n−3
n,n−3

⎞
⎟⎟⎟⎟⎟ =

⎛
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0
0
0
0

⎞
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ow equations (14) can be presented as the following linear alge-
raic system of the sixth order:

1 1 1 1 1 

	n−2 + 	n−3 	n−1 + 	n−3 	n + 	n−3 	n−1 + 	n−2 	n + 	n−2 	
	n−2	n−3 	n−1	n−3 	n	n−3 	n−1	n−2 	n	n−2

kn−2 + kn−3 kn−1 + kn−3 kn + kn−3 kn−1 + kn−2 kn + kn−2 k
	(n−2kn−3) 	(n−1kn−3) 	(nkn−3) 	(n−1kn−2) 	(nkn−2)
kn−2kn−3 kn−1kn−3 knkn−3 kn−1kn−2 knkn−2

here we used a notation 	(AkB) = 	AkB + 	BkA. At n = 3 equations
33) become simpler since the terms with k0 vanish. An explicit
olution for (33) is too cumbersome and it is easier to numerically
nd coefficients Q n,n−3

jp
(n ≥ j > p ≥ n − 3) directly from (33). In the

ase of two- and three-stage dissociation kinetics (N = 2 and 3), rela-
ions (11), (21), and (26)–(33) allow one to calculate all terms Cn

q
resent in expression (5) for the total concentration of each com-
lex. After that, the cumulative signal can be determined by using
xpression (6) with values for coefficients gq measured experimen-
ally. These calculations require velocities vn, the rate constants kn,
nd the total amounts A0

n of all complexes in the initial mixture to
e known. Usually, this is not the case in studying sequential disso-
iation kinetics. Alternatively, these parameters can be determined
o satisfy the condition of the best fit between the theoretical signal
nd the one measured experimentally.

.4. Examples of method application to experimental data

nalysis

Let us test the developed theory by applying it to the study of
issociation kinetics of complexes formed by a 79-nt long single

ig. 2. Experimental (black line) and theoretical (red line) signals for three-stage dissoci
elative errors of less than 5.6%. The experimental curves are obtained for mixtures of a 7
.  coli. Six mixtures of DNA and protein were used with varying concentrations P of the 

efore the formation of complexes. The detector was placed at a distance of 40 cm from
espectively. In panels (a)–(c), the peaks of C3 are not detectable since the concentration
issociated before it reached the detector. This dissociation resulted in the exponential-li

n  this figure legend, the reader is referred to the web  version of the article.)
−1)

−1

⎠⎜⎝Q n,n−3
n−1,n−3

Q n,n−3
n−2,n−3

⎟⎠ ⎝
0
1

⎠

stranded DNA and single-strand DNA binding (SSB) protein from
Escherichia coli. This SSB protein plays an important role in DNA
replication, recombination, and repair and has been studied exten-
sively by both pure biochemical and crystallographic methods
[32–40].

Fig. 2 demonstrates signals with four peaks that can be assigned
to free DNA (C0 ≡ D) and three complexes (C1 ≡ (DP)a, C2 ≡ (DP)b,
and C3 ≡ DPP) that were present in the initial mixture. Such assign-
ments of peaks in Fig. 2 are based on the following considerations.
First of all, the migration time of pure DNA (C0) is known from a
CE run of DNA only, which allows us to assign the slowest peak
to DNA. The 79-nt single-stranded DNA can bind a maximum of
two tetramers of SSB protein. When a single protein is bound, two
binding modes with different DNA conformations are possible
under the same experimental conditions [34]. These modes differ
in the number of protein-bound nucleotides; the more nucleotides
bound, the more restricted the conformation of DNA. Finally, the

DNA–protein complex should move to the detector faster when
the number of bound proteins increases. Indeed, a negatively
charged complex with a larger number of proteins has a smaller
electrophoretic mobility and, therefore, is slowed down to a lesser

ation kinetics (N = 3). The theoretical curves correspond to the best-fit model with
9-nt long single stranded DNA and a single-strand DNA binding (SSB) protein from
SSB protein (shown in the figure) and a single concentration of DNA (D = 200 nM)

 the initial plug. Peaks C0, C1, C2, and C3 correspond to D, (DP)a ,  (DP)b , and DPP,
 of DPP in the initial plug is too small at lower values of P. DPP almost completely
ke curves to the left of the peaks of C2. (For interpretation of the references to color
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xtent by an electric field that is directed to the detector along the
lectroosmotic flow. In Fig. 2, for example, C3 ≡ DPP moves faster
nd contains more proteins than C2 ≡ (DP)b and C1 ≡ (DP)a. C2 and
1, in turn, move faster and contain more proteins than C0 ≡ D. Out
f the two complexes with the same number of proteins (C2 and
1 in Fig. 2), the one with a more restricted conformation of DNA
hould have a smaller electrophoretic mobility and move to the
etector faster than the one with a less restricted conformation.
herefore, C2 corresponds to a more restricted DNA conformation
ith more nucleotides bound. Using these facts, one can easily
etermine the number of complexes that are present in the reac-
ion mixture by qualitatively studying data in Fig. 2 and, therefore,
etermine the parameter N in model (1c).

Calculated theoretical signals for three-stage dissociation are
epicted by red lines in Fig. 2. Again, the peaks correspond to
he complexes that populate the initial mixture. The exponential-
ike curves between the peaks result from dissociation of these
omplexes. Table 1 shows the dissociation rate constants, kC, of
omplexes C = (DP)a, (DP)b, and DPP found from the best fit proce-
ure applied to data in Fig. 2. This table also contains the association
ate constants, kon,C, of complex C, the equilibrium dissociation con-
tants, Kd,C, of complex C, and equilibrium concentrations D0 and P0

f free DNA and unbound SSB protein in the initial plug. The values
f Kd,C, D0, and P0 were calculated using: (i) the initial equilibrium
mounts, A0

n, of complexes that were also determined from the best
t, (ii) a known total amount of free and bound DNA in the initial
lug, (iii) a known total amount of free and bound protein in the

nitial plug, and (iv) the volume of the initial plug. Values of kon,C
ere obtained from the following relationship between the rate

nd equilibrium constants:

on,C = kC

Kd,C
where C = (DP)a, (DP)b, DPP (34)

In almost all the cases, the rate constant for conformation change
f (DP)b into (DP)a is significantly higher than that for the reverse
eaction (Table 1) and, therefore, the latter can be neglected in
alculations of the (DP)b concentration (except for P = 848 nM).
enerally speaking, this reverse conformation change should be

aken into account in calculations of the (DP)a concentration. How-
ver, the latter will not be affected significantly due to small values
f corresponding rate constants.

The main purpose of experiments shown in Fig. 2 was  to illus-
rate mathematical methods developed for studying sequential
issociation kinetics by the separation-based approach. Neverthe-

ess, some important conclusions can be derived directly from these
xperiments even without the use of obtained analytical solutions
f equations (3) and (4).  These conclusions also allow one to check
nd confirm the developed mathematical methods.

Firstly,  the increase in the concentration of SSB results in smaller
NA peaks and more prominent peaks denoted by C1 = (DP)a,
2 = (DP)b, and C3 = DPP in Fig. 2. Therefore, the peaks of C1, C2, and
3 should, indeed, correspond to DNA–protein complexes.

Secondly, peaks in Fig. 2 are clearly distinguishable. This is possi-
le only if tsep,C < teq,C, where the separation and equilibration times,

sep,C and teq,C, of complex C are defined as follows:

sep,C = W

�vC
at C = (DP)a, (DP)b, DPP (35)

eq,C = 1
kC + Pdepkon,C

at C = (DP)a, DPP (36)

eq,C = 1
at C = (DP)b (37)
kC + kon,C

ere, Pdep is the depleted concentration of the free protein after
pplying an electric field and removing the unbound protein from
he plug; W is the initial plug length, and �vC is the difference Ta
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etween velocities of complex C and complex resulting from the
issociation of C (Fig. 1). Condition tsep,C < teq,C gives kC < 10−1 s−1,
depkC,on < 10−1 s−1 at C = (DP)a (in this case �vC = 0.05 cm s−1)
nd kC < 10−2 s−1, PdepkC,on < 10−2 s−1 at C = (DP)b, DPP (in this
ase �vC = (0.003–0.007) cm s−1) for a values of W = 0.5 cm used
n experiments shown in Fig. 2. These inequalities are satisfied
with large margin) by values obtained from the best-fit procedure
Table 1).

Thirdly, dissociation constants, Kd,C, of complexes C can be esti-
ated directly from experimental data (Fig. 2) using areas, AC, of

orresponding peaks (C = (DP)a, (DP)b, DPP) and relation P0 ∼ P

d,(DP)a∼ P0AD

A(DP)a
, K

d,(DP)b∼
A(DP)a

A
(DP)b

, Kd,DPP∼
P0A

(DP)b

ADPP
(38)

uch direct estimates also agree with results presented in Table 1.
Finally, fitting the mathematical model into experimental data

s possible with small relative errors of 5.6% (Fig. 2). This fact also
uggests that the developed theory adequately describes processes
f separation and sequential dissociation of DNA complexes with
ultiple proteins.
According to results shown in Table 1, the equilibrium constants

nd some of the rate constants appear to depend on SSB concen-
ration. This dependence is especially pronounced for the (DP)a

omplex. Such effect can be attributed (at least partially) to the
nfluence of charges of free SSB protein molecules even though

D 	 l, l ≈ (NAP0)
−1/3

(39)

ere, �D is the Debye length of the buffer (�D ∼ 10−7 cm for 25 mM
orax), NA is Avogadro’s number, and l is a characteristic dis-
ance between each complex (including free DNA) and the nearest

olecules of free SSB protein (l ∼ 10−5 cm at P0 = 500 nM). Let us
onsider, for example, a free DNA molecule that binds a protein
olecule. Electric charges of almost all other protein molecules

located at distances ∼ or > l from this DNA molecule) are screened
ue to relation (39). Nevertheless, there is always a small prob-
bility that other protein molecules are positioned at distances
uch closer than l, in particular, at distances ∼ rD. Of course, such

rotein molecules account for only a small fraction of all protein
olecules. Therefore, they could affect protein binding by only a

mall fraction of DNA molecules if the equilibrium concentrations
f free DNA and free protein were of the same order of magnitude
D0 ∼ P0). However, the ratio D0/P0 decreases from 0.7 down to
.2 × 10−4 with an increase in the initial protein concentration P
rom 200 nM up to 848 nM (Table 1). As a result, even a small fraction
f protein molecules at P ≥ 424 nM (i.e. ones that are positioned at
istances ∼ rD) would be enough to affect protein binding by almost
ll DNA molecules. Similarly, the concentration of (DP)b decreases
o approximately one hundredth of P0 when P reaches 848 nM.  In
ontrast, the concentration of DPP complex is much smaller than
hat of free protein at P = 200 nM and becomes of the same order of

agnitude as P0 at P = 848 nM.  Because of that, the influence of free
rotein molecules on DPP kinetics should vanish at higher protein
oncentrations. These described effects could lead to a dependence
f the rate and equilibrium constants on the initial protein concen-
ration. The presence of charged protein molecules in proximity
o each of the following complexes: D, (DP)a, and (DP)b, seems to
ncrease the value of kon for the previous (in sequence (2))  com-
lex, i.e. the value of kon for (DP)a, (DP)b, and DPP, respectively.
imilarly, the presence of charged protein molecules in proximity
o the (DP)b and DPP complexes appears to increase values of k
or the same complex (for the DPP complex, the last effect occurs

t lower initial concentrations of SSB protein). In total, such influ-
nce of the charged protein molecules on rate constants results in
ecreasing values of all Kd,C with an increase in the initial protein
oncentration (Table 1).
ca Acta 724 (2012) 111– 118 117

Interestingly, rate constants presented in Table 1 are consid-
erably smaller than previously reported values; kon ∼ 1 (nM)−1 s−1

and k ∼ 5 × 10−2 s−1 for the DP complex of SSB protein [37]. Such
large rate constants were obtained for oligonucleotide (dT)70
by means stopped flow studies. This oligonucleotide consists of
70 identical dT nucleotides, whereas we used a specific 79-mer
oligonucleotide composed of all four nucleotides (see Section 3).
Experimental conditions (10 mM  Tris, pH 8.1) [37] were also dif-
ferent from ours. Obviously, we  would not see a separation and
multiple peaks in CE experiments at all for kon ∼ 1 (nM)−1 s−1.
Experimental data presented in Fig. 2 lead to an inequality
PdepkC,on < 10−1 s−1 for C = (DP)a (as we  pointed out earlier in this
subsection) and, therefore, to an estimate kC,on < 10−3 (nM)−1 s−1

even at Pdep = 100 nM.  It is worth noting that a direct measure-
ment of rate constants is impossible and therefore one has to use
appropriate mathematical models to calculate rate constants based
on signals observed experimentally. Thus, oligonucleotides, exper-
imental methods and conditions and corresponding mathematical
models, that resulted in larger rate constants for SSB protein [37],
differ significantly from ours. This makes comparison of results
a difficult task and we  suggest using theoretical arguments for
estimation of an upper limit for possible values of kon. Obviously,
characteristic binding time �on = (P0kon)−1 cannot be smaller than
diffusion time �dif required for the nearest protein molecule to
reach a DNA molecule. During this time, a protein molecule has
to travel the distance of ∼l if D0 ∼ P0 (in this case, the number of
protein molecules positioned at distances much closer than l is neg-
ligible in comparison to the number of free DNA molecules). Using
the well known expression for diffusion distance corresponding to
time �dif [41,42]:

l ≈
√

Ddif�dif (40)

and the second relation (39) we have

�dif ≈ l2

Ddif
≈ 1

Ddif
(NAP0)

−2/3
, �dif ≈ 10−3 s at P0 = 100 nM

(41)

Here Ddif is the diffusion coefficient of protein molecules
(Ddif ∼ 5 × 10−7 cm2 s−1). If each collision between protein and DNA
molecules resulted in formation of the (DP)a complex, characteris-
tic binding time would be the same order of magnitude as diffusion
time (�on ∼ �dif). Maybe such a situation is possible under specific
physiological conditions, if nucleotides exhibit some cooperative
binding effect. However, we should have �on � �dif in a general case
when they lose such ability. Indeed, the crystallographic structure
of the complex between a 28-nt long ssDNA and SSB protein (PDB
code 1EYG) shows that this DNA positions itself on the surface of
SSB protein tetramer in a specific conformation, with the oligonu-
cleotide center being in close proximity to the K62 binding residue
[35]. The total solvent accessible area of all four K62 residues in the
tetramer accounts for a small fraction (∼10−2) of the solvent acces-
sible area of the tetramer as it is evident from its structure (PDB code
1QVC) [36]. Actually, this fraction should be even smaller since SSB
protein in the structure was truncated to 145 residues from 177
residues of the native E. coli SSB protein. Thus, the probability of
binding (without cooperativity of nucleotides), during a collision
between the 28-mer oligonucleotide and the SSB protein tetramer,
can be estimated as less than 10−2Cconf

−1, where Cconf is the number
of possible conformations of the oligonucleotide on the tetramer
surface. Of course, longer oligonucleotides can be bound to the K62

residue at any point in their central section but they will also have a
larger number of conformations, Cconf. Obviously, Cconf � 1, though
it is difficult to estimate this number more precisely. As a result,
the characteristic binding time should be significantly greater than
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he diffusion time (�on ∼ or > 102Cconf�dif). Finally, we  can write the
ollowing estimation for kon

on = 1
P0�on

≤ 1

102CconfP0�dif

(42)

or example, at Cconf = 103 and P0 = 100 nM (given �dif ≈ 10−3 s), we
ave an estimate of kon ∼ or < 10−4 (nM)−1 s−1 that agrees with the
esults presented in Table 1.

. Materials and methods

.1. Preparation of protein–DNA complexes

We  produced complexes of SSB protein and a 79-nt long sin-
le stranded DNA. SSB proteins bind to single-stranded DNA with
igh affinity and are important in DNA functions [32–34,40].  A
uorescently labeled 79-mer oligonucleotide 5-FAM/CTC CTC TGA
TG TAA CCA CGA GAA ATT GGT ACT GTA TGA AAC GGC AGC TGC
CG TCG CGG CAT AGG TAG TCC AGA AGC C (IDT Technologies,
oralville, IA, USA) was mixed with the SSB protein. Six mixtures
ere prepared (with DNA to protein ratios of approximately 1:1,

:1.3, 1:2.1, 1:2.6, 1:3.2, and 1:4.2) in which the DNA concentra-
ion was 200 nM and the SSB protein concentrations were 200 nM,
54 nM,  424 nM,  530 nM,  636 nM,  and 848 nM (before the forma-
ion of complexes). The mixtures were incubated for sufficiently
ong time so that further incubation did not influence the results.
ll buffer components were from Sigma–Aldrich (Oakville, ON). All
queous solutions were made with deionized water and filtered
hrough a 0.22-�m filter (Millipore, Nepean, ON). SSB protein was
urchased from Interscience (Markham, ON, Canada). The protein
nd DNA stock solutions as well as equilibrium mixtures were pre-
ared in the incubation buffer (25 mM Borax, pH 10).

.2. Capillary electrophoresis

A short plug of the equilibrated mixture was then injected into
he capillary by pressure and a high voltage CE run was  performed
o separate the SSB protein and the DNA–protein complexes with
ifferent velocities. A single-point detector was used to record
umulative electropherograms. CE experiments were performed
ith a CE instrument (P/ACE MDQ, Beckman-Coulter, USA) with

hermo-stabilization of the capillary (the outer walls of the capillary
ere washed with a liquid heat exchanger maintained at 15 ◦C) and

ample vials were kept at 15 ◦C. The instrument employed laser-
nduced fluorescence detection with a 488 nm line of an argon-ion
aser for fluorescence excitation. An uncoated fused silica capillary
Polymicro, Phoenix, AZ) with a 20-�m inner diameter and a length
f 50 cm was used. The length L from the injection end to the detec-
ion window was 40 cm.  Electrophoresis was run with a positive
lectrode at the injection end and an electric field E of 600 V cm−1.
he run buffer was identical to the incubation one. The length W of
ample plugs was 0.55 cm.

. Concluding remarks

In this work we considered the kinetics of the sequential disso-
iation of DNA–multiple protein complexes in a separation based
pproach. All complexes, unbound proteins and DNA move with
ifferent velocities and the free protein is quickly removed from
he mixture (Fig. 1a). As a result, the formation of complexes due
o association with free protein is negligible in comparison to the

issociation of the complexes (Fig. 1b). We  found exact analyti-
al solutions (11), (18), and (21) of the mass transfer equations (3)
nd (4).  The latter describe the processes of migration and sequen-
ial dissociation in the general case of N complexes, where N is

[

[

ca Acta 724 (2012) 111– 118

an arbitrary integer. These analytical solutions allow one to calcu-
late concentrations (5) of complexes and their cumulative signal
(6) at any point x and moment t. For the first three stages in the
sequential dissociation of complexes, the complex concentrations
were presented in a simplified form (26)–(33). Theoretical results
were tested with data obtained for three-stage dissociation of DNA
complexes with SSB protein. Calculated signals were in a good
agreement with the experimentally measured ones (Fig. 2). Ana-
lytical solutions describing sequential dissociation of complexes
moving with different velocities can be used in numerical simu-
lations of experiments and in studies of dissociation kinetics using
a separation based approach.
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