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Micromixing is “interpenetration” of solutions by molecular
diffusion and field-induced differential mobility of mole-
cules;[1, 2] it is neceessary for any homogeneous reaction to
occur. In macroreactors, micromixing occurs after macro-
mixing (breaking macrovolumes of solutions into micro-
volumes by mechanical agitation).[3–6] In microreactors, where
mechanical agitation is technically difficult,[7] micromixing
can be a sole means of mixing.[8,9] Better mixing is associated
with better uniformity of reactant distribution through the
reactor and greater spatial overlap of the reactants. There-
fore, the characterization of micromixing requires a quanti-
tative parameter that takes into account both the uniformity
and the overlap. Multiple quantitative measures for macro-
mixing have been developed and comprehensively reviewed
over decades.[3–6] They all are stochastic functions that are not
applicable to micromixing, which is driven solely by the
deterministic processes of diffusion and/or differential mobi-
lity. Measures of micromixing, such as coefficient of variation,
quantitative overlap, and some empirical functions, do not
take into consideration both the uniformity and the over-
lap.[10–12] Herein, we introduce nine axioms of micromixing
that must be satisfied by any qualitative attribute of the
quality of micromixing and design a satisfying quantitative
attribute, which we term “micromixing extent” (ME). ME
takes into account both the uniformity of reactant distribu-
tions through the reactor and the spatial overlap of the
reactants; it changes from zero (for no mixing) to one (for
complete mixing). Importantly, ME is a general quantitative
measure that can be applied to all types of mixtures that are
created solely by diffusion and/or differential mobility for
which distributions of the solutes through the reservoir can be
calculated. For example, we use ME to characterize the
quality of micromixing in a capillary microreactor, a type of
reactor in which good-quality mixing is difficult to achieve.[13]

Our approach for characterization of the quality of micro-
mixing can be used for the optimization of mixing in
microreactors by simply maximizing the value of ME.

Considering the generality of our approach and its
applicability to reacting and non-reacting molecules, we use
terms “solute” and “reservoir” instead of “reactant” and

“reactor”, respectively. We also use the words mixing and
micromixing interchangeably.

In micromixing, the exact solute distributions through the
mixture can be easily calculated using deterministic equa-
tions.[14] The present work was inspired by the insight that the
knowledge of solute distributions creates the foundation for a
quantitative description of the quality of micromixing based
on the uniformity and the overlap. We first discuss the
uniformity and the overlap using common sense. In general,
the goal of micromixing is to achieve as homogeneous a
molecular “amalgamation” of mixed solutes as possible. In an
ideal mixture, every solute uniformly fills the entire volume of
the reservoir, and the uniformity is a sufficient property to
describe the quality of mixing. This is not the case if mixing is
non-ideal, as illustrated in Figure 1a. In Figure 1a1 and
Figure 1a2, two solutes are mixed in ways that keep their
uniformity of distributions identical. However, it is clear that
the mixing is better in Figure 1a2 owing to a better overlap of
the two solutes. On the other hand, the overlap on its own is
inadequate to describe mixing; two solutes may be completely
overlapping but have poor mixing if the solutes have non-
uniform concentration distributions. Figure 1b illustrates
situations in which the solutes overlap throughout the
reservoir, but the mixing quality is different as a result of
variations in uniformity. The uniformity is greater for the blue
solute in Figure 1b 2 than in Figure 1 b1, resulting in superior
mixing in Figure 1b 2.

Given that the quality of micromixing depends on both
the uniformity of solute distributions and the spatial overlap
of the solutes, our goal was to design a quantitative attribute
that ranges from zero to one and describes the quality of
micromixing using both criteria. This attribute should be
defined by the distributions of solutes throughout the
reservoir or, in other words, by the dependence of solute
concentrations on their spatial positions in the reservoir at
any given time. We coin the term “micromixing extent” (ME)
to name this attribute.

Figure 1. Graphical illustration of mixing red and blue solutes in a two-
dimensional reservoir. a) Scenarios 1 and 2 have equal uniformities
but different overlaps. b) Scenarios 1 and 2 have equal overlap but
different uniformities. The corresponding concentration distribution
profiles are shown next to each mixing scenario.
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To deduce a suitable mathematical definition of ME, we
first developed a set of axioms that the definition must satisfy
in order to comply with the common-sense understanding of
molecular mixing. We define nine such common-sense
axioms, which are summarized and graphically illustrated in
Table 1. Axiom 1 demands that a maximum value of ME = 1
be only achieved when all solutes are distributed uniformly
through the entire volume of the reservoir; this is the case in
an ideal mixture. Axiom 2 demands that the minimum value
of ME = 0 be achieved when the volume in which all solutes
are present at the same time is equal to zero. Intuitively, there
is an infinite number of ways in which solutes can be mixed to
lead to the minimum ME = 0. Axiom 3 demands that ME
does not depend on the multiplication of any concentration
distribution by any non-zero constant. This axiom makes ME
independent of the absolute values of solute concentrations

but dependent on their concentration profiles, which makes
ME a function of the mixing procedure only. Clearly, this
requirement is essential for axiom 1 to be satisfied; otherwise
solutes that are uniformly distributed throughout the reser-
voir but with different concentrations could not have ME = 1.
Axiom 4 demands that ME of any set of solutes be less than or
equal to that of any subset of the same solutes. This axiom
originates from the understanding that increasing the number
of solutes can only complicate their mixing. Axiom 5 is
related to axiom 4; it demands that adding a new solute with a
concentration distribution identical to that of a solute that is
already present does not change ME. The need for such an
axiom is obvious if we consider that the added solute could be
identical to one which is present with the same distribution. In
such a case, the addition of a solute would be identical to
multiplying the concentration profile of this solute by a
constant greater than 1 (see axiom 3). Axiom 6 demands that
the diffusion of solutes with identical diffusion coefficients in
a closed reservoir leads to improved ME. This axiom follows
from our fundamental understanding that diffusion is a
natural mechanism of mixing. If the diffusion coefficients
are equal, the uniformity increases as the reagents diffuse
throughout the reservoir, and the spatial overlap also
increases as the solutes diffuse towards each other. The
combined effect of improved uniformity and overlap leads to
an increase in ME. If the diffusion coefficients are greatly
different, a solute with a large diffusion coefficient can
temporarily diffuse away from the location of solutes with low
diffusion coefficients, thus potentially leading to a tempora-
rily decreased overlap and ME. This phenomenon is illus-
trated in Figure S1 in the Supporting Information. Axiom 7
demands that ME does not change during hydrodynamic
transfer of solutes if there is no diffusion, differential mobility,
or flow through the solute boundaries. In the corresponding
illustration in Table 1, a highly ordered structure is shown on
the left; on the right, this structure is destroyed by hydro-
dynamic mass transfer, producing a complex pattern. This
axiom again follows from the definition of micromixing that it
is driven by the nonstochastic processes of diffusion and/or
differential mobility. In mathematical terms, axiom 7 requires
that ME be an integral of motion. Axiom 8 states that when
the concentration profiles of all solutes are composed of
rectangular shapes, with the concentration being either zero
or a nonzero constant (a single constant for a single solute),
ME can be determined from the quotient of the volumes
occupied by all the solutes and the total volume of the
reservoir. Axiom 9 demands that ME vary with the void
volume of the reservoir. It should be noted that, in general,
the boundaries of the reservoir are not physical but virtual
(see examples below). In qualitative terms, by extending the
volume of the reservoir without changing the solute distribu-
tions, the solutes occupy a smaller part of the total volume,
resulting in a decrease in uniformity and ME. The nine
deduced axioms were used for finding a suitable mathemat-
ical definition of ME.

After designing and analyzing a number of potential
mathematical constructs to define ME, we found one that
incorporates both the uniformity and overlap and satisfies the
nine axioms (as shown below and proven in the Supporting

Table 1: Axioms for ME and their graphic illustrations

Illustration[a] Axiom

1. Maximum ME =1 can be achieved in a
single way; all solutes are distributed
uniformly throughout the entire reservoir.

2. Minimum ME= 0 can be achieved in a
variety of ways; when the solutes do not
spatially overlap.

3. ME should not depend on the multi-
plication of a concentration distribution
by a non-zero constant.

4. ME for all solutes should be less than or
equal to ME of any of their subsets.

5. Adding a new solute with concentration
distribution identical to that of an already
present solute should not change ME.

6. Diffusion of solutes with identical
diffusion coefficients in a closed reservoir
leads to an increase in ME.

7. ME should not change upon the
hydrodynamic transfer of solutes without
diffusion, differential mobility, or flow
through solute boundaries.
8. If all concentration distributions are
rectangular and take a single value for a
single solute, ME is the quotient of the
sum of mixture volumes where all solutes
are present and the total reservoir’s
volume.
9. If empty volume is added to the
reservoir without changing distributions
of solutes, mixing efficiency will change in
inverse proportion to the total volume of
the reservoir.

[a] Illustrations 7 and 9 depict closed two-dimensional reservoirs; the
two axes correspond to two spatial coordinates. All other illustrations are
shown for one-dimensional mixtures; the horizontal axes correspond to
a spatial coordinate and the vertical axes correspond to the solute
concentration. The arrowed lines in illustration 8 indicate the respective
one-dimensional volumes.
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Information). Equation (1) defines ME using this mathemat-
ical construct:

ME ¼ 1
V
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where V is the volume of an m-dimensional reservoir (m =

1,2,3), ~r is a vector of the spatial coordinate, t is the time,
Ci ~r; tð Þ is the concentration of the ith solute as a function of~r
and t, and n is the total number of solutes. To satisfy axiom 4,
“min” is defined as a function of~r and t, and its value is equal
to the smallest of the n possible values of
Ci ~r; tð Þ

R
Ci ~r; tð Þd~r=C2

i ~r; tð Þd~r. Note that the integral of a
function over the reservoir volume divided by the total
volume of integration in Equation (1) is equivalent to the
spatial average of this function. We use �Ci to designate the
spatial average of the concentration of the ith component.
Equation (1) can thus be written in a simplified form
[Eq. (2)]:

ME ¼ min C1
�C1=C2

1 ; :::Cn
�Cn=C2

n

� �
ð2Þ

Equations (1) and (2) define ME as a spatial average, thus
making it a function of time only. It should be noted that the
effect of C2

i in the denominator is to normalize the effect of
solutes with varying concentrations (as required by axiom 3).
The mathematical proof that our definition of ME satisfies
the nine axioms and the consideration of alternative defini-
tions are presented in the Supporting Information.

Herein we show that our definition of ME incorporates
both the uniformity of solute distributions through the
reservoir and the spatial overlap of solutes. In general, the
uniformity and the overlap depend on each other and cannot
be presented as two separate terms in Equation (1). However,
for the two extreme cases considered below, they can be
separated into two terms. In the first case, the overlap is
completely excluded from consideration by having a single
solute, with concentration distribution C, in the reservoir. The
ME of a single solute is dependent on its distribution
uniformity; accordingly, using Equation (2) for a single
solute, we can define the quantitative meaning of uniformity,
called quantitative uniformity [QU, Eq. (3)]:

QU ¼MEsingle solute ¼ min C �C=C2
� �

¼ C �C=C2 ¼ �C2=C2 ð3Þ

The two consequent simplifications in Equation (3) are
based, respectively, on two mathematical rules: the minimum
of a single value is the value itself, and the average of a single
value is the value itself. QU, as defined by Equation (3),
ranges from 0 to 1, which is a known property of this function,
widely used in mathematical statistics. QU is equal to 0 in the
case of “singularity”, that is, when all solute molecules are
present at a single spatial point, which is experimentally
unattainable. QU is equal to 1 when the concentration of the
solute in every point of the reservoir is equal to the average

concentration; this situation corresponds to a uniformly
distributed solute. Figure S2 in the Supporting Information
illustrates QU for a number of different concentration
profiles.

Since the term QU is now quantitatively defined, we can
consider the second extreme case, in which multiple solutes
are distributed through the reservoir with the identical
uniformity of QU ¼ �C2=C2 allowing Equation (2) to be
rearranged, leading to Equation (4):

MEidentical QU ¼ QUmin C1=�C1; :::Cn=�Cn

� � ð4Þ

In deriving Equation (4), we use the mathematical rule
that if each term of a series is multiplied by the same positive
coefficient, the minimum of the new series is equal to this
coefficient multiplied by the minimum of the original series.
The second term at the right-hand side of Equation (4)
defines the quantitative meaning of the overlap or simply
quantitative overlap (QO), which does not include the QU
term [Eq. (5)]:

QOidenticalgtQUi gtforgti¼1;:::n ¼ min C1=�C1; :::Cn=�Cn

� � ð5Þ

Note that this QO obtained as a degenerate case of ME is
equivalent to QO recently introduced by using a different
approach.[11]

Figure 2 illustrates examples of micromixing of three
solutes that are characterized by identical values of QU = 0.25
but different QO and, accordingly, different ME. Figure 2a,b
demonstrates QO = 0, as there is no volume occupied by all
three solutes. The values of QO and ME become nonzero
when the volume in which all three solutes are present
becomes nonzero. This situation is illustrated in Figure 2c
where QO = 1, as the three solutes occupy the same volume,
but ME< 1 as the solutes do not uniformly occupy the entire
volume of the reservoir. More details on QU and QO can be
found in the Supporting Information.

We have shown above that, in addition to satisfying the
nine axioms, our definition of ME [Eqs. (1) and (2)] accounts
for both the uniformity and the overlap. Practically, to
calculate ME the concentrations of all solutes must first be
determined as a function of spatial coordinate for any given
time, Ci ~r; tð Þ, which can be done by analytically solving
equations of mass transfer by diffusion field-induced differ-
ential mobility of the solutes. We have found analytical
solutions for a relatively complex case of a capillary micro-

Figure 2. Graphical illustration of mixing three solutes in a one-dimen-
sional reservoir. Quantitative uniformities are equal in every panel and
between the panels. The quantitative overlap and, accordingly, micro-
mixing extent, are zero in (a) and (b) and greater than zero in (c).
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reactor with sequential injections of the solutes.[15] Alterna-
tively, the concentrations of all solutes as a function of spatial
coordinates for any given time can be found numerically.
Custom-made software and a numerical approach described
in sections 4.2.4–4.2.6 of reference [14] were used in an
example below. COMSOL, a user-friendly physics software,
makes it possible to find the concentrations of solutes
micromixed by diffusion even without writing differential
equations.[16]

Then, the boundaries of the reservoir should be defined to
allow the integration over the reservoir volume. Finally,
Equation (1) is used to calculate ME. To illustrate the use of
ME, we simulated two examples of the micromixing of two
solutes in an open-capillary microreactor by 1) a field-
induced differential mobility along the reactor axis and
2) diffusion (see the Supporting Information).

Finally, we demonstrated that ME is not only a theoret-
ically sound parameter, but it also has a practically useful
predictive property. The major reason for mixing molecules in
chemistry is to facilitate efficient reaction to, for example,
achieve high product yield. We thus tested if ME could be
used to optimize micromixing with the goal of increasing
product yield. ME was calculated for recently described
experiments.[11] The experiments included mixing and hybrid-
izing two strands of complimentary DNA inside a capillary.
Briefly, the two DNA solutions were sequentially injected
into a capillary by pressure pulses to form plugs with
interpenetrating parabolic profiles. After injection, DNA
strands mixed by transverse diffusion, and the double-
stranded DNA (dsDNA) hybrid was formed. The amount of
dsDNA formed was then determined, and the relative
product yield was calculated.

To determine ME for these experiments, we first calcu-
lated the concentrations of the two DNA strands after mixing
as functions of the position in a capillary. The calculations
were performed by numerically solving the equations of mass
transfer as described in sections 4.2.4–4.2.6 of reference [14].
Custom-made software, Excel with a DLL library written in
Object Pascal,[17] was used for calculations (available for
download from the “KCE tools” table in the Research section
of www.chem.yorku.ca/profs/krylov). The output of calcula-
tions was the concentrations of the two DNA strands after
mixing as functions of their position in the capillary. These
concentrations were then used to calculate ME with Equa-
tion (1). For convenience, the calculation of ME was per-
formed in the same Excel spreadsheet. The relative amount of
the product was found to correlate well with ME (Figure 3),
thus suggesting that ME can be used to maximize the product
yield of bimolecular reactions in microreactors by maximizing
ME.

To conclude, we introduced a quantitative attribute of
micromixing, termed ME, that takes into account two mixing
criteria: the uniformity of solute distributions through the
reservoir�s volume and the spatial overlap of the solutes.
According to our definition, ME is a mathematical function
that depends only on concentration profiles of solutes in the
reservoir; therefore, this parameter is applicable to all kinds
of mixtures, including liquid mixtures and solid mixtures,
which are created by diffusion of field-induced differential

mobility, and for which concentration profiles of solutes can
be calculated. Our newly introduced approach for quantita-
tive characterization of the quality of micromixing will allow
for the optimization of micromixing by simply maximizing
ME.
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1. Supporting Materials and Methods 

1.1. Materials. The HPLC-purified, fluorescently-labeled 15-mer DNA (5'-Alexa488-GCG GAG CGT 
GGC AGG), and complimentary 15-nucleotide DNA (5'-CCT GCC ACG CTC CGC) were purchased 
from IDT DNA Technology Inc. (Coralville, IA, USA) and dissolved in a TE buffer (10 mM Tris-HCl, 
0.1 mM EDTA, pH 7.5) to have 100 μM stock solutions that were stored at -20 °C. All other chemicals 
were purchased from Sigma-Aldrich (Oakville, ON, Canada). Uncoated fused-silica capillaries with 75, 
50, and 20 µm inner diameters (375 m outer diameter) were purchased from Polymicro (Phoenix, AZ, 
USA). The capillary was mounted on a capillary electrophoresis (CE) instrument (P/ACE MDQ, 
Beckman Coulter, Fullerton, CA, USA), which was equipped with temperature-controlled sample 
storage and thermal control of the capillary. All solutions were made using deionized water filtered 
through a 0.22 μm filter (Millipore, Nepean, ON, Canada). 

1.2. Instrument modifications. To accurately record pressure profiles, the CE instrument was 
modified with a commercially-available pressure transducer (MadgeTech PRTrans1000IS Pressure 
Data Logger). The transducer was attached to the pressure line that feeds the pressure to the capillary 
inlet. To protect the transducer from excessive pressure, a pressure valve was installed upstream of the 
transducer. The valve was controlled by a pressure sensor that was set up to close the valve once the 
pressure was higher than a selected threshold value. The transducer was recording the injection 
pressure as a function of time and the obtained data was downloaded from the transducer via a USB 
cable onto a computer using the software provided with the transducer. 
 
1.3. Experimental procedure. The DNA working solutions were prepared separately at a 
concentration of 500 nM in 100 mM TES buffer pH 7.5. The prepared solutions were injected into a 
50-cm capillary, using parameters outlined in Table S1 below. The injected reactants were incubated in 
the capillary at room temperature for 1 min to facilitate formation of dsDNA hybrid. The separation in 
100 mM TES buffer pH 7.5 was then performed as outlined in Table S1 below. The separation modes 
were different to prevent overheating of the capillary and DNA hybrid dissociation. 

 

2. Supporting Results 

The obtained electropherograms were analyzed to determine the yield of hybridization reaction. A 
typical electropherogram with areas highlighted is shown in Figure S1. The yield of the hybridization 
reaction can then be calculated:  red red blueYield A A A  . 
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Table S1. Experimental parameters used for TDLFP-based mixing of two reactants and their 
calculated post-mixing concentration profiles 

  S3



 

Figure S1. Electrophoretic separation of ssDNA (blue area) from dsDNA (red area). 

3. Supporting Mathematics (Properties of QO) 

Below we present the proof that QO satisfies the four conditions described in the main text: (i) 
0 ≤ QO ≤ 1, (ii) QO = 0 only if there is no a non-zero volume in the reactor where all reactants are 
present, (iii) QO = 1 only if all concentration profiles are similar to each other, i.e. Ri( ) = cijRj(r


r
 ) 

where constant coefficients cij do not depend on r
 , and (iv) QO does not change if an empty volume is 

added to the system. We also prove the validity of condition (3) in the main text for the linear 
correlation between QO and product yield.  

We assume that all concentrations Ri( ) are piecewise continuous nonnegative functions in volume V. 
Definition (1) for QO presented in the main text can be rewritten as follows:  

r


 1

1
( ) min * ( , ),..., * ( , )N

V

QO t R r t R r t dr
V

 
   

. (S1) 

Here we introduce normalized concentrations: 
( , )

* ( , ) ( 1,..., )
1

( , )

i
i

i

V

R r t
R r t i N

R r t dr
V

 






    (S2) 

which are also piecewise continuous nonnegative functions in V. They obviously satisfy the following 
relations: 

1
* ( , ) 1 ( 1,..., )i

V

R r t dr i N
V

 
 

. (S3) 

Thus, the definition of QO is based on the minimum of the normalized concentrations of reactants in 
any given point of the reactor. 
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3.1. Proof of the 0 ≤ QO ≤ 1 inequality. Since all R*i ≥ 0, we have: 

 1min * ( , ),..., * ( , ) 0NR r t R r t 
 

 (S4) 

and, therefore, 

 1

1
( ) min * ( , ),..., * ( , ) 0N

V

QO t R r t R r t dr
V

 
  

,  (S5) 

i.e. QO  0. 

On the other hand, it follows from the definition of  1min * ( , ),..., * ( , )NR r t R r t
 

 that 

 1min * ( , ),..., * ( , ) * ( , ) ( 1,..., )N iR r t R r t R r t i N 
  

. (S6) 

Given (1), (3), and (6), we have: 

 1

1 1
( ) min * ( , ),..., * ( , ) * ( , ) 1N i

V V

QO t R r t R r t dr R r t dr
V V

 
   




 (S7) 

and, therefore, QO ≤ 1.  
 
3.2. Proof of the statement: “QO = 0 if and only if there is no a non-zero volume V0 in the reactor 
where all reactants are present”. Let the condition of QO = 0 be true. If there is a volume V0 ≠ 0 

where all Ri > 0, then all R*i > 0 in V0 and, therefore,  1 0min * ( , ),..., * ( , ) 0 inNR r t R r t V
 

 (S8) 

Using definition (S1) and inequalities V ≥ V0 and R*i ≥ 0, and then taking into account (S8), we have 

   
0

1 1

1 1
( ) min * ( , ),..., * ( , ) min * ( , ),..., * ( , ) 0N N

V V

QO t R r t R r t dr R r t R r t dr
V V

  
    




, (S9) 

i.e. QO > 0. This inequality contradicts the condition of QO = 0. Thus, our assumption of V0 ≠ 0 was 
false and, therefore, there is no non-zero volume V0 with all Ri > 0 when QO = 0. 
Now let a volume V0 ≠ 0 (with all reactants present) not exist in the reactor. If we have QO > 0 in this 
case, then  

 1 0min * ( , ),..., * ( , ) 0 in some volume 0NR r t R r t V
 

 , (S10) 

since all R*i are piecewise continuous nonnegative functions. As a result, we would have all 

 in V0 ≠ 0, and, therefore, all * ( , ) 0iR r t 


( , ) 0iR r t 


 in V0 ≠ 0. This contradicts the condition of the 

absence of such a non-zero volume. Thus, the assumption of QO > 0 was false and, therefore, QO = 0 
when there is no non-zero volume V0 with all reactants present in it. 
 
3.3. Proof of the statement: “QO = 1 if and only if all concentration profiles are similar to each 
other, i.e. Ri( ) = cijRj( ) where coefficients cij do not depend on r


r


r


”. Let the condition of 
Ri( ) = cijRj( ) be true for all possible i and j. Substituting this expression for Ri( ) into the right hand 
side of definition (S2) for R*i( ) and taking into account definition (S2) for R*j( ), we have  R*i(

r


r


r


r


r


r


) = 
R*j( ) for all i and j. Therefore, r



 1min * ( , ),..., * ( , ) * ( , ) ( 1,..., )N iR r t R r t R r t i N 
  

.  (S11) 

Substituting (S11) into definition (S1) for QO and using (S3) we obtain: 
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 1

1 1
( ) min * ( , ),..., * ( , ) * ( , ) 1N i

V V

QO t R r t R r t dr R r t dr
V V

 
   




. (S12) 

Thus, QO = 1 when Ri( ) = cijRj( ). r


r


Now let the condition of QO = 1 be true. If we have R*i( r


)≠ R*j( r


) for some i,  j, and , then 
R*i( ) > R*j( ) or R*i( ) < R*j( ). Let us consider for definitiveness the case when the last 
inequality is satisfied. Such inequality would also hold in a small enough volume V*( ) because 
R*i( ) and R*j( ) are piecewise continuous functions. As a result, we would have 

r


r


r


r


r


r


r


r


 1min * ( , ),..., * ( , ) * ( , ) in *N jR r t R r t R r t V V
  

 , (S13) 

 1min * ( , ),..., * ( , ) * ( , ) in *N jR r t R r t R r t V
  

. (S14) 

Substituting (13) and (14) into definition (1) for QO and using (3) we obtain 

   1 1

* *

* *

1
( ) min * ( , ),..., * ( , ) min * ( , ),..., * ( , )

1 1
* ( , ) * ( , ) * ( , ) 1

N N

V V V

j j j

V V V V

QO t R r t R r t dr R r t R r t dr
V

R r t dr R r t dr R r t dr
V V





 
  

 
 

    
 

 

  

    

     




. (S15) 

This result contradicts the condition of QO = 1. Thus, the assumption of R*i( r


) ≠ R*j( ) was false 
and, therefore, R*i( ) = R*j( ) for all i and j when QO = 1. Substituting expressions (S2) for R*i(

r


r


r


r


) 
and R*j( ) in relation R*i( ) = R*j( ), we finally obtain that  r


r


r


( , )

( , ) ( , ) with , when ( ) 1
( , )

i

V
i ij j ij

j

V

R r t dr

R r t c R r t c QO t
R r t dr

 





 

 
  .  (S16) 

 
3.4. Proof of QO not changing upon adding empty volume to the reactor. This statement results 
from the following relations: 

E

E E

E

1
E

E
1

E E

1

E
1

E

( , )( , )1
( ) min ,...,

1 1
( , ) ( , )

( , )( , )1 1
min ,..., ( )

1 1
( , ) ( , )

N

V V
N

V V V V

N

V V
N

V V

R r tR r t
QO V V dr

V V R r t dr R r t dr
V V V V

R r tR r t
dr QO V

VV V R r t dr R r t dr
V V V V



 



 
 
  
 
   

 
 
  

  
   


 


 




   




   



, (S17) 

where VE is an empty volume. In (S17), we took into account that V and VE do not depend on r


 and 
used the following relation 

E

( , ) ( , ) ( 1,..., )i i

V V V

R r t dr R r t dr i N


  
   

 (S18) 

which is valid for any empty volume VE. 
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3.5. Proof of QO being determined by the concentration of a reactant in deficiency in every point 
if the total amounts of reactants are similar. The amount Ai of i-th reactant in the reactor is 
determined as follows: 

( , ) ( 1,..., )i i

V

A R r t dr i N 
 

. (S19) 

Using (S19), we can rewrite definition (S2) of the normalized concentration in the form 

( , )
* ( , ) ( 1,..., )i

i
i

VR r t
R r t i N

A
 




,  (S20) 

As a result, the ratio of any two normalized concentrations, R*i and R*j, is determined by 

*
( , 1,..., )

*
ji i

j i j

AR R
i j N

R A R
  .  (S21) 

Let us consider the case when all Ai are of the same order of magnitude (i.e. Ai ~ Aj for any possible i 
and j) and, therefore,  

~ 1 ( 1,..., ; 1,..., )j

i

A
i N j

A
  N



. (S22) 

Relations (S20) –(S22) allow one to approximately calculate QO by replacing the exact value of 

 1min * ( , ),..., * ( , )NR r t R r t
 

in each point with the normalized concentration of reactant in deficiency 

in that point. Indeed, if d is the number of a reactant in deficiency in a certain point in the reactor, then 
we have the following relations between the concentrations in this point: Rd/Rm << 1 for some values of 
m ≠ d and Rd/Rk ~ 1 for some other values of k ≠ d and k ≠ m. One of the index sets {m} and {k} can be 
empty (but not both of them). Using (S21) and (S22), we obtain R*d/R*m << 1 and R*d/R*k ~ 1 for the 

same values of m and k. Therefore,  1min * ( , ),..., * ( , )NR r t R r t
 

 can be equal only to R*d or to R*k at 

some specific value of k (but not to R*m at any value of m). As a result,  1min * ( , ),..., * ( , )NR r t R r t
 

 

still can be estimated as R*d since R*k ~ R*d for all values of k from {k}, and we can approximately 
calculate QO by substituting in (S1) the following expression: 

 1min * ( , ),..., * ( , ) ( , ) ( , )N d d dR r t R r t VR r t A VR r t A 
   

, (S23) 

where Rd is the concentration of the reactant which is in deficiency in point r


, Ad is the total amount of 
that reactant in the reactor. Values of index d in (S23) can be different in different points of the reactor. 
However, values of Ad corresponding to all possible values of d have the same order of magnitude 
according to assumption (S22). This fact allows us to approximately replace Ad with an amount A of 
one of the reactants in the second relation in (S23). Obviously, the choice of such a reactant cannot 
significantly affect an estimate (S23). Substituting (S23) into (S1) we finally obtain that 

1
( ) ( , )d

V

QO t R r t dr
A

 
 

. (S24) 
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.6. Proof of condition (3) in the main text being satisfactory for linear correlation between QO 3
and the product yield to hold. Condition (3) in the main text can be rewritten in the form 

eq excess

1 dr




1
( , )VV K R r t  .  (S25) 

Since , inequality (S25) can hold only if eq excess ( , ) 0K R r t 
  eq excess1 ( , )K R r t 1


 in the most of the 

V. Indeed, if volume 

m m
eq excess eq excess

1 1
1  in and 1 in

( , ) ( , )
V V V

K R r t K R r t
     (S26) 

then 

m

m

eq excess eq excess

1 1
1

( , ) ( , )V V

Vdr dr

V K R r t V K R r t V
   

 

  . (S27) 

It follows from (S27) that Vm << V and therefore inequality  eq excess1 ( , )K R r t 1


 is not valid only in 

onstant Keq is defineda very small part Vm of the total volume V. The equilibrium c  by 

eq
excess d

P
K

R R
, (S28) 

Were P and  are concentrations of the product and the reactant in excess in any given point of the 

 yield of the product in any given point is determined by the initial concentration of 

ant. 
d 

ition 



excessR

reactor, Rd, is the concentration of the second reactant in the same point. Relation (S28) holds after the 
equilibrium is achieved. Substituting (S28) into the first inequality (S26), we have Rd << P in V – Vm ≈ 
V. Thus, the reaction proceeds to completion in the largest part of the volume, where most of the 
product is formed.  
Obviously, the local
the reactant that is in deficiency in this point. Therefore, the total relative yield of the product is 
determined by the integral of this concentration divided by the initial amount of the labeled react
Such a ratio also approximately coincides with QO (see (S24)) if the labeled reactant amount was use
as A in (S24). In this case, one may expect the relative yield of the product to be approximately 
proportional to the quantitative overlap QO since the reaction proceeds to completion when cond
(3) in the main text is satisfied. 
 


