miR-590-3p Promotes Ovarian Cancer Growth and Metastasis via a Novel FOXA2–Versican Pathway

Mohamed Salem¹, Jacob A. O’Brien¹, Stefanie Bernaudo¹, Heba Shawer², Gang Ye³, Jelena Brkić³, Asma Amleh², Barbara C. Vanderhyden³, Basel Refky⁴, Burton B. Yang⁵, Sergey N. Krylov⁶,⁷, and Chun Peng¹,⁷

Abstract

miRNAs play important roles in gene regulation, and their dysregulation is associated with many diseases, including epithelial ovarian cancer (EOC). In this study, we determined the expression and function of miR-590-3p in EOC. miR-590-3p levels were higher in high-grade carcinoma when compared with low-grade or tumors with low malignant potential. Interestingly, plasma levels of miR-590-3p were significantly higher in patients with EOC than in subjects with benign gynecologic disorders. Transient transfection of miR-590-3p mimics or stable transfection of miR-590 increased cell proliferation, migration, and invasion. In vivo studies revealed that miR-590 accelerated tumor growth and metastasis. Using a cDNA microarray, we identified forkhead box A2 (FOXA2) and versican (VCAN) as top downregulated and upregulated genes by miR-590, respectively. miR-590-3p targeted FOXA2 3’ UTR to suppress its expression. In addition, knockdown or knockout of FOXA2 enhanced cell proliferation, migration, and invasion. Overexpression of FOXA2 decreased, whereas knockout of FOXA2 increased VCAN mRNA and protein levels, which was due to direct binding and regulation of the VCAN gene by FOXA2. Interrogation of the TCGA ovarian cancer database revealed a negative relationship between FOXA2 and VCAN mRNA levels in EOC tumors, and high FOXA2/low VCAN mRNA levels in tumors positively correlated with patient survival. Finally, overexpression of FOXA2 or silencing of VCAN reversed the effects of miR-590. These findings demonstrate that miR-590-3p promotes EOC development via a novel FOXA2–VCAN pathway.

Significance: Low FOXA2/high VCAN levels mediate the tumor-promoting effects of miR-590-3p and negatively correlate with ovarian cancer survival. Cancer Res; 78(15): 4175–90. ©2018 AACR.

Introduction

Epithelial ovarian cancer (EOC) is the most common form of ovarian cancer and has the highest mortality rate among all gynecologic malignancies (1). There are no effective early screening methods for EOC; thus, most cases are not detected until late stages. In this study, we aimed to determine the expression and functional effects of miR-590-3p on EOC cells. We found that miR-590-3p expression was higher in high-grade tumors compared to low-grade or tumors with low malignant potential. Interestingly, plasma levels of miR-590-3p were significantly higher in patients with EOC than in subjects with benign gynecologic disorders. Transient transfection of miR-590-3p mimics or stable transfection of miR-590 increased cell proliferation, migration, and invasion. In vivo studies revealed that miR-590 accelerated tumor growth and metastasis. Using a cDNA microarray, we identified forkhead box A2 (FOXA2) and versican (VCAN) as top downregulated and upregulated genes by miR-590, respectively. miR-590-3p targeted FOXA2 3’ UTR to suppress its expression. In addition, knockdown or knockout of FOXA2 enhanced cell proliferation, migration, and invasion. Overexpression of FOXA2 decreased, whereas knockout of FOXA2 increased VCAN mRNA and protein levels, which was due to direct binding and regulation of the VCAN gene by FOXA2. Interrogation of the TCGA ovarian cancer database revealed a negative relationship between FOXA2 and VCAN mRNA levels in EOC tumors, and high FOXA2/low VCAN mRNA levels in tumors positively correlated with patient survival. Finally, overexpression of FOXA2 or silencing of VCAN reversed the effects of miR-590. These findings demonstrate that miR-590-3p promotes EOC development via a novel FOXA2–VCAN pathway.

miR-590-3p is contained within an intron of the eukaryotic translation initiation factor 4H gene. miR-590-3p is first reported to enhance cardiomyocyte proliferation and cardiac regeneration after myocardial infarction (5). In EOC tumors, the expression of miR-590-3p on several types of cancer has been reported (6–8). Although the role of miR-590-3p in ovarian cancer is unknown, an RNA sequencing (RNA-seq) study has identified miR-590-3p as one of the miRNAs dysregulated in EOC tumors (9), suggesting its potential role in EOC development.

miRNAs are small noncoding RNAs that regulate gene expression primarily at the posttranscriptional levels. miRNA genes are transcribed into primary miRNAs, processed into precursor (pre)-miRNAs, and exported from the nucleus. Within the cytoplasm, pre-miRNAs are further processed into mature miRNAs (4). It is well accepted that miRNAs play critical roles in many developmental and physiologic events. Moreover, aberrant miRNA expression has been implicated in the pathogenesis of human diseases, including cancer (4).

miR-590-3p is contained within an intron of the eukaryotic translation initiation factor 4H gene. miR-590-3p was first reported to enhance cardiomyocyte proliferation and cardiac regeneration after myocardial infarction (5). In EOC tumors, the expression of miR-590-3p on several types of cancer has been reported (6–8). Although the role of miR-590-3p in ovarian cancer is unknown, an RNA sequencing (RNA-seq) study has identified miR-590-3p as one of the miRNAs dysregulated in EOC tumors (9), suggesting its potential role in EOC development.

In vivo studies revealed that miR-590 accelerated tumor growth and metastasis. Using a cDNA microarray, we identified forkhead box A2 (FOXA2) and versican (VCAN) as top downregulated and upregulated genes by miR-590, respectively. miR-590-3p targeted FOXA2 3’ UTR to suppress its expression. In addition, knockdown or knockout of FOXA2 enhanced cell proliferation, migration, and invasion. Overexpression of FOXA2 decreased, whereas knockout of FOXA2 increased VCAN mRNA and protein levels, which was due to direct binding and regulation of the VCAN gene by FOXA2. Interrogation of the TCGA ovarian cancer database revealed a negative relationship between FOXA2 and VCAN mRNA levels in EOC tumors, and high FOXA2/low VCAN mRNA levels in tumors positively correlated with patient survival. Finally, overexpression of FOXA2 or silencing of VCAN reversed the effects of miR-590. These findings demonstrate that miR-590-3p promotes EOC development via a novel FOXA2–VCAN pathway.

Significance: Low FOXA2/high VCAN levels mediate the tumor-promoting effects of miR-590-3p and negatively correlate with ovarian cancer survival. Cancer Res; 78(15): 4175–90. ©2018 AACR.

Note: Supplementary data for this article are available at Cancer Research Online (http://cancerres.aacrjournals.org/).

Corresponding Author: Chun Peng, Department of Biology, York University, 4700 Keele St, Toronto, Ontario M3J 1P3, Canada. Phone: 416-736-2100; Fax: 416-736-5698; E-mail: cpeng@yorku.ca

doi: 10.1158/0008-5472.CAN-17-3014

©2018 American Association for Cancer Research.

www.aacjrournals.org
both tumor-suppressing (15) and tumor-promoting effects (16) have been found. Interestingly, the role of FOXA2 in liver cancer development is sexually dimorphic, with tumor-suppressive effects in females and tumor-promoting effects in males (17).

Versican (VCAN) is a large proteoglycan and a major component of the extracellular matrix. Numerous studies have shown that VCAN is frequently overexpressed in tumor tissues and promotes processes associated with tumor development, such as adhesion, proliferation, migration, invasion, and angiogenesis (18). In advanced stage serous ovarian cancer, high VCAN expression in the tumor stroma is associated with shorter survival (19), and in vitro studies suggest that VCAN promotes ovarian cancer cell invasion (20).

The aim of this study was to investigate the role of mir-590-3p in ovarian cancer development. Herein, we report that mir-590-3p is upregulated in tumor tissues and plasma samples of patients with EOC and exerts tumor-promoting effects. We further demonstrate that FOXA2 is a direct target of mir-590-3p and identify FOXA2 as a negative regulator of VCAN. Finally, we show that lower FOXA2 and higher VCAN effects. We further demonstrate that FOXA2 is a direct target of miR-590-3p and that mir-590-3p has opposite functions in ovarian cancer.

MiR-590-3p expression was measured in a cohort of 77 ovaries, with 46 cancer tissues and 31 adjacent noncancerous tissues (Supplementary Table S1). A dramatic increase (3.5-fold) in miR-590-3p expression was noted in ovarian cancer tissues compared with normal adjacent ovarian tissues (Table 1). In addition, miR-590-3p expression was significantly associated with tumor stage, with higher levels in stage III and IV cancer tissues compared with stage I and II cancer tissues (Table 1). Furthermore, miR-590-3p expression was significantly associated with tumor grade, with higher levels in grade 3 cancer tissues compared with grade 1 and 2 cancer tissues (Table 1).

Materials and Methods

Patient specimen

Two sets of samples were used in this study. The first set, which contained tissues and plasma samples, was collected at Mansoura Oncology Center in Egypt (Supplementary Table S1A) with approval by the Institutional Review Board of the American University in Cairo. The other set of tumor samples was obtained from the Ottawa Ovarian Cancer Tissue Bank (Supplementary Table S1B) through a protocol approved by the Research Ethics Board of The Ottawa Hospital (Ottawa, Canada). For the first set of samples, control ovarian tissues were taken from women who underwent hysterectomy and/or oophorectomy for benign gynecologic conditions. Blood samples were collected prior to surgery. All patients provided written informed consent. The studies were conducted in accordance with the ethical guidelines of Canadian Tri-Council and U.S. Common Rule.

Cell culture and transient transfection

EOC cell lines, ES-2, SKOV3.ip1, and HEY, were obtained and cultured, as reported previously (21). The SKOV3.ip1 cell line was transfected with a luciferase plasmid (pMIR-REPORT, Ambion) to allow for bioluminescent imaging. OVCAR3 was purchased from ATCC and cultured in RPMI1640 media (HyClone) supplemented with 20% FBS and 0.01 mg/ml insulin. All cell lines have been authenticated using short tandem repeat profiling (IDEXX BioResearch). Cells were routinely tested to ensure they were free of Mycoplasma contamination using Mycoplasma Detection Kit-QuickTest (BioMake) and DAPI staining. Transient transfection of plasmids (0.25–1.5 μg), miRNA mimics, inhibitors, or siRNAs (150–200 nM) was carried out in 6-well plates using Lipofectamine 2000 or Lipofectamine RNAiMAX (Life Technologies) following the manufacturer’s suggested protocols. siRNAs, nontargeting negative control (NC), and mir-590-3p/5p mimic were purchased from GenePharma Co. Anti-miR-590-3p/5p and its corresponding NC were purchased from Ribobio. Their sequences are listed in Supplementary Table S2. The FOXA2 expression plasmid was purchased from GenScript.

Generation of mir-590 stable cell lines

A fragment containing hsa-mir-590 stem-loop sequence was generated using specific primers (Supplementary Table S2). PCR was carried out using Phusion DNA Polymerase, and the resulting product was cloned into the pRNAT-CMV3.2/Hygro Expression Vector (GenScript). Positive clones were selected using PCR and validated by sequencing. The clone with the correct sequence was subsequently transfected into ES-2, SKOV3.ip1, and HEY cells. To generate control cells, the same cell lines were transfected with pRNAT-CMV3.2/Hygro, without the mir-590 insert. Following transfection, cells were cultured with hygromycin (0.6 mg/ml for SKOV3.ip1 and HEY cells and 0.8 mg/ml for ES-2) to select mir-590-positive cells.

RNA extraction, reverse transcription, and real-time PCR

Total RNA was extracted from cells or tissues using TRIzol reagent (Invitrogen) and reverse transcribed into cDNA, as described previously (22). qRT-PCR was carried out using EvaGreen qPCR Master Mix (ABM), following the manufacturer’s suggested protocol. The levels of miRNAs were normalized to GAPDH. Primer sequences are listed in Supplementary Table S2.

To measure miR-590-3p and miR-590-5p levels, small RNA-enriched total RNA was extracted using TRIzol reagent (Invitrogen) as reported previously (22, 23). The miR-590 levels in cells and tissues were measured using TaqMan PCR Kit (Thermo Fisher Scientific) and normalized to U6 snRNA. RNA was extracted from plasma samples using Qiagen miRNeasy Serum/Plasma Kit. A synthetic C. elegans cel-miR-39 miRNA mimic spike-in was used as an internal control. Relative quantification of mRNAs and miRNAs were calculated using the 2^{-ΔΔCt} method.

Migration, invasion, and proliferation assays

Transwell migration and invasion assays were performed as described previously (21) with the modification that migrated and invaded cell numbers were counted using an automated quantification plugin for ImageJ (24). Cell proliferation assays were conducted using manual cell counting or a real-time live-cell imaging system Incucyte S3 (Essen Bioscience). Briefly, transfected cells were detached using Accutase (Corning) and seeded into a 96-well plate at the density of 2.5 × 10^3 cells/well. Four hours after seeding, images were taken every 4 hours for 68 hours.

Clonogenic assay

A total of 500 cells, stably overexpressing either mir-590 or its empty vector (EV), were seeded in a 6-well plate. After 15 to 20 days, colonies were fixed with 3.7% paraformaldehyde for 5 minutes, and stained with 0.05% crystal violet for 30 minutes. Plates were then washed, and the number of visible colonies were counted.

Microarray analysis

Total RNA was extracted from the ES-2 cell line overexpressing mir-590 and its EV-transfected control cell line (n = 3 wells). The cDNA microarray and subsequent analyses were conducted by the Princess Margaret Genomics Centre, Toronto, Canada (https://www.pmgenc.org/pmgenomics/). Hybridization was carried out using the Human HT-12 V4 BeadChip and data were imported in GeneSpring (v13.0) for analysis.
The data were first normalized using a standard (for Illumina arrays) quantile normalization followed by a "per probe" median centered normalization. Data were then filtered to remove the confounding effect probes that show no signal may have on subsequent analysis. Only probes that were above the 20th percentile of the distribution of intensities in 100% of any of the 1 of 2 groups were allowed to pass through this filtering. The final set contained 38,146 probes. A one-way ANOVA with a Benjamini–Hochberg false discovery rate–corrected \(P < 0.05 \) showed 4,259 significantly varying probes. A post hoc Tukey HSD test was used after the ANOVA and resulted in 2,483 significant probes. The microarray dataset has been deposited to the Gene Expression Omnibus repository under the accession number GSE113440.

Genes that showed a difference between the EV and mir-590 groups by 2.0-fold or more were organized into a heatmap using the Multi Experiment Viewer (MeV) Microarray Software Suite. The Cancer Genome Atlas (TCGA) ovarian cancer dataset in the Multi Experiment Viewer (MeV) Microarray Software Suite. The Cancer Genome Atlas (TCGA) ovarian cancer dataset in the Multi Experiment Viewer (MeV) Microarray Software Suite. Oncomine (www.oncomine.org) was interrogated to determine whether these genes are dysregulated in EOC.

Protein extraction and immunoblotting

Cell lysates were prepared as described previously (21). To detect FOXA2, proteins were separated by 10% SDS-PAGE gels, then transferred to PVDF (Immobilon-P, Millipore Corp.) membranes for 1 hour. To resolve VCAN samples and GAPDH on the same gel, samples were loaded into 4% to 15% gradient gels and blotted to PVDF membranes for 14 hours using 40 volts in a cold room at 4 °C. Membranes were blocked in 5% blocking buffer (5% skim milk in Tris-buffered saline and Tween-20) for 1 hour at room temperature and then incubated overnight with primary antibody at 4 °C. Membranes were subsequently probed using horseradish peroxidase-conjugated secondary antibody (1:5,000) at room temperature for 2 hours. Protein signals were visualized using Luminata Classic Western HRP Substrate (EMD Millipore Corp.). FOXA2 antibody was obtained from Cell Signaling Technology (dilution 1:1,000). VCAN antibody was obtained from Boster (1:1,000), and GAPDH antibody was purchased from Santa Cruz Biotechnology (1:10,000).

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) assays were conducted as reported previously (25). Briefly, cells were cross-linked and cell lysates were sonicated and precleared with Pierce Protein A/G Magnetic Beads (Thermo Fisher Scientific) for 1 hour at 4 °C. The samples were incubated with fresh magnetic beads conjugated with either FOXA2 antibody or control IgG (Cell Signaling Technology) overnight at 4 °C. DNA was extracted from the precipitated samples using the phenol-chloroform method. To design primers for VCAN, the VCAN gene was analyzed for consensus FOXA2-binding sites, 5’-[AG]AT[T][AG][T][AG][CG]TT, obtained from UniProt (26) using a program developed by us (source code available from http://peng.lab.yorku.ca/bioinformatics-tools). The VCAN promoter region was predicted using transcription start site–proximal TF-binding sites, promoter-associated histone markers (H3K4Me3 and H3K27Ac), and DNase hypersensitivity sites from the UCSC Genome Browser (27). Three sets of primers were designed to target: (i) a predicted FOXA2 binding site on the promoter; (ii) an intragenic site with two proximal predicted FOXA2-binding sites overlapping an open chromatin region with regulatory potential; and (iii) an intragenic site that overlaps an open chromatin region with no predicted FOXA2-binding sites, which serves as a negative control.

Luciferase assay

A fragment of FOXA2 3′ UTR, containing the predicted miR-590-3p-binding site, was generated by PCR using specific primers (Supplementary Table S2). The resulting PCR amplicon was cloned into pMIR-REPORT, downstream of the luciferase coding sequence. Cells were seeded in 12-well plates at a density of 7.5 \(\times 10^4 \) cells/well, transfected with the FOXA2 3′ UTR construct, together with miR-590-3p mimics or its NC. At 24 hours after transfection, luciferase activity was measured using the Dual Luciferase Reporter Assay System (Promega) according to the manufacturer’s instructions, as reported previously (23).

Tumor xenograft assays

The use of animals for this study was approved by York University Animal Care Committee. Five to 6-week-old female CD-1 nude mice were purchased from Charles River Laboratories and were housed under sterile conditions in Microisolator cages, fed standard chow diet with water, and maintained in a 12-hour light/dark cycle. To study tumor formation, mice were injected subcutaneously with 1.5 \(\times 10^6 \) control or mir-590 stable ES-2 cells suspended in 150 μL PBS. Tumor size was measured every 2 days throughout the course of the experiment. The endpoint of the study was determined when tumor size reached 17 mm or if the animal showed any sign of sickness such as hunched posture, inactivity, hypothermia, or ulceration at the tumor site. To study tumor metastasis, two experiments were performed. In the first experiment, mice were injected intraperitoneally with 1 \(\times 10^5 \) SKOV3.ip1 cells expressing EV or mir-590, suspended in 200 μL of PBS. Animals were monitored daily and the experiment was terminated at day 70 when some of the mice showed excessive abdominal distension or moribund. Mice were anaesthetized using Ketamine (100 mg/kg) and Xylazine (10 mg/kg; CDMV) and then sacrificed. The number of nodules, as well as tumor weight and volume, were determined. In the second experiment, mice were injected with 5 \(\times 10^5 \) SKOV3.ip1 control or mir-590 stable cells, and at 8, 16, and 23 days after cell inoculation, mice were anaesthetized and injected intraperitoneally with \(\alpha \)-luciferin (150 mg/kg, Thermo Fisher Scientific), and bioluminescence signals were detected using an animal imager (ART Optix MX3).

Generation of FOXA2 knockout cells

To knockout FOXA2, two single guide (sg)RNAs targeting human FOXA2 (Supplementary Table S2), designed by the Zhang laboratory (28) and cloned into pLentiCRISPR v2, were purchased from GenScript. Lentiviral packaging plasmids (pMD1g/pRRE and pRSV-Rev) and the envelope plasmid (pMD2.G) was obtained from Addgene. To produce virus, 293T cells, seeded at a density of 2.5 \(\times 10^5 \) cells/10-cm plate, were infected with 20 μg of each of the pLentiCRISPR v2 with or without FOXA2 sgRNA, 10 μg of pMD1g/pRRE, 5 μg of pRSV-Rev, and 6 μg of pMD2.G. Supernatants were collected and used to infect ES-2 and SKOV3.ip1 cells to generate the control with EV as well as the two FOXA2 knockout lines: FOXA2A1 and FOXA2A2. After infection, cells were cultured with puromycin at a concentration of 1 μg/mL to select infected cells.
TCGA data analysis and bioinformatics

To investigate the correlation of FOXA2 and VCAN expression with multiple clinical attributes, portions of the TCGA Provisional dataset published on June 31, 2016, for ovarian serous cystadenocarcinoma (https://cancergenome.nih.gov) were downloaded from cbioPortal.org (29). This dataset contains 603 samples with associated clinical characteristics and 307 of those samples have undergone RNA-seq and Illumina HM27 methylation analysis, which were used in this study. Investigation of the preceding 2011 dataset was limited as it contained fewer samples, no RNA-seq/DNA methylation data, and far fewer clinical attributes. For these reasons, we report bioinformatical findings from the more comprehensive provisional dataset only.

Sample data were aggregated from multiple files into a single comma delimited file using a custom C++ program (available from http://peng.lab.yorku.ca/bioinformatics-tools) compiled using Microsoft Visual Studio 2015 and analyzed in Microsoft Excel 2016. The analysis was independently completed at least twice to ensure a high degree of fidelity.

To determine the association between FOXA2 or VCAN and the clinical outcomes, samples were grouped into FOXA2 or VCAN ‘low’ and ‘high’ expression groups based on whether the expression levels were below or above, respectively, the mean value. These groups were then divided into subgroups based on the sample SDs from the mean (SD 1.0, SD 1.25, SD 1.5) where SD 0.0 represents all samples in the low or high group. In this way, subgroups represent increasing extremes of mRNA expression values. The following criteria were used to define the groups (Eq. A):

\[
\begin{align*}
\text{If } x_i < x - (s \times m) & \rightarrow \text{Low group} \\
\text{If } x_i > x + (s \times m) & \rightarrow \text{High group}
\end{align*}
\]

Where \(x_i \) represents each sample’s FOXA2 or VCAN mRNA expression value, \(x \) the mean, \(s \) the sample standard deviation, and \(m \) the number of SDs from the mean; SD 1.0 is represented by \(m = 1.0 \). FOXA2 or VCAN mRNA expression groups and subgroups were calculated independently from each other.

To examine the effects of anticorrelated FOXA2 and VCAN mRNA expression samples, they were first assigned a \(\Delta \) coefficient to represent the relative difference between FOXA2 and VCAN mRNA expression. mRNA expression values were converted to SDs from the mean (SDM) and then VCAN SDM was subtracted from FOXA2 SDM for each sample to calculate \(\Delta \) (Eq. B):

\[
\Delta = \frac{x_{\text{FOXA2}} - x_{\text{VCAN}}}{s_{\text{FOXA2}}} \quad \frac{x_{\text{VCAN}} - x_{\text{FOXA2}}}{s_{\text{VCAN}}}
\]

\[
\Delta < 0 \Rightarrow \uparrow \text{FOXA2}, \downarrow \text{VCAN}
\]

\[
\Delta > 0 \Rightarrow \uparrow \text{FOXA2}, \downarrow \text{VCAN}
\]

The definition of variables is the same as those described for Eq. A.

Samples were shown or hidden based on the criteria above using conditional “IF” statements in Excel. This allowed manipulation of groups and subgroups by changing \(m \) (Eq. A) or ranges of \(\Delta \). Data retrieval was then based on samples passing the desired criteria and containing queried data (e.g., methylation) and then formatted to be copied to GraphPad. Binary data such as “Recurred/Progressed” and “Disease-free” were converted to 1 and 0, respectively. Likewise, clinical attributes for survival and invasion indicators were also converted to binary; “DECEASED” and “Yes” = 1, “LIVING” and “NO” = 0, respectively.

Statistical analysis

All in vitro experiments were done at least three times with at least triplicates in each group. The results are expressed as mean ± SEM in bar graphs and line graphs. Statistical analyses were performed using SigmaStat and GraphPad prism 6. Multiple groups were analyzed by one-way or two-way ANOVA, followed by Tukey post hoc test. Student \(t \) test was used for comparison between two groups. Clinical samples were presented as box–whisker plots and analyzed by Kruskal–Wallis test, followed by Wilcoxon rank test for multiple group comparison or Wilcoxon rank test when only two groups were compared. For TCGA clinical samples, binary data were analyzed using one-tailed Student \(t \) test. Kaplan–Meier survival and disease-free graphs were analyzed using the Mantel–Cox test; \(P < 0.05 \) was considered statistically significant.

Results

miR-590-3p is upregulated in ovarian cancer and promotes cell growth, migration, and invasion

Using EOC tissue samples collected at Mansoura Oncology Center (Supplementary Table S1A) and Ottawa Ovarian Cancer Tissue Bank (Supplementary Table S1B), we found that miR-590-3p levels in grade 2/3 ovarian tumors were significantly higher than in grade 1 tumors or normal ovarian tissues (Fig. 1A). Similarly, miR-590-3p levels were also upregulated in high-grade serous tumors when compared with tumors of low malignancy potential (Fig. 1B). In another histologic subtype of EOC, endometrioid ovarian cancer, high-grade tumors also had higher miR-590-3p levels than the low-grade ones (Supplementary Fig. S1A). Circulating miR-590-3p levels were also significantly higher in patients with EOC than in subjects with benign gynecologic disorders (Fig. 1C). To determine the effect of miR-590-3p on cell proliferation, migration, and invasion, EOC cell lines ES-2, SKOV3.ip1, and OVCAR3 were transiently transfected with miR-590-3p mimic, anti–miR-590-3p, or NCs. miR-590-3p significantly increased cell numbers (Fig. 1D; Supplementary Fig. S1B), migration, and invasion (Fig. 1E; Supplementary Fig. S1C–S1E). On the other hand, inhibition of miR-590-3p by anti–miR-590-3p resulted in a significant decrease in cell proliferation (Fig. 1D) and migration (Supplementary Fig. S1D).

Stable overexpression of mir-590 enhances tumor development and metastasis

To further investigate the function of miR-590-3p in EOC development, SKOV3.ip1 cells expressing luciferase, ES-2, and HEY cells stably transfected with mir-590 or its corresponding EV were generated (Supplementary Fig. S2A). Real-time PCR revealed that both mir-590-3p and miR-590-5p were significantly higher in cells transfected with mir-590, when compared with the EV (Supplementary Fig. S2B). Overexpression of mir-590 significantly enhanced cell proliferation (Fig. 1F), invasion (Fig. 1G), and colony formation (Fig. 1H; Supplementary Fig. S2C). To confirm that the observed effects of mir-590 were due to miR-590-3p and/or miR-590-5p overexpression, we transfected EV and mir-590 cells with anti–miR-590-3p,
miR-590-3p is upregulated in EOC and exerts tumor-promoting effects in vitro. A, miR-590-3p levels were elevated in higher grade EOC tumors compared with normal ovarian tissue or low-grade tumors. RNA was extracted from normal ovary ($n = 6$), grade 1 ($n = 11$), or grade 2/3 EOC samples ($n = 9$), and miR-590-3p level was determined by real-time PCR. B, miR-590-3p levels were higher in high-grade serous ovarian tumors (HG; $n = 14$) than in tumors with low malignancy potential (LMP; $n = 16$). C, Plasma miR-590-3p levels were significantly higher in patients with EOC ($n = 13$) than in subjects with benign gynecologic disorders ($n = 6$). Data in A–C are converted to log2 and plotted in box–whisker plots. D, miR-590-3p enhanced cell proliferation. SKOV3.ip1 cells were transiently transfected with NCs, miR-590-3p mimic, or anti–miR-590-3p. Cell confluence was monitored by IncuCyte for 68 hours ($n = 7$). E, miR-590-3p enhanced cell migration and invasion. ES-2 cells were transiently transfected with miR-590-3p or its NC, and transwell migration and invasion were determined at 24 hours after transfection ($n = 3$). F, Stable overexpression of mir-590 increased cell proliferation in both ES-2 and SKOV3.ip1 cells when compared with parental or control cells transfected with EV ($n = 3$). G, Cells overexpressing mir-590 invaded faster than cells expressing the EV ($n = 3$). H, In a clonogenic assay, cells overexpressing mir-590 formed more and larger colonies than the ones expressing the EV ($n = 3$). I, Effects of anti–miR-590-3p and anti–miR-590-5p on miR-590–induced cell invasion. ES-2 and SKOV3.ip1 cells stably transfected with EV or mir-590 were transiently transfected with anti-miR590-3p, anti–miR-590-5p, or their negative control (anti-NC). Transwell assays were performed ($n = 3$). Data represent median flanked by 25th and 75th percentiles (A–C) and mean ± SEM (D–I). *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$; ****, $P < 0.0001$. Different letters above bars denote statistical significance.
To determine whether miR-590 affects tumor formation in vivo, ES-2 cells stably overexpressing miR-590 or its control vector were injected subcutaneously into female CD-1 nude mice and tumor size was measured over 21 days. The miR-590 cells formed significantly larger tumors at multiple time points measured (Fig. 2A). To examine the effect of miR-590 on metastasis, control and miR-590–expressing SKOV3.ip1 cells were injected intraperitoneally into the nude mice. It was observed that mice injected with miR-590 cells had a higher number of nodules throughout the peritoneal cavity (Fig. 2B) and formed larger tumors when compared with the control (Fig. 2C). Live animal imaging revealed that mice inoculated with mir-590 cells had stronger bioluminescent signals than mice injected with control cells (Fig. 2D).

miR-590-3p regulates FOXA2 and VCAN

To determine the molecular mechanisms by which miR-590 exerts tumor-promoting effects on EOC, cDNA microarray was performed. Genes that were either up- or downregulated by miR-590 by 2-fold or more were organized into a heatmap (Fig. 3A). Genes that were downregulated were analyzed for miR-590-3p/5p–binding sites using tools at microRNA.org. It was found that most of these genes have predicted miR-590-3p–binding sites and a few have predicted miR-590-5p sites (Supplementary Table S3A). Interrogation of the TCGA dataset revealed that most of the top mir-590–downregulated genes were underexpressed in ovarian cancer samples when compared with normal ovary (Supplementary Table S3A). Among them, FOXA2 is the most strongly downregulated gene that has a miR-590–3p–binding site and is also downregulated in the TCGA dataset (Supplementary Table S3A). On the other hand, among all upregulated genes by mir-590, VCAN is the most strongly upregulated in the TCGA database (Supplementary Table S3B) and known to play a role in EOC development (29). Therefore, we further investigated the expression, regulation, and function of FOXA2 and VCAN. Using the tumor samples collected from the Ovarian Cancer Tissue Bank at Ottawa Research Institute, we found that FOXA2 mRNA levels were significantly lower, whereas VCAN mRNA levels showed the opposite trend, in the high-grade tumors than in tumors of low malignancy potential (Fig. 3B). Real-time PCR and Western blotting confirmed that FOXA2 was downregulated in ES-2 and SKOV3.ip1 cells overexpressing mir-590 (Fig. 3C). FOXA2 mRNA levels were also significantly downregulated in HEY mir-590 stable cells (Supplementary Fig. S3A). In tumors collected from mice grafted with ES-2 cells, FOXA2 mRNA and protein levels were also downregulated (Supplementary Fig. S3B). Conversely, VCAN protein and mRNA levels were higher in mir-590 cells than in the vector controls (Fig. 3D).

miR-590-3p targets FOXA2

To confirm that miR-590-3p directly targets FOXA2, luciferase reporter assays were performed. Transient transfection of miR-590-3p mimic or stable transfection of mir-590 significantly reduced the luciferase activity (Fig. 3E). Transient transfection of miR-590-3p also reduced FOXA2 mRNA and protein levels, whereas anti–miR-590-3p enhanced FOXA2 protein levels in ES-2 cells (Fig. 3F). Similarly, transfection of the miR-590-3p mimic in HEY, SKOV3.ip1, and OVCAR3 cells decreased FOXA2 protein levels (Supplementary Fig. S3C).

FOX2A exerts antitumor effects

To determine the role of FOXA2 in EOC development, we validated two siRNAs that decreased FOXA2 mRNA and protein levels (Fig. 4A). Transfection of these FOXA2 siRNAs in EOC cells accelerated proliferation (Fig. 4B) and invasion (Fig. 4C). To further confirm the role of FOXA2 in EOC cells, we used CRISPR/Cas9 gene editing tools to knockout FOXA2 in both ES-2 and SKOV3.ip1 cells. Two sgRNAs were used to generate two populations of heterogeneous FOXA2 knockout cells, designated as FOXA2A1 and FOXA2A2, respectively. FOXA2 knockout diminished the expression of FOXA2 (Fig. 4D) and resulted in increased cell proliferation (Fig. 4E), migration (Fig. 4F), and invasion (Fig. 4G). Conversely, transient transfection of FOXA2 into several cell lines resulted in an inhibition of cell invasion (Fig. 4H; Supplementary Fig. S3D).

FOX2A inhibits VCAN expression

Examination of a FOXA2 ChIP-seq dataset produced from mice revealed that VCAN was one of the genes enriched in FOXA2 antibody precipitated samples (30). Analysis of the human VCAN gene identified multiple potential FOXA2–binding sites on the promoter and gene body; therefore, we tested the possibility that FOXA2 regulates VCAN expression. In cells transiently transfected with siRNAs targeting FOXA2, there was an increase in VCAN mRNA levels (Fig. 5A). In contrast, overexpression of FOXA2 reduced VCAN mRNA (Fig. 5B) and protein (Supplementary Fig. S3D) levels. Furthermore, VCAN protein levels were increased in FOXA2 knockout cells and the reintroduction of FOXA2 strongly downregulated VCAN levels, as revealed by Western blotting (Fig. 5C). Finally, ChIP-qPCR assays were performed in ES-2 and SKOV3.ip1 cells using three sets of primers designed to target the VCAN promoter site, a potential regulatory site, and a distal negative control region with no predicted FOXA2 binding site (NC, Fig. 5D, top). In FOXA2 antibody precipitated samples, enrichment of VCAN DNA was observed in the regions where FOXA2- binding sites were predicted when compared with the IgG group, while there was no difference between the IgG and FOXA2 antibody groups in the region that had no FOXA2-binding sites (Fig. 5D, bottom).

FOXA2 and VCAN are dysregulated in EOC

To further investigate the relationship between FOXA2 and VCAN and their significance in EOC development, we interrogated an ovarian cancer TCGA database. Initial sample-paired analysis of FOXA2 and VCAN mRNA levels displayed a slight negative correlation (Pearson: -0.1789, Spearman: -0.2249; Fig. 6A, left). To more closely evaluate the correlation between FOXA2 and VCAN mRNA levels and their possible effects on various clinical attributes, samples were divided into groups based on the deviation of their mRNA levels from the mean (Supplementary Fig. S4A and S4B). Groups were initially created in increments of 0.25 SDs. Because of the small sample sizes for groups with greater than 1.5 SD from the mean, they were excluded from the analysis. FOXA2 and VCAN mRNA levels were negatively correlated in most groups.
miR-590 promotes tumor formation and metastasis in vivo. **A**, miR-590 accelerates tumor growth. ES-2 cells stably transfected with EV or miR-590 were injected subcutaneously into female CD-1 nude mice, and tumor volumes were measured (n = 8). **B** and **C**, miR-590 promotes tumor metastasis. SKOV3.ip1 cells stably transfected with luciferase and EV or miR-590 were injected intraperitoneally into CD-1 nude mice and the mice were examined at 70 days after tumor cell inoculation. The number of nodules (B) and total tumor volumes and weight (C) were significantly higher in mice injected with miR-590 cells when compared with the control. **D**, Bioluminescent imaging of mice inoculated with control or miR-590 cells. Mice were injected intraperitoneally with SKOV3.ip1 cells expressing the vector or miR-590 (n = 5). Bioluminescence images were taken at day 8 to day 23 after injection. Data, mean ± SEM. *, P < 0.05; **, P < 0.01.
Figure 3.
Regulation of FOXA2 and VCAN by mir-590. **A**, Heatmap of genes regulated by mir-590 revealed by cDNA microarray. Total RNA extracted from ES-2 cells stably transfected with mir-590 or EV control were subjected to a cDNA microarray analysis. Genes that were ≥2-fold down- or upregulated by mir-590 were included in the heatmap. **B**, FOXA2 mRNA levels (left) were significantly lower, whereas VCAN mRNA levels (right) showed an opposite trend in high-grade serous ovarian tumors (HG; n = 13) than in tumors with low malignancy potential (LMP; n = 15). **C**, Confirmation of FOXA2 downregulation by mir-590 using real-time PCR and Western blotting in both ES-2 and SKOV3.ip1 stable cells. **D**, Upregulation of VCAN by mir-590. Overexpression of mir-590 resulted in an increase in VCAN protein levels in both ES-2 and SKOV3.ip1 cells (left). Real-time PCR (right) revealed higher VCAN mRNA levels in mir-590-expressing in ES-2 cells (n = 3). **E**, FOXA2 is a target of miR-590-3p. A predicted miR-590-3p–binding site was found on FOXA2 3′ UTR. A luciferase reporter construct containing FOXA2 3′ UTR was generated. In ES-2 cells stably transfected with mir-590 (left), or transiently transfected with miR-590-3p (right), the luciferase activity was significantly decreased (n = 3). **F**, Transient transfection of miR-590-3p decreased FOXA2 mRNA levels (n = 3) and the protein levels, whereas transfection of anti-miR-590-3p increased FOXA2 protein levels. Statistical analyses were performed using Wilcoxon rank test (B), ANOVA/Tukey test (E, right), or t test (all others). *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001 versus their respective controls.
Figure 4.
FOXA2 exerts antitumor effects in EOC cells. A, Validation of two different siRNAs targeting FOXA2. In ES-2 cells transfected with FOXA2 siRNAs, FOXA2 mRNA and protein levels were reduced, when compared with cells transfected with a nontargeting siRNA (NC). Total RNA and proteins were extracted at 48 hours after transfection. B, Knockdown of FOXA2 increased ES-2 cell proliferation. Cell numbers were measured 48 hours posttransfection. C, Knockdown of FOXA2 increased cell invasion in ES-2 and SKOV3.ip1 cells. Cells were transfected with NC or one of the FOXA2 siRNAs, and 24 hours posttransfection, cells were resuspended and an equal number of cells were then placed on the top chamber of the transwell inserts. Invaded cells were counted at 18 hours after plating. D, Generation of FOXA2 knockout cells using CRISPR/Cas9. Two gRNAs were used and both eliminated FOXA2 protein in ES-2 and SKOV3.ip1 cells, as confirmed by Western blotting. E–G, Knockout of FOXA2 increased cell proliferation (E), migration (F), and invasion (G). H, Transient transfection of FOXA2 plasmid into ES-2 and SKOV3.ip1 cells resulted in a decrease in cell invasion. Data, mean ± SEM (n = 3). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 versus controls.
Supplementary Fig. S4C). We adapted the minimal signal method from Adorno and colleagues (31) to produce a delta coefficient for each sample such that a \(\Delta < 0 \) represents samples with relatively low FOXA2 and high VCAN mRNA levels and oppositely for \(\Delta > 0 \) (Fig. 6A, right; Supplementary Fig. S4D). Methylation of both FOXA2 and VCAN promoters was also examined. FOXA2 mRNA levels were negatively correlated with promoter methylation levels (Pearson: \(-0.3672, P < 0.0001\)). Importantly, FOXA2 promoter methylation was positively correlated with VCAN mRNA levels (Pearson: 0.1750, Spearman: 0.3934, \(P < 0.0001 \); Fig. 6B). These samples were then divided into low or high

Figure 5.
FOXA2 regulates VCAN expression. A, ES-2 cells transfected with FOXA2 siRNAs increased the mRNA level of VCAN. B, In SKOV3.ip1 cells, transient transfection of FOXA2 decreased the mRNA level of VCAN. C, Knockout of FOXA2 in ES-2 cells increased VCAN protein levels, but this effect was reversed by overexpression of FOXA2. D, FOXA2 binds to VCAN gene. Top, consensus FOXA2-binding sites were predicted in the VCAN promoter and within the gene body. Most of these predicted sites overlap DNA regions with histone modifications associated with regulatory potential and DNase hypersensitivity regions. Three pairs of primers were designed. The first pair targets the FOXA2-binding site in the promoter region (promoter; \(-1553 \text{ bp})

The second pair spans two intragenic binding sites in a region with regulatory features (regulatory; \(+43346, +43860\)), and a distal region with no predicted FOXA2-binding site, which serves as a negative control (NC; \(+96586\)). Bottom, ChIP-qPCR was performed using FOXA2 antibody or IgG in both ES-2 and SKOV3.ip1 cells. VCAN DNA was enriched in the promoter, and to a lesser extent, the regulatory region (in ES-2), but not in the negative control. Data, mean ± SEM (A, B, and D; \(n = 3 \)); *, \(P < 0.05 \); **, \(P < 0.01 \); ***, \(P < 0.001 \); ****, \(P < 0.0001 \) versus controls as analyzed by ANOVA/Tukey test (A) or t test (B and D).
Figure 6. Analysis of FOXA2 and VCAN expression patterns in EOC tumors. A, FOXA2 and VCAN mRNA levels are negatively correlated in ovarian cancer samples. Left, sample-paired FOXA2 and VCAN mRNA levels (log2; RNA-Seq V2 RSEM) in TCGA ovarian serous cystadenocarcinoma dataset were negatively correlated ($n = 307$). Pearson, $r = -0.1789$; Spearman, $r = -0.2249$; $P < 0.0001$. Right, FOXA2 and VCAN mRNA levels were converted to their distance from the mean in SDs (Z-score). Delta (Δ) values were calculated for each tumor sample using SD from the mean of FOXA2 and VCAN mRNA expressions to group each sample based on the degree of relative anticorrelation in their expression. Delta values less than zero correlate with relatively low FOXA2 and high VCAN mRNA expression, whereas values greater than zero correlate with relatively high FOXA2 and low VCAN mRNA expression. B, Left, FOXA2 mRNA expression was negatively correlated with FOXA2 promoter methylation (Pearson, $r = -0.3672$; Spearman, $r = -0.4232$; $P < 0.0001$). Right, VCAN mRNA expression was positively correlated with FOXA2 promoter methylation (Pearson, $r = 0.1750$; Spearman, $r = 0.3934$; $P < 0.0001$). C, Kaplan-Meier graphs of either percent survival (left) or percent disease-free (right) were plotted using delta groups less than or greater than zero. Delta values less than zero correlate with relatively low FOXA2 and high VCAN mRNA expression, whereas values greater than zero correlate with relatively high FOXA2 and low VCAN mRNA expression. Median survival was significantly greater in the $\Delta > 0$ group based on the log-rank (Mantel-Cox) test; $P = 0.0036$. $\Delta < 0$: 1,169.7 d ($n = 159$); $\Delta > 0$: 1,539.3 d ($n = 147$). The median time of disease-free status was significantly longer in the $\Delta > 0$ group based on the log-rank (Mantel-Cox) test; $P = 0.0029$. $\Delta < 0$: 453.4 d ($n = 159$); $\Delta > 0$: 624.9 d ($n = 147$). D and E, Association between the proportion of subjects that were positive for vascular (VI; left) and lymphovascular (LVI; right) invasion indicators and VCAN or FOXA2 mRNA levels. Data, mean ± SEM. *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$.

Published OnlineFirst May 10, 2018; DOI: 10.1158/0008-5472.CAN-17-3014
groups based on their SD from their mean values (Supplemen-
tary Fig. S5A and S5B), and using delta groups with combined
FOXA2 and VCAN expression profiles (Supplemen-
tary Fig. S5C). FOXA2 promoter methylation was found to be
increasingly polarized as both FOXA2 and VCAN mRNA levels
moved further from the mean (Supplementary Fig. S5A and
S5C, left). In contrast, VCAN promoter methylation was not
correlated with either FOXA2 or VCAN mRNA levels (Supple-
mentary Fig. S5B and S5C), except for the SD 1.5 high FOXA2
group (Supplementary Fig. S5B).

Next, we investigated the survival rates and disease-free
status using the SD groups. We observed a trend that high
FOXA2 (Supplementary Fig. S6A) or low VCAN (Supplemen-
tary Fig. S6B) is associated with longer survival. To determine
whether the degree of negative correlation between FOXA2 and
VCAN is associated with patient survival, we examined the delta
coefficient groups. In the Δ > 0 group that has high FOXA2 and
low VCAN mRNA levels, both survival rates and disease-free
statuses were increased with a median survival increase from
1,170 to 1,539 days (P = 0.0036) and disease-free period
from 455 to 624 days (P = 0.0029; Fig. 6C). Interestingly,
when examining the degree of vascular (VI) and lymphovas-
cular (LVI) invasion, there was a significant positive correlation
with VCAN and a trend of negative correlation with FOXA2
mRNA levels (Fig. 6D).

The FOXA2–VCAN pathway mediates mir-590 effect
To confirm that the downregulation of FOXA2 and upregu-
lation of VCAN contribute to the tumor-promoting effects of
mir-590, rescue experiments were performed. We observed that
overexpression of FOXA2 significantly reduced the ability of
mir-590 to enhance cell migration and invasion (Fig. 7A).
In addition, we determined whether silencing of VCAN would
abolish the tumor-promoting effects of FOXA2 knockout.
FOXA2 knockout cells expressed higher VCAN levels and sig-
nificantly increased cell migration and invasion. However,
these effects were significantly reduced when VCAN was
knocked down in SKOV3.ip1 (Fig. 7B) and ES-2 (Fig. 7C) cells.
Knockdown of VCAN also reduced the stimulatory effects of
mir-590 on cell proliferation and invasion (Fig. 7D).

Discussion
In this study, we provided strong evidence to support a tumor-
promoting role of miR-590-3p in ovarian cancer cells. We de-
monstrated that overexpression of miR-590-3p or its precursor, mir-
590, significantly increased cell proliferation, migration, invasion,
and colony formation in vitro. In addition, mir-590 promoted
tumor growth and metastasis in vivo. Moreover, miR-590-3p levels
were significantly elevated in high-grade EOC tumors when
compared with normal ovaries or lower grade tumors. Finally,
mir-590-3p plasma levels were higher in patients with EOC than
in subjects with benign gynecologic disorders. These findings
suggest that higher mir-590-3p is associated with a more aggres-
sive disease.

Although the role of miR-590-3p in EOC has not previously
been established, several studies have reported both tumor-
promoting and tumor-suppressive effects of mir-590-3p in other
types of cancer. For example, mir-590-3p promotes cell prolif-
eration and invasion in T-cell acute lymphoblastic leukemia
by inhibiting RB1 (6) and in colorectal cancer by targeting the
Hippo pathway (7) and by promoting β-catenin signaling (32).
Similarly, tumor-promoting effects of miR-590-3p were observed
in glioblastoma (33). In contrast, miR-590-3p suppresses hepa-
tocellular carcinoma growth (34) and inhibits proliferation and
migration in bladder cancer cells (35). In this study, we demon-
strated that mir-590-3p enhanced colony formation, cell prolif-
eration, migration, and invasion in vitro, and stimulated tumor
growth and metastasis in vivo. These findings strongly support a
tumor-promoting role of miR-590-3p in EOC. The differential
role of miR-590-3p reported in different types of cancer is likely
due to the differential targeting of genes by miR-590-3p and/or
differential effects of its target genes. Indeed, we examined several
reported target genes responsible for the antitumor effects of
miR-590-3p, such as ZEB1 and ZEB2, and did not observe an
inhibition by miR-590-3p or miR-590 in EOC cells. On the other
hand, we found that DKK1, which was reported to be targeted by
miR-590-3p in colon cancer (36), was strongly downregulated
in our miR-590 cells. In addition, the tumor-promoting effects
of mir-590 observed in our study could also be attributed to
miR-590-5p overexpression. We observed that both anti–miR-
590-3p and anti–mir-590-5p attenuated the effect of mir-590,
suggesting that mir-590-5p is also involved in EOC development.

In this study, we identified FOXA2 as a direct target of
miR-590-3p and provided several lines of evidence to support a
tumor-suppressive role of FOXA2 in EOC. First, FOXA2
mRNA levels were significantly downregulated in high-grade
tumors when compared with tumors of low malignancy poten-
tial, suggesting that FOXA2 expression is associated with a less
aggressive phenotype. Second, silencing of FOXA2 expression
promoted cell proliferation, migration, and invasion, whereas
overexpression of FOXA2 had the opposite effects. Finally,
higher FOXA2 appeared to be associated with better patient
survival. These findings are consistent with a previous study
that identified FOXA2 as one of the 26 genes enriched in differ-
entiated ovarian tumors with better prognosis (36). The results
are also in agreement with studies in lung cancer, which demon-
strate that FOXA2 is a strong inhibitor of metastasis with de-
creased expression levels during cancer progression (12, 13).
Similarly, FOXA2 has been reported to suppress EMT and
metastasis in breast cancer (15). However, FOXA2 expression
in triple-negative/basal-like breast carcinoma is positively asso-
ciated with relapse and promotes cancer development (16).
Interestingly, in a mouse model of liver cancer, Foxa2 and
Foxa1 suppress or promote liver cancer development, depend-
ing on whether they interact with estrogen receptor α (ERα)
or androgen receptor, respectively (17). This study also
revealed that SNPs at FOXA2-binding sites, which impair the
binding of both FOXA2 and ERα to their targets, correlate with
liver cancer development in women. Thus, it is possible that
the dual function of FOXA2 in cancer development is depen-
dent, at least in part, on its interacting partners. It remains to be
determined which factor(s) FOXA2 interacts with to exert the
tumor-suppressive effects in EOC.

Findings from the current study identified a novel relation-
ship between FOXA2 and VCAN. We demonstrated that
knockdown or knockout of FOXA2 enhanced, whereas over-
expression of FOXA2 reduced, VCAN expression. In addition,
ChIP-qPCR results showed that FOXA2 bound to the VCAN
gene. These findings strongly suggest that FOXA2 is a transcrip-
tional repressor of VCAN. This notion is further supported by
the expression patterns of FOXA2 and VCAN in EOC tumor
pathway (8) and by promoting β-catenin signaling (32).
FOXA2 and VCAN mediate the effects of miR-590 in EOC cells. A, Overexpression of FOXA2 in SKOV3.ip1 cells reversed the effect of miR-590. Control (EV) or miR-590 stable cells were transfected with either the control plasmid vector (pcDNA) or FOXA2-expressing plasmid. Overexpression of FOXA2 reduced the effects of miR-590 on invasion.

B, Silencing of VCAN by siRNA reversed the effects of FOXA2 knockout. Top, confirmation of VCAN knockdown by siRNA using Western blot analysis. Knockdown of VCAN significantly reduced cell migration (middle) and invasion (bottom) in FOXA2 knockout SKOV3.ip1 cells.

C, In ES-2 cells, knockdown of VCAN attenuated the effect of FOXA2 knockout on cell proliferation (top), migration (middle), and invasion (bottom).

D, Knockdown of VCAN reduced the effects of miR-590 on cell proliferation (left) and invasion (right). Statistical analyses were performed using ANOVA/Tukey test and groups significantly different from each other are denoted by a different letter.

Figure 7.
It has been reported that VCAN can be produced from and invasion, supporting a tumor-promoting role of VCAN. Knockdown of VCAN reduced cell proliferation, migration, and invasion, supporting a tumor-promoting role of VCAN. It has been reported that VCAN can be produced from both ovarian cancer cells (37) and cancer-associated fibroblasts (20). Because the tumor samples in the TCGA database most likely contain both cancer and fibroblastic stromal cells, it remains to be determined whether a negative relationship between FOXA2 and VCAN exists in both cancer and stromal cells.

Several isoforms of VCAN, namely V0, V1, V2, and V3, with molecular weights of approximately 370, 263, 180, and 74 kDa, respectively, are generated by alternative splicing (38). Although V0 and V1 isoforms promote cancer development in many types of cancers, V2 and V3 isoforms have been reported to have antitumor effects (39). Studies in EOC tumor samples revealed that V1 is the most abundant isoform (19). The VCAN antibody that we used in this study detected several bands with molecular weights between 245 and 135 kDa. The intensity of all bands was reduced by the VCAN siRNA, indicating that they are all related to VCAN. Based on the molecular weight, the V3 isoform is not detected in our Western blots. It has been reported that in several EOC cell lines, including SKOV3 and OVCAR3, V2 isoform is not expressed (37). In addition, V1 isoform can be processed into smaller fragment of 40 kDa. Thus, it is possible that miR-590-3p and FOXA2 regulate the expression of V1, and possibly V0.

Although it is widely believed that EOC metastasis occurs mainly within the peritoneal cavity (2), recent studies suggest that ovarian cancer cells can also spread via hematogenous metastasis (3). In our analysis of VCAN levels in patients with ovarian cancer, we found that high VCAN levels were positively correlated with an increase in vascular and lymphovascular invasion indicator in the same samples. These observations, together with the finding that VCAN promotes invasion (20) and metastasis (37) in ovarian cancer, raise the interesting possibility that VCAN may play an important role in promoting metastasis (3). In no analysis of FOXA2 and VCAN levels in patient survival were done using the TCGA dataset, which likely contains mostly HGSC tumors, we repeated some of the experiments in a HGSC cell line, OVCAR3 (43) that is known to be a model for endometrioid carcinoma (41). ES-2 originated from a CCC (44); however, a recent study has placed ES-2 into the category of probably HGSC (45). ES-2 is now listed as a cell line with mixed feature (41). Because most of the samples used for bioinformatics analysis to determine the correlation between FOXA2/VCAN and patient survival were done using the TCGA dataset, which likely contains mostly HGSC tumors, we repeated some of the experiments in a HGSC cell line, OVCAR3 (41) and observed that, similar to ES-2 and SKOV3.ip1 cells, miR-590-3p enhanced cell invasion and decreased FOXA2 expression. On the other hand, FOXA2 suppressed cell invasion and inhibited VCAN expression. We have also obtained limited, but similar, results from the HEY cell line, which has also been used as a model for HGSC (46). Based on these findings, it is possible that the miR-590-3p–FOXA2–VCAN pathway is preserved in multiple subtypes of EOC.

In summary, our study characterizes a previously unreported role of miR-590-3p in promoting EOC development in part by targeting FOXA2. We also provide evidence to support a novel tumor-suppressive role of FOXA2 in EOC via inhibition of VCAN expression. Finally, our findings that low FOXA2/high VCAN mRNA levels in EOC tumors correlate with poor survival suggest that these genes may be prognostic markers for this deadly disease.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Authors’ Contributions

Conception and design: M. Salem, J.A. O’Brien, S. Bernado, A. Amleh, C. Peng
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): S. Bernado, H. Shawer, G. Ye, A. Amleh, B.C. Vanderhyden, B. Refky
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): M. Salem, J.A. O’Brien, H. Shawer, J. Brkic, A. Amleh, S.N. Krylov, C. Peng
Writing, review, and/or revision of the manuscript: M. Salem, J.A. O’Brien, S. Bernado, J. Brkic, B.C. Vanderhyden, B.B. Yang, S.N. Krylov, C. Peng
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): M. Salem, G. Ye
Study supervision: G. Ye, A. Amleh, C. Peng

4188 Cancer Res; 78(15) August 1, 2018
Cancer Research
Acknowledgments

This study was supported by grants from Canadian Institutes of Health Research (MOP-89931 and PTE-153146) and Canada Foundation for Innovation/Ontario Research Fund (project #35611) to C. Peng. J.A. O’Brien was a recipient of graduate scholarships from Ontario Graduate Scholarship (OGS) and York University. S. Bernaudo was a recipient of graduate scholarships from NSERC, OGS, and York University. J. Biek was a recipient of graduate scholar-
ships from QEII-GSST, OGS, and York University. The research performed in Egypt was supported by the American University in Cairo Internal Faculty Research Grant to A. Amlieh and Graduate Student Research Grant to H. Shafer. We thank Dr. J. Liu for her help in statistical analyses of the clinical data, Dr. M.C. Hung for SKOV3.ip1 cells, E. Macdonald and the tumour bank at Ottawa Hospital Research Institute for providing the ovarian cancer samples, and Dr. Z. Wu for critical comments. The Ottawa Ovarian Cancer Tissue Bank is supported in part by Ovarian Cancer Canada. We are grateful to all patients who donated the samples.

The costs of publication of this article were defrayed in part by the pages of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received October 3, 2017; revised March 23, 2018; accepted May 3, 2018; published first May 10, 2018.

References

10. Li CM-C, Gocheva V, Odulin M, Bhukar A, Wang SY, Date SR, et al. FOXA2 and Cdx2 cooperate with Nkx2-1 to inhibit lung adenocarcinoma meta-

14. Perez-Balaguer A, Ortiz-Martinez F, Garcia-Martinez A, Pomasres-

15. Perez-Balaguer A, Ortiz-Martinez F, Garcia-Martinez A, Pomares-

17. Perez-Balaguer A, Ortiz-Martinez F, Garcia-Martinez A, Pomares-

18. Perez-Balaguer A, Ortiz-Martinez F, Garcia-Martinez A, Pomares-

19. Perez-Balaguer A, Ortiz-Martinez F, Garcia-Martinez A, Pomares-

miR-590-3p Promotes Ovarian Cancer Growth and Metastasis via a Novel FOXA2–Versican Pathway

Mohamed Salem, Jacob A. O'Brien, Stefanie Bernaudo, et al.

Cancer Res 2018;78:4175-4190. Published OnlineFirst May 10, 2018.

Updated version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-17-3014

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2018/05/10/0008-5472.CAN-17-3014.DC1

Cited articles
This article cites 45 articles, 7 of which you can access for free at:
http://cancerres.aacrjournals.org/content/78/15/4175.full#ref-list-1

Citing articles
This article has been cited by 1 HighWire-hosted articles. Access the articles at:
http://cancerres.aacrjournals.org/content/78/15/4175.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerres.aacrjournals.org/content/78/15/4175.
Click on “Request Permissions” which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.