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Lecture Outline:
Nitrogen Excretion In Fish

Excretion Strategies
• Ammoniotelism
• Ureotelism
• Ammoniotelism to Ureotelism

Detoxification Strategies
• Partial Amino Acid Catabolism
• Glutamine Synthesis

Gulf Toadfish (Opsanus beta)
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Nitrogen Excretion

• Most nitrogenous wastes in fish are produced 
and excreted as ammonia or urea.
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Ammoniotelism: Ammonia Excretion

• Animals that excrete their nitrogenous wastes
primarily as ammonia (NH3) are ammoniotelic.

- Most fish (including agnathans
and most teleosts)

• About 80 to 90% of their nitrogenous wastes 
are excreted as ammonia and the remainder
as urea.

Goldfish
(Carassius auratus)
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What is Ammonia (NH3)?

• Weak base
• Highly soluble
• Can diffuse passively across epithelia (e.g. gill)

• In solution, it exists as 2 species:

NH3 +   H3O
+ NH4

+ +   H2O

However, in fish tissue about 95%
of total ammonia exists as NH4

+.
NH4

+ cannot diffuse across epithelia.

(side note: pK of NH3 = 9-10; fish blood = pH 7.4)

Why is it toxic?

- increases internal pH

- can inhibit key enzymes required for
energy generation (destabilizes proteins)

- NH4
+ substitutes for K+ in ion transporters, 

(e.g. Na+-K+-ATPases) disrupting 
electrochemical gradients.

• Highly toxic at high concentrations
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• In general, fish are much more resistant to 
build-up of internal ammonia than terrestrial 
vertebrates.

For example, 

Fish  ���� 100 - 200 µM (up to 1000 µM)
Humans ���� 40 µM (up to 80 µM)

Ammonia Resistance

Ammonia Production

• Ammonia is generally produced 
by two catabolic processes:

1) Amino Acid Catabolism (mainly)

2)  Purine Catabolism (trace)
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Amino Acid Catabolism

• Majority of ammonia in fish is produced by the catabolism
of amino acids

• Requires little to no energy

• αααα-Ketoacids (e.g. pyruvate) generated can be used for:
- Production of energy (e.g. in Krebs Cycle)
- Gluconeogenesis
- Lipogenesis

• The primary mechanism for amino acid catabolism in
fish is transdeamination.

Amino Acid Catabolism: Transdeamination

Aminotransferase (AT)

+

NH2

Any Amino Acid αααα-Ketoglutarate

Step 1: Transamination:

NH2

Glutamate

• Amino group (NH2) of any amino acid is transferred to

αααα-ketoglutarate to form glutamate. 

+αααα-Ketoacid

Energy, glucose, lipid production
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Step 2: Deamination

Amino Acid Catabolism: Transdeamination

Glutamate 

Dehydrogenase

NH2

Glutamate

+

• Amino group of glutamate is released as ammonia.

NH3 αααα-Ketoglutarate

Amino Acid Catabolism: 

Transdeamination

• Typically, 50 to 70% (up to 99% in goldfish) 
of ammonia produced by transdeamination
occurs in the liver.

• The rest originates in the kidney, muscle 
gill and intestine.

How is Ammonia Excreted???
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• Unlike most vertebrates, >80% of nitrogenous 
wastes are excreted by the gills, with only 
trace amounts excreted by the kidney as urine.

How is Ammonia Excreted?

Ammonia Excretion in FW Fish Gill

NH4
+

NH3

Gill Epithelium

WATERBLOOD

NH3

• Passive diffusion of NH3 into water 

(transcellularly or paracellularly)

Low NH3High NH3
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Ammonia Excretion in FW Fish Gill

NH4
+

NH3

Gill Epithelium

BLOOD

NH3

NH4
+

H+H+-ATPase

• NH3 Trapping: Protons pumped out of the gill
combine with NH3 to produce impermeable NH4

+. 

Low NH3High NH3

Acidified

GILL WATER

BULK

WATER

Ammonia Excretion in FW Fish Gill

NH4
+

NH3

Gill Epithelium

Acidified

GILL WATER

CO2

BLOOD

NH3

Carbonic 

Anhydrase
HCO3

- + H+

H+H+-ATPase

NH4
+

• CO2 is converted to HCO3
- and H+ by the enzyme

carbonic anhydrase. 

BULK

WATER
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Ammonia Excretion in FW Fish Gill

���� Passive diffusion of NH3 into water 
(trancellularly or paracellularly)

���� NH3 Trapping: Gill water is acidified by protons pumped 
out of the gill by an H+-ATPase. Protons combine with NH3

to produce impermeable NH4
+ and 

maintain NH3 gradient.
(High NH3 in blood, low in water)

Review

NH4
+

NH3

CO2

NH3

CA HCO3
- + H+

H+
NH4

+���� Protons are produced by
carbonic anhydrase from
CO2. 

Ammonia Excretion in SW Fish Gill

Gill Epithelium

NH3
NH3

NH4
+

WATERBLOOD

NH4
+

• Passive diffusion of NH3 into water (trancellularly and 

paracellularly) and passive diffusion of NH4
+

(paracellularly via “leaky” junctions).

SW is well buffered 

� NH3 trapping 

not possible
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Ammonia Excretion in SW Fish Gill

Gill Epithelium

NH3
NH3

NH4
+

WATERBLOOD

NH4
+(K+)

Na+

ATPase

NH4
+

• NH4
+ is pumped into gill by substituting for K+ at

a basolateral Na+-K+-ATPase.

Ammonia Excretion in SW Fish Gill

Gill Epithelium

NH3
NH3

NH4
+

WATERBLOOD

NH4
+(K+) (H+)

Na+ Na+

NH4
+

ATPase HNE

NH4
+

• NH4
+ is pumped out of the gill by substituting for H+ at

an apical H+-Na+ exchanger (HNE).
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Ammonia Excretion in SW Fish Gill

���� Passive diffusion of NH3 into water (trancellularly or 
paracellularly) and passive diffusion of NH4

+

(paracellularly via “leaky” junctions).

Review

���� Active transport of NH4
+ into the gill by

replacing K+ in  Na+-K+-ATPases

���� Active transport of NH4
+ into the 

water by replacing H+ in HNEs.

Remember: SW is well buffered ���� NH3 trapping not possible

NH3
NH3

NH4
+ NH4

+(K+) (H+)

Na+ Na+

NH4
+

ATPase HNE

NH4
+

Ureotelism: Urea Excretion

• Animals that excrete their nitrogenous wastes 
primarily as urea are ureotelic.

- Elasmobranchs, coelacanths and
a few teleosts.  

Dogfish
(Squalus acanthias)

Coelacanth
(Latimeria chalumnae)
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What is Urea?
• Highly soluble
• Ability to diffuse across epithelia (e.g. gill)

depends on the species
- e.g. elasmobranchs

– high cholesterol:lipid membrane 
���� impedes diffusion

O

||

H2N—C—NH2

Urea

• At high concentrations, much less toxic than ammonia

Urea Production

• Urea is generally produced 
by two processes:

1) Ornithine-Urea Cycle (OUC)

2) Uricolysis
- Most fish (including teleosts)
- Breakdown of uric acid
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Ornithine-Urea Cycle (OUC)

• Only elasmobranchs, coelacanths and a 
few teleostean fish that survive periods of air 
exposure or alkaline environments.

• Assumed that OUC genes encoding enzymes
necessary for the cycle have been lost from 
the genome of most teleosts.

• However, high OUC enzyme activity detected
in many teleosts during embryonic stages
���� OUC genes are silenced in adult stages.

• Carbamoyl phosphate synthase (CPSase)

Ornithine-Urea Cycle (OUC)

converts glutamine to carbamoyl phosphate, 
which is the first substrate fed into 

the OUC to produce urea.

• Requires energy.

• It occurs primarily in the liver.
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OUC in the Liver

Arginine

Ornithine

Citrulline

Arginino-
succinate

Carbamoyl
Phosphate

Glutamine

Urea

CYTOSOL

MITOCHONDRIAL

MATRIX

CPSase
= Enzyme

Urea Excretion and 
Retention at the Gill

• Like ammonia, urea excretion occurs 
at the gill.

• However, urea retention also occurs at 
the gill for marine fish that retain urea as
an osmolyte to increase body osmolarity
e.g. elasmobranchs.
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Urea Excretion in FW and SW Fish Gill

Gill Epithelium

Urea

WATERBLOOD

Urea

• Passive diffusion of urea into water transcellularly

and paracellularly in marine fish via “leaky” junctions.

Urea Excretion in FW and SW Fish Gill

Gill Epithelium

Na+

Urea

ATPase

WATERBLOOD

K+

Urea
Urea

UT

Na+

• Active transport of urea out of the gill by an Na+

dependent, secondary active  urea transporter (UT).

Low Na+High Na+
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���� Passive diffusion of urea into water trancellularly and 
paracellularly in marine fish via “leaky” junctions only.

Review

���� Na+ diffuses down its concentration gradient via a
urea transporter (UT) taking urea
with it. Urea then diffuses out
of the gill.

Urea Excretion in FW and SW Fish Gill

Na+

Urea

ATPase
K+

Urea
Urea

UT

Na+

���� Basolateral Na+-K+-ATPases create a gradient of low
Na+ in the gill epithelium and high Na+ in the blood.

Urea Retention in Elasmobranch Gill

Gill Epithelium

Urea

WATERBLOOD

Urea
Urea

(very little)

• Passive diffusion of urea into water transcellularly

and paracellularly via “leaky” junctions.

High 

cholesterol:phospholipid
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Urea Retention in Elasmobranch Gill

Gill Epithelium

Urea

WATERBLOOD

Urea
Urea

UT

Na+

(very little)

Na+

ATPase

K+

• Active transport of urea back into the blood by an Na+

dependent, secondary active  urea transporter (UT).

Low Na+High Na+

���� Na+ diffuses down its concentration gradient via a
urea transporter (UT) transporting
urea back into the blood

Na+

Urea

ATPase

K+

Urea
Urea

UT
Na+

���� Very little passive diffusion of urea into water 
trancellularly due to high cholesterol:phospholipid
basolateral membrane.

• Some excretion paracellularly via “leaky” junctions only.

Review

Urea Retention in Elasmobranch Gill

���� Basolateral Na+-K+-ATPases create a gradient of low 
Na+ in the gill epithelium and high Na+ in the blood.



18

Na+

Urea

ATPase

K+

Urea
Urea

UT

Na+

Na+

Urea

ATPase

K+

Urea

Urea

UT

Na+

Urea Excretion Urea Retention

FW and SW Fish Gill Elasmobranch Gill

UT = Symporter UT = Antiporter

Comparison at the Gill

2)  Ammonia requires a large volume of water for excretion
since it occurs by diffusion;
Urea requires less water for excretion

- about 10x less water

Ureotelism vs. Ammoniotelism

1)  Ammonia takes little energy to produce/excrete;
Urea production/excretion is energy expensive.

Therefore, ureotelism is better suited for air-breathing fish,

e.g. African Lungfish, which can live on land for extended 
periods and have limited access to water.
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African Lungfish: Ammoniotelism

to Ureotelism

African Lungfish
(Protopterus dolloi)

• Can live for extended periods out of
water in dried mucous cocoons,
relying entirely on aerial respiration.

• In the water, it is ammoniotelic.
• On land, it shifts to ureotelism.

• Lack of water makes it impossible for
the diffusion of ammonia from the gills.

• Uses OUC to convert toxic ammonia 
to urea for safer storage of 
nitrogenous wastes.

���� Increases levels of active 
OUC enzymes

Gulf Toadfish

Gulf Toadfish
(Opsanus beta)

• Under normal conditions ���� Ammoniotelic
• Under stressful conditions (e.g. crowding, confinement to

a small volume of water)
���� Intermittently ureotelic – excretes pulses of urea

• Transition is accompanied by an upregulation of active 
OUC enzymes in the liver.

• Stress hormone, cortisol, believed to be
involved in regulating the transcription 
of  enzymes required for the initiation
of the OU cycle.
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• Intermittent pulses of urea excretion (arrows) following 
confinement of a Gulf Toadfish (at time = 0). 

- Note the negligible ammonia excretion. 

Gulf Toadfish

(Wood et. al., 2003)

Other Strategies to Defend Against 

Ammonia Toxicity on Land

1) Partial Amino 
Acid Catabolism
- Giant Mudskipper

2) Glutamine Synthesis
- Four-Eyed Sleeper
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Giant Mudskipper:
Partial Amino Acid Catabolism

Giant Mudskipper

(Periophthalmodon schlosseri)

• Air-breathing ammoniotelic teleost fish that can live in 
mud burrows.

• When exposed to air it does not switch to ureotelism
• Uses partial amino acid catabolism to generate energy,

yet reduce production of ammonia.

• Prerequisites:  1) Alanine Aminotransferase (ALT)
2) Malic Enzyme

Acetyl CoA

Citrate

Pyruvate

αααα-Keto-
glutarate

Oxalo-
acetate

Malate
Krebs Cycle

NADH

Electron

Transport

Chain
ATP
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Partial AA
Catabolism Acetyl CoA

Citrate

αααα-Keto-
glutarate

Oxalo-
acetate

Malate

Krebs Cycle

Pyruvate

Malic

Enzyme

NADH

Electron

Transport

Chain
ATP

Glutamate

Pyruvate

+

NH2

ALT

Alanine

NH2

Partial Amino Acid Catabolism

Main point:

• Allows amino acids to be used as an energy source
while on land without producing toxic ammonia, which
would be difficult to excrete due to a lack of 
external water.
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Four-Eyed Sleeper: Glutamine Synthesis

Four-Eyed Sleeper

(Bostrichyths sinensis)

• Air-breathing ammoniotelic teleost fish that can live in 
crevices above river mouths 

• When exposed to air it does not switch to ureotelism
• Uses the enzyme glutamine synthetase to combined NH3

with glutamate forming glutamine.

• Glutamine ���� safer ammonia storage than urea

• Cost-effective: 
- only 2 mol ATP per NH3 incorporated in glutamine
Vs.  2.5 mol ATP per NH3 incorporated in urea

Glutamine

The End


