## PHYS 2020: Homework 1 (due Monday Sept. 21)

Reading: Purcell \& Morin, Chapters 1.1-1.6.

Problem 1 (10 points): The hydrogen atom is made from one proton and one electron, with an average separation distance of $5.29 \times 10^{-11} \mathrm{~m}$. Compute the Coulomb and gravitational forces between them. What is ratio between the Coulomb and gravitational forces? (This is why gravity is considered a very weak force.)

Problem 2 (10 points): Besides the proton and neutron, there are many other types of particles made from quarks that have been produced and studied in the laboratory. Consider a particle made from three quarks with charge $q=+\frac{2}{3} e$, each at the corner of an equilateral triangle with side length $d=10^{-15} \mathrm{~m}$. Compute the magnitude of the Coulomb force acting on each quark. (Note how massive the forces are. Recall that 10 N is about the weight of a 1 kg mass.) The fact that such a particle can exist, despite the massively repulsive Coulomb force between quarks, implies the existence of an even stronger attractive force between quarks that holds them together, known as the strong force.

Problem 3 ( 30 points): Consider the configuration consisting a $+q$ charge and two $-q$ charges aligned along the $x$-axis as follows:

where the charges are separated by a distance $d$. In this position, the $+q$ charge is in equilibrium since the net force acting on it is zero.
(a) Suppose the $+q$ charge is moved perpendicularly by a vertical distance $y$. Now, what is the net force $\vec{F}$ acting on it?
(b) Next, suppose instead the $+q$ charge is moved parallel along the $x$-axis by a horizontal distance $x$. Now what is the net force $\vec{F}$ acting on it? Assume $|x|<d$.

Assuming the $-q$ charges are fixed, is the $+q$ charge in stable equilibrium at its initial position? Explain your reasoning.
(c) Consider a new setup with four $-q$ charges surrounding $\mathrm{a}+q$ as follows:


Is the $+q$ charge in a stable equilibrium here? Justify your reasoning.

Problem 4 (20 points): A crystal is a periodic lattice of positively and negatively charged ions.
(a) Consider an infinite one-dimensional crystal of alternating charges $+q$ and $-q$, separated by distance $d$ :


What is the potential energy per ion?
(b) Consider a similar setup with alternating pairs of charges, as follows:


What is the potential energy per ion?
Which crystal configuration is more stable (i.e. has the lowest potential energy per ion)?
Hint: You should encounter an infinite alternating series, which may be summed as follows:

$$
\begin{equation*}
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\ldots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=\ln (2) \tag{1}
\end{equation*}
$$

Bonus (5 points): Prove Eqn. (1) by Taylor expanding $\ln (1+x)$.

