PHYS 2020: Homework 2 (due Monday Sept. 28)

Reading: Purcell \& Morin, Chapters 1.7-1.8.

Problem 1 (20 points): Consider a straight line path L_{1} from starting point $\vec{r}_{1}=(0,0,0)$ to ending point $\vec{r}_{2}=(1,1,1)$, shown in Fig. 1. Compute the work to move along L_{1} for the following forces:
(a) $\vec{F}=-\left(\begin{array}{l}a x^{2} \\ a y^{2} \\ a z^{2}\end{array}\right)$, where a is a constant. (5 points)
(b) $\vec{F}=-\left(\begin{array}{c}b z \\ -b x \\ b y\end{array}\right)$, where b is a constant. (5 points)

Now repeat your calculation along a new path L_{2} from $\overrightarrow{r_{1}}$ to $\overrightarrow{r_{2}}$ along the curved line $y=z=x^{2}$. Comment on whether forces (a) and (b) are conservative or nonconservative. (10 points)

Problem 2 (10 points): Consider a cylinder of radius R and height L, aligned along the z axis, with charge density

$$
\rho(s, z)=\left\{\begin{array}{cl}
a s^{2} z & 0<s<R \text { and } 0<z<L \\
0 & \text { otherwise }
\end{array}\right.
$$

where a is a constant and s, z are the usual cylindrical coordinates. What is the total charge of the cylinder?
Problem 3 (30 points): Consider a circular wire ring (assumed to be infinitely thin) located in the $x-y$ plane and centered at the origin. The ring has radius R and linear charge density λ. What is electric field \vec{E} at a height h directly above the center of the ring, at the point $\vec{r}=(0,0, h)$?

Figure 1: Paths L_{1} and L_{2} for Problem 1. Only the x and y directions are shown here. The z direction is not shown.

