PHYS 2020: Homework 4 (due Monday Oct. 19)

Reading: Purcell \& Morin, Chapters 2.1-2.6.

Problem 1 (20 points): Consider a thin circular ring of radius R and uniform linear charge density λ. What is the potential at the center of the ring? Hint: You already computed the electric field from the ring in HW 2, problem 3.

Problem 2 (10 points): Consider two point charges, q and $-q$, located at $\vec{r}_{1}=(0,0,0)$ and $\vec{r}_{2}=(d, 0,0)$, respectively. What is the potential difference $\phi_{43}=\phi\left(\vec{r}_{4}\right)-\phi\left(\vec{r}_{3}\right)$, where $\vec{r}_{3}=(0, d, 0)$ and $\vec{r}_{4}=(d, d, 0)$?

Problem 3 (20 points): Consider an electric field

$$
\vec{E}(\vec{r})=a\left(\begin{array}{c}
6 x y \tag{1}\\
3 x^{2}-3 y^{2} \\
0
\end{array}\right)
$$

where a is a constant. What is the potential

$$
\begin{equation*}
\phi(\vec{r})=-\int_{\vec{r}_{0}}^{\vec{r}} \overrightarrow{d s} \cdot \vec{E}\left(\vec{r}^{\prime}\right) \tag{2}
\end{equation*}
$$

relative to the reference position $\vec{r}_{0}=(0,0,0)$? Using your result for ϕ, verify that $-\vec{\nabla} \phi$ gives Eq. (1).
Hint \#1: Don't forget to use primed variables as your integration variables. (Remember $\vec{r}=(x, y, z)$ is the end point of the integral and \vec{r}^{\prime} is the position along the line integral.) So, make sure you set $\overrightarrow{d s}=\left(d x^{\prime}, d y^{\prime}, d z^{\prime}\right)$ and plug in $\vec{E}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ into Eq. (2).
Hint \#2: Evaluate Eq. (2) first along the x-direction from 0 to x, then along the y-direction from 0 to y, and lastly along the z-direction from 0 to z.

Problem 4 (20 points): Purcell \& Morin, exercise 2.41.
Problem 5 (10 points): Compute the gradient $\vec{\nabla} f$ of the following functions:
(a) $f(\vec{r})=2\left(x y+y^{2}-x z\right)$. Express your result in Cartesian coordinates. (5 points)
(b) $f(\vec{r})=1 / r^{4}$. Express your result in spherical coordinates. (5 points)

