PHYS 2020: Homework 5 (due Monday Oct. 26)

Reading: Purcell & Morin, Chapters 2.7. Optional reading, 2.8–2.18.

Problem 1 (20 points): Consider a solid sphere of radius R and uniform charge density ρ . Let r be the distance from the center of the sphere.

- (a) What is the electric field $\vec{E}(r)$? (5 points)
- (b) What is the potential $\phi(r)$? (5 points)
- (c) What is the potential difference $\Delta \phi$ between the center and the outer surface of the sphere? (5 points)
- (d) Using your expression for $\phi(r)$ in part (b), verify that $\vec{E} = -\vec{\nabla}\phi$. (5 points)

Problem 2 (20 points): Consider an infinite solid cylinder of radius R and uniform charge density ρ . Let s be the distance from the center of the sphere.

- (a) What is the electric field $\vec{E}(s)$? (5 points)
- (b) What is the potential $\phi(s)$? Define the zero of your potential relative to the surface of the cylinder (s = R) (5 points)
- (c) What is the potential difference $\Delta \phi$ between the center and the outer surface of the cylinder? (5 points)
- (d) Using your expression for $\phi(s)$ in part (b), verify that $\vec{E} = -\vec{\nabla}\phi$. (5 points)

Problem 3 (20 points): Consider a charge configuration aligned along the z-axis, shown as follows:

Evaluate the potential $\phi(\vec{r})$ in the limit $d \ll r$, and express your results in terms of spherical coordinates (r, θ) . Show that the leading term is given by the *quadrupole* moment.

Problem 4 (10 points): Consider an open hemispherical bowl with radius R and surface charge density σ . The lip of the bowl forms a circle C of radius R. Show that the potential at any point level with and within C has a constant potential, given by $\phi = \frac{\sigma R}{2\epsilon_0}$.

Hint: No calculus is needed. First, consider a spherical shell, and then use the superposition principle.