PHYS 2020: Homework 6 (due Monday Nov. 2)

Reading: Purcell \& Morin, Chapters 3.1-3.4.

Problem 1 (15 points): Consider a solid sphere of uniform charge density ρ and radius R. Let $\vec{r}=(x, y, x)$ be the position vector relative to the center of the sphere.
(a) In class, we derived the electric field \vec{E} for the sphere in spherical coordinates. Write down this result for \vec{E} (no need to rederive it) and express your result in Cartesian coordinates. (5 points)
(b) Show that $\vec{\nabla} \cdot \vec{E}=\rho / \epsilon_{0}$ for $r<R$, while $\vec{\nabla} \cdot \vec{E}=0$ for $r>R$. (5 points)
(c) Show that $\vec{\nabla} \times \vec{E}=0$ for any r.

Problem 2 (15 points): Purcell \& Morin, problem 3.33.
Problem 3 (10 points): Purcell \& Morin, problem 3.38.
Problem 4 (20 points): Consider an infinite conducting plane in the $x-y$ plane. An infinite wire with uniform linear charge density λ is located parallel to the y axis at a height $z=d$ above the conducting plane.
(a) Sketch the location and charge distribution of the mirror charge. (5 points)
(b) Sketch the resulting electric field \vec{E} for region above the plane, i.e. $z>0$. (5 points)
(c) What is the electric field \vec{E} at the surface of the plane $(z=0)$? (5 points)
(d) What is the surface charge density σ on the surface of the plane? (5 points)

