PHYS 2020: Homework 9 (due Monday Dec. 7)

Reading: Purcell \& Morin, Chapters 6.1-6.6.

Problem 1 (15 points): Consider a setup, known as a Helmholtz coil, consisting of two short coils of radius R, each consisting of N loops with current I. The two loops are aligned along the x axis and separated by a distance R, as shown in Fig. 1. What is \vec{B} at a point along the x axis between the coils? You may treat each loop as a single thin circular wire with current $N I$.

Show that the magnetic field satisfies $\partial \vec{B} / \partial x=0$ at the point exactly midway between the loops along the x axis. (Actually, one can go further to show that $\partial^{2} \vec{B} / \partial x^{2}=0$ and $\partial^{3} \vec{B} / \partial x^{3}=0$ at the midpoint as well. The Helmholtz coil, therefore, is a useful way to make a \vec{B} field that is approximately constant.)

Problem 2 (15 points): Purcell \& Morin, 6.43.
Problem 3 (15 points): Purcell \& Morin, 6.49.
Problem 4 (15 points): Purcell \& Morin, 6.50.
Problem 5 (15 points): Purcell \& Morin, 6.61. This setup is known as a toroid.

Figure 1: Helmholtz coil.

